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Abstract: This study presents a method of tree species classification using individual tree metrics
derived from a three-dimensional point cloud from unmanned aerial vehicle laser scanning (ULS). In
this novel approach, we evaluated the metrics of 1045 trees using generalized linear model (GLM)
and random forest (RF) techniques to automatically assign individual trees into either a coniferous or
broadleaf group. We evaluated several statistical descriptors, including a novel approach using the
Clark–Evans spatial aggregation index (CE), which indicates the level of clustering in point clouds.
A comparison of classifiers that included and excluded the CE indicator values demonstrated their
importance for improved classification of the individual tree point clouds. The overall accuracy when
including the CE index was 94.8% using a GLM approach and 95.1% using an RF approach. With the
RF approach, the inclusion of CE yielded a significant improvement in overall classification accuracy,
and for the GLM approach, the CE index was always selected as a significant variable for correct tree
class prediction. Compared to other studies, the above-mentioned accuracies prove the benefits of
CE for tree species classification, as do the worse results of excluding the CE, where the derived GLM
achieved an accuracy of 92.6% and RF an accuracy of 93.8%.

Keywords: LiDAR; UAV; forestry; species classification; individual tree metrics approach

1. Introduction

European forests have recently faced an increasing number and severity of disturbance
events, which are closely associated with climate change [1]. Apart from abiotic factors such
as wind or fire, insect pests and pathogens, both native and non-native, are on the rise. An
example of such an unprecedented disturbance situation is the current bark-beetle outbreak
in Central Europe [2]. Important mechanisms for mitigating the effects of individual
disturbance events are the prediction of the possible trajectory of their spread and the
subsequent direction of controls or management interventions in these areas. Methods
for quickly and reliably determining the territory’s condition are needed to involve such a
strategy. The rapid development of remote sensing techniques represents a suitable tool for
these investigations.

Light Detection And Ranging (LiDAR) is an active sensing technology that can provide
a detailed 3D reconstruction of objects and scenes, such as forest trees and stands [3,4],
and represents a practical way to measure tree dimensions [5], volumes [6], and other
characteristics [7]. LiDAR data’s characteristics and level of detail vary according to the
carrier platform: highly detailed and accurate reconstructions are provided with stationary
terrestrial laser scanning (TLS) [8], while a higher efficiency of data acquisition is offered
by mobile devices installed on terrestrial mobile platforms or carried by a human (mobile
laser scanning, MLS) [9] or piloted aircraft (aerial laser scanning, ALS). A special case of
the latter method mentioned is data acquisition using unmanned aerial vehicles (UAVs)
equipped with a LiDAR sensor—UAV laser scanning (ULS).

In recent years, UAV laser scanning has gained attention because of its safety, flexibility
of data acquisition, and high-quality data compared to ALS, which is all caused by UAVs’
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ability to fly at lower speeds and at lower altitudes above ground. The first study using
a LiDAR-equipped UAV in forestry can be found as early as 2010 [10], where the authors
presented a novel system based on a combination of Ibeo Lux and a Sick LMS151 laser
scanner system together with IMU and GPS units. The authors acquired 3D point clouds
that enabled tree height measurement with an error of 30 cm. Later, Wallace [11] presented
a similar system additionally equipped with a high-definition (HD) camera for more
precise point-cloud derivation. In the study, it was proven that the inclusion of the video
information improved the accuracy of the final point cloud from 0.61 m to 0.34 m (root-
mean-square error assessed against ground control).

Many scientific publications have dealt with the extraction of individual tree crowns
and assessing dendrometric characteristics from ALS data [12–14]. ULS data are character-
ized by markedly higher densities, reaching thousands of points per square meter, and a
higher diversity of scan angles, therefore providing high-quality 3D representations of tree
components, such as tree stems or branches. ULS data were successfully used to identify
individual tree stems [15,16], reaching detection rates from 51% to 87% for trees with diam-
eters over 15 cm and 50 cm, respectively [17], and up to 91% [18] or almost 100% [19,20],
depending on the forest stand type and conditions. Studies evaluating the suitability of
ULS data for stem diameter estimation from direct measurements in point clouds report
that most of the stems can be measured with a root-mean-square error of 4 cm [21] to
6 cm [19] with data acquired using Riegl VUX-SYS. Contrarily, Hyppä et al. [22], utilizing
an identical scanning system for data acquisition based on diameter errors, concluded that
the above-canopy UAV laser scanning method was insufficient for data collection at the
individual tree level; however, under-canopy UAV laser scanning was able to provide data
comparable with terrestrial methods [23]. ULS data were also successfully utilized for
calculating stand volume [24].

It has been shown that LiDAR 3D data can be utilized to derive structural charac-
teristics at the tree or stand level. Structural characteristics, or metrics, are an effective
tool in many applications. Liu [25], in their study, assessed the effectiveness of plot-level
metrics (i.e., distributional, canopy volume, and Weibull-fitted metrics) and individual-
tree-summarized metrics (i.e., maximum, minimum, and mean height of trees and the
number of trees from the individual tree detection (ITD) results) derived from UAV–LiDAR
point clouds. Then, these metrics were used to fit estimation models of six forest structural
attributes within a Ginkgo plantation in east China using parametric (i.e., partial least
squares (PLS)) and non-parametric (i.e., k-Nearest Neighbors (k-NN) and random forest
(RF)) approaches. Another important application for tree metrics in LiDAR data is species
classification [26], or with the addition of spectral imagery e.g. Pereira Martins-Neto et al.
2023 [27]. Holmgren and Persson [28] tested the classification of Scots pine versus Norway
spruce on an individual tree level using features extracted from airborne laser scanning
data. Regarding ULS data, Krůček et al. [17] applied a random forest classified on a set of
geometric properties derived from individual tree point clouds and, with 85% accuracy,
classified trees into broad-leaved and needle-leaved classes.

Nowadays, commonly used deep learning algorithms in forestry studies such as
Support Vector Machine (SVM) and RF play an important role in remote sensing data
classification. An overview of RF applications in forestry remote sensing data is presented
by Belgiu et al. [29]. SVM was described by Vapnik [30], and Mountrakis et al. [31] provide
an overview of its usage in remote sensing. The high accuracy of SVM was highlighted
by Krajnčíć [32] in terms of vegetation classifications. These two deep learning algorithms
were compared by Pal [33], who proved that there are lower user-defined requirements for
RF than for SVM.

In this study, we analyze the metrics of point clouds of individual trees that were
obtained using the Riegl (RIEGEL Laser Measurement System GmbH, Horn, Austria) VUX-
SYS system. The first reference to the use of these systems in the scientific literature is the
work of Brede et al. [21], where the authors describe in detail the system components and
quality of derived Digital Terrain Models (DTMs), Digital Surface Models (DSMs), and
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Canopy Height Models (CHMs) from the resulting point clouds, which were compared
with models that were based on point clouds of the same areas obtained with the TLS
system RIEGL VZ-400 (RIEGEL Laser Measurement System GmbH, Horn, Austria).

In this study, we are looking for point-cloud metrics that are significantly different
for broadleaf and coniferous trees using descriptive statistics and the above-mentioned
deep learning algorithm RF. We assume that spruce trees have a regular “star” shape of the
crown and that the distribution of branches has a regular structure. On the other hand, the
crown of a broadleaf is expected to be asymmetric, and the branches are more frequent over
the entire trunk. Therefore, we have chosen the Clark–Evans spatial aggregation index (CE),
among others, to improve classification results using the metrics derived with descriptive
statistics methods. CE has been, till now, used for the evaluation of tree distribution in
forest stand but not for point clustering analyses on such data.

2. Materials and Methods
2.1. Study Area

The whole study area included four plots in mature stands with full stocking (stand
production area is used 100%) that differed in tree species and growth conditions. However,
differences in growth conditions did not substantially influence the crown architecture,
which is predominantly controlled by stocking. Age varied from 80 (broadleaf plots) to
100 (coniferous plots). All plots were in flat area with slope up to 5%. Plots A and B
consisted of broadleaf tree species (Quercus petraea (Matt.) Liebl.), and plots C and D
were coniferous (Picea abies (L.) H. Karst.). Selected plots represent examples of typical
production forests with economically most important examples of broadleaf and coniferous
tree species. Plot A was located in natural reservation Koda in southern central Czech
Republic (49◦56′00.1′′ N, 14◦06′14.7′′ E) with area 18,000 m2, and plot B was located near
the village Podbořanský Rohozec in western part of the Czech Republic (50◦13′9.165′′ N,
13◦13′28.219′′ E) with area 21,000 m2. Both were mature stands with Sessile oak Q. petraea.
Plot C and plot D belonged to the Czech University of Life Sciences forest enterprise located
near town Jevany in eastern central Czech Republic (49◦57′22.9′′ N, 14◦49′37.8′′ E)—plot
C had area 16,000 m2, and plot D was located near town Stříbrná Skalice (49◦54.81395′ N,
14◦52.58753′ E) with area 29,000 m2. Both plots had monoculture mature stand of Norway
spruce P. abies. Location of all four plots is indicated in Figure 1. The mean height and
its standard deviation were calculated from individual tree point clouds for both classes.
Mean height for coniferous class was 39.9 m and standard deviation 3.7, for broadleaf mean
height 21.1 m and standard deviation 3.3. In this study, there were a total of 290 broadleaf
and 755 coniferous individual trees. ULS data were acquired through August 2020 during
low precipitation season.

2.2. UAV-Borne LiDAR

For data acquisition, we used UAS VUX-SYS (RIEGL Laser Measurement System
GmbH, Horn, Austria), consisting of UAV RiCOPTER and multi-return laser scanner
VUX-1UAV.

RiCOPTER is a octocopter UAV with total take of payload 25 kg, of which 6.5 kg
includes mounted sensors. The total flight time with full load for data acquisition reaches
nearly 28 min. Eight brushless motors on four arms are powered, as is the whole UAV, by
four Li-Pol batteries. The UAV is capable of autonomous flight.

VUX-1UAV [34] is a near-infrared multi-return laser scanner with 330◦ FoV (Field
of View), because the scanner is mounted on the bottom side of the UAV; therefore, the
FoV is reduced. Maximum pulse repetition rate is 550 MHz with the maximum effective
measurement rate up to 500,000 measurements per second (because of 550 kHz and 330◦

FoV). The scanner can also provide data on return number (up to 11) and reflectance for
each point. Electric energy is provided by the RiCOPTER electric system. The laser scanner
was remotely controlled by pilot of the UAV. Whole UAS before take-off is presented in
Figure 2.
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2.3. LiDAR Data Acquisition

Before the actual flight, Base Station (BS) consisting of Trimble TSC3 Controller and
Trimble R2 GNSS receiver (Trimble, Sunnyvale, CA, USA) was established for data ac-
quisition. Periodical static measurement was performed during the whole flight for the
later post-processing of trajectory. Before the actual static measurement, the position of the
GS was measured using RTK (Real-Time Kinematics) measurement. Data were acquired
using VUX-SYS with flight speed 5 m·s−1, altitude 80 m above ground level. The automatic
flight used double-grid pattern consisting of two perpendicular parallel lines with 50 m
spacing to reach high density of points in the whole point cloud. For every trajectory line,
single-laser data were acquired. The laser scanner was remotely controlled by the pilot of
the UAV (Figure 2). To attain geometrical accuracy, the stop-and-turn method was used
to change direction during the flight of UAV. The point cloud density varied from 1500 to
2700 points m−2 per plot.

2.4. Data Processing

The data processing was divided into several steps considering the software used. The
first step was to calculate dense point clouds with high accuracy; the second step was to
prepare dataset of all trees in the studied monocultural forest stands. This workflow led to
derivation of initial point cloud.

Deriving initial point cloud from each plot was preceded by calculation of trajectory
in software PosPAC MMS 8.1 (Applanix: a Trimble company, Richmond Hill, ON, Canada)
using the Base Station method adjusting the raw UAV (rower) trajectory data. The precise
position of BS was improved with the RTK measurement. After the calculation of the
trajectory, the initial dense point cloud was derived in the environment of RiPROCESS
(RIEGL Laser Measurement System GmbH, Horn, Austria) software from each single scan.
To increase the accuracy of the initial point cloud, we used RiPROCESS software tool
RiPRECISSION for better co-registration mainly along the z-axis of individual scanning
line data and to improve its congruency. In addition, derived points were classified into
several groups (ground, vegetation, and noise) for future data evaluation.

The georeferenced, classified point cloud was imported to environment of the ArcGIS
10.6.1 (ESRI, Redlands, CA, USA) as LAS dataset using ALS dataset tool. The horizontal
crown projections were automatically detected with 3D Sample tool from derived CHM
(Canopy Height Model). The 3D Sample tool was originally created for ALS datasets for
tree detection based on local maxima and Inverse Watershed Segmentation (IWS). The IWS
was described on mature forest stand plots from aerial photogrammetry points clouds
by Panagiotidis [35]. Polygons (crown projections) were afterward transformed to points
in the environment of the ArcGIS 10.6.1 to be used in next step as frame for selecting
only the points of one individual tree from the original whole stand point cloud in the
environment of R. As a result of this part of data processing, we generated 1045 individual
tree point clouds.

The statistical evaluation, generalized linear model (GLM), and RF derivation were
performed in the R environment [36]. For each individual point cloud, individual tree
metrics (ITMs) were calculated according to descriptive statistics along the normalized
tree height: IQR (Inter Quartile Range), VAR (Variance), SD (standard deviation), MOM
(Moment), SKEW (Skewness), MEAN, KVAD (Quadratic Mean), CUB (Cubic Mean), MAD
(Mean Absolute Deviation), Qi (Quantile, where i was graded by tens of percents for effec-
tivity and representability maximalization) following the common procedure as described
in [37,38]. In total, 41 (including CE) metrics were calculated for each individual tree point
cloud. GLM was derived using stepwise regression based on Akaike information criterion
(AIC) [39]. The free R package randomForest [40] was used for RF derivation, and the
same dataset used for the GLM derivation was applied for the training. In the case of RF,
R package was used to calculate relative importance for both classes and mean decrease
in Gini coefficient as demonstrated in [41], which is a robust method aimed at describing
the diversification of each variable. For example, the study of Iban et al. [42] evaluated the
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results of various methods of RF and other machine learning methods. Both GLM and RF
were derived two times: one time including CE and one time excluding CE. Training and
verification of derived GLM and RF results were performed on the same dataset.

The whole data processing is described in Figure 3, where key processes regarding
different software environments are presented.
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Clark–Evans Spatial Aggregation Index

Clark and Evans’ spatial aggregation index [43] was developed to describe point
pattern aggregations using simple words to numerically quantify the degree of clustering of
the point cloud. Point processes are compared to Poisson spatial distribution, where values
close to 1 are considered to be completely random and values differing from 1 indicate
either clustering of the point cloud in the case of the number being lower than 1 or regular in
the case of the number being higher than 1. Equation (1) describes the calculation of CE by
Fabrika and Pretzsch [44] as relation of observed mean distance to closest neighboring point
(upper part of Equation (1)) and expected mean distance with random distribution, where
n means number of trees in plot, r is distance to closest point, and A is area of the cross
section. The CEi (where i was graded by fives of percents) was also calculated as previously
described using individual tree metrics for the cross section (i) representativeness.

CE =
1
n ×∑n

i=1 r
1
2 ×

√
A
n

(1)

3. Results
3.1. Tree Delineation

Individual tree delineation was performed as horizontal crown projection based on
the detected local maxima with the limitations as presented by Panagiotidis et al. [35],
which include the limits of individual tree point-cloud extraction by crown shape and the
possibility of detection of two individual trees instead of one forked one. Figure 4 presents
red polygons denoting the delineated ULS point cloud of plot C. In Figure 4, examples of
the individual tree point clouds used for deriving individual tree metrics are presented,
where each polygon represents one individual tree’s horizontal crown projection.
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In this study, we used examples of individual tree point cloud representations, as
shown in Figure 5. The individual tree point clouds were not modified regarding removing
any points except for during the initial point cloud derivation, where we selected only
vegetation points and not points classified as ground; however, the ground classification
still left a certain number of points on the ground. With an emphasis on an autonomous
process, the rest of the ground-lying points were left in individual tree point clouds.

Forests 2023, 14, x FOR PEER REVIEW 8 of 16 
 

 

In this study, we used examples of individual tree point cloud representations, as 
shown in Figure 5. The individual tree point clouds were not modified regarding remov-
ing any points except for during the initial point cloud derivation, where we selected only 
vegetation points and not points classified as ground; however, the ground classification 
still left a certain number of points on the ground. With an emphasis on an autonomous 
process, the rest of the ground-lying points were left in individual tree point clouds. 

  
(a) (b) 

Figure 5. Examples of individual tree point clouds: (a) presents an example of coniferous individual 
tree point cloud; (b) presents an example of broadleaf individual tree point cloud. These kinds of 
point clouds were used for automatic derivation of individual tree metrics. 

From the tree habitus (outer look) point of view, Figure 5 shows two examples of 
trees used in this study, where Figure 5a presents a coniferous tree (Norway spruce) and 
Figure 5b presents a broadleaf tree (an oak species). There is clear difference in the habitus 
of these tree species with regard to branching, crown shape, beginning of the crown, etc. 
These species might display slightly different habitus from the ones shown in the figure 
when living as solitary trees than when they are living in a denser canopy stand (used for 
the purposes of this study). However, these differences are not huge, and the intention of 
this work is to evaluate automatic classification in closed-canopy stands. 

3.2. Generalized Linear Model 
As a result of this study, we derived the GLM from the ITMs used as predictors. The 

selected predictors were used to derive the final GLM with CE as described in Table 1 and 
the GLM without CE as described in Table 2. For each GLM model, we calculated the 
classification error according to its confusion matrix (Table 3 with CE and Table 4 without 
CE). Then, we selected the same predictors (VAR, SD, KVAD, CUB, MAD) using the de-
scriptive statistics methods for the derived GLMs with and without CE, the only difference 
being the presence of SKEW (Table 1). Interestingly, the same quantiles (Q20, Q50, Q60, 
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tree point cloud; (b) presents an example of broadleaf individual tree point cloud. These kinds of
point clouds were used for automatic derivation of individual tree metrics.

From the tree habitus (outer look) point of view, Figure 5 shows two examples of
trees used in this study, where Figure 5a presents a coniferous tree (Norway spruce) and
Figure 5b presents a broadleaf tree (an oak species). There is clear difference in the habitus
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of these tree species with regard to branching, crown shape, beginning of the crown, etc.
These species might display slightly different habitus from the ones shown in the figure
when living as solitary trees than when they are living in a denser canopy stand (used for
the purposes of this study). However, these differences are not huge, and the intention of
this work is to evaluate automatic classification in closed-canopy stands.

3.2. Generalized Linear Model

As a result of this study, we derived the GLM from the ITMs used as predictors. The
selected predictors were used to derive the final GLM with CE as described in Table 1
and the GLM without CE as described in Table 2. For each GLM model, we calculated
the classification error according to its confusion matrix (Table 3 with CE and Table 4
without CE). Then, we selected the same predictors (VAR, SD, KVAD, CUB, MAD) using
the descriptive statistics methods for the derived GLMs with and without CE, the only
difference being the presence of SKEW (Table 1). Interestingly, the same quantiles (Q20,
Q50, Q60, Q70, and Q95) were selected for both GLMs. For the GLM without CE (Table 2),
Q30 and Q90 were additionally selected. In the case of CE with GLM, CE35, CE95, and
CE100 were selected.

Table 1. Derived GLM from all the variables with CE indexes using stepwise regression method
showing the most significant predictors.

Estimate Std. Error z Value p Value

Intercept −109.149 16.950 −6.439 1.20 × 10−10 ***
VAR −0.059 0.0114 −5.130 2.90 × 10−7 ***
SD 2.887 0.737 3.917 8.95 × 10−5 ***

SKEW −5.504 2.541 −2.166 0.0303 *
KVAD 4.322 1.163 3.717 0.0002 ***
CUB −3.774 1.211 −3.116 0.0018 **
MAD 2.016 0.505 3.991 6.57 × 10−5 ***
Q20 0.116 0.035 3.325 0.0009 ***
Q50 −0.156 0.031 −5.034 4.79 × 10−7 ***
Q60 −0.229 0.062 −3.689 0.0002 ***
Q70 −0.254 0.119 −2.152 0.0314 *
Q95 0.404 0.196 2.064 0.0391 *

CE35 1.944 1.040 1.869 0.0616
CE95 5.049 2.190 2.305 0.0212 *

CE100 9.993 1.857 5.383 7.34 × 10−8 ***
number of stars denotes statistical significance at 0.05, 0.01, and 0.001.

Table 2. Derived GLM from all the variables without CE indexes using stepwise regression method
showing the most significant predictors.

Estimate Std. Error z Value p Value

Intercept −1.053 × 102 14.190 −7.421 1.17 × 10−13 ***
VAR −4.742 × 10−2 0.009 −5.442 5.27 × 10−8 ***
SD 2.001 0.644 3.121 0.0018

KVAD 4.633 0.954 4.856 1.20 × 10−6 ***
CUB −3.748 1.016 −3.689 0.0002 ***
MAD 2.059 0.429 4.802 1.57 × 10−6 ***
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Table 2. Cont.

Estimate Std. Error z Value p Value

Q20 0.096 0.030 3.144 0.0017 **
Q30 0.042 0.024 1.783 0.0746 *
Q50 −0.135 0.030 −4.516 6.31 × 10−6 ***
Q60 −0.232 0.059 −3.915 9.02 × 10−5 ***
Q70 −0.284 0.084 −3.382 0.0007 ***
Q90 −0.403 0.221 −1.825 0.0679
Q95 0.824 0.233 3.536 0.0004 ***

number of stars denotes statistical significance at 0.05, 0.01, and 0.001.

Table 3. Confusion matrix of derived GLM from all the variables.

Broadleaf Coniferous Class. Error

Broadleaf 263 27 9.3%
Coniferous 27 728 3.6%

Table 4. Confusion matrix of derived GLM from all the variables without CE indexes.

Broadleaf Coniferous Class. Error

Broadleaf 252 38 13.1%
Coniferous 39 716 5.2%

Tables 3 and 4 present the confusion matrixes of the classification errors of the derived
GLMs based on the studied dataset. Table 3 presents the classification errors for all variables
used for GLM derivation, contrary to Table 4, which presents the classification errors for
the GLM without CE. In the presented tables, the positive influence of the CE index on
the classification error is clearly visible. By using the CE index, the broadleaf classification
error has decreased by 3.8%, and the coniferous classification error has decreased by 1.6%.
The highest-reached accuracy for the derived GLM with CE was 94.8%.

Figure 6 shows horizontal projections of point-cloud layers in different heights of
the normalized height using an example of one representative tree from each tree class,
demonstrating the significant differences derived with the CE indexes and an example of
significant Qn metrics. For coniferous trees, the trunk part of the chosen point cloud located
around the center appears on nearly all the visible metrics. There are clearly recognizable
lines of branches in a radial direction surrounded by smaller branches and needles. This
phenomenon is not evident in the upper parts of the tree (in metrics from 90% to 95% and
95% to 100%). Contrary to coniferous trees, the broadleaf tree example in Figure 6 presents
a clustering of points around the branches growing phototropically and not radially like
the branches of coniferous trees. Figure 7 presents selected cross sections representing
significant CE layers along the tree profile. The first cross section was selected at 35% and
the other two were selected on top of the tree at 95 and 100% of its normalized height.

Figure 8 describes the selected descriptive statistics predictors (VAR, SKEW, CUB,
SD, KVAD, and MAD); interestingly, SKEW was selected only for the GLM with CE. Only
the significant descriptive statistic predictors presented in Figures 1 and 2 are provided in
Figure 8, which displays the differences in the selected predictors for both classes.
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3.3. Random Forest

RF classification showed an error estimation rate based on the R toolbox which again
classified two classes. Table 5 shows that the broadleaf classification error was 10.3%
and that for coniferous was 2.8%. Table 6 shows the results of classification using all
metrics except for the CE index: the broadleaf classification error was 11.7.%, and that for
coniferous was 4%. For the best results for RF classification, 500 iterations of decision trees
were created. The highest accuracy attained for RF classification including CE was 95.1%.

Table 5. Confusion matrix of derived RF from all the variables.

Broadleaf Coniferous Class. Error

Broadleaf 260 30 10.3%
Coniferous 21 734 2.8%

Table 6. Confusion matrix of derived RF from all the variables without CE indexes.

Broadleaf Coniferous Class. Error

Broadleaf 256 34 11.7%
Coniferous 30 725 4%

As is presented in Figure 9, the important predictors are SKEW, MEAN, KVAD, CUB,
Q40, Q50, CE95, and CE100 with high relative importance for both classes (broadleaf and
coniferous). Each bar in Figure 9 is divided into four parts (starting from the bottom):
relative importance for broadleaf, relative importance for coniferous, mean decrease in
accuracy, and mean decrease in Gini coefficient. In general, the relative importance of the CE
indexes for the determination of coniferous trees is lower than the relative importance for
broadleaf trees. The mean decrease in the Gini coefficient, which describes the contribution
of each metric to the homogeneity of the RF results [41], is visible in the left part of Figure 9,
particularly for the SKEW, MEAN, KVAD, CUB, Q40, and Q50 metrics. Figure 10 presents
the importance of the variables when CE is excluded. Q10, Q40, Q50, and Q95 contributed
significantly to tree class classification, as did SKEW, MEAN, and KVAD of the selected
descriptive statistic metrics.
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4. Discussion

The benefits of using the VUX-SYS were highlighted by Brede and Wiesser [20,21]
with regard to the derivation of individual tree representative 3D point clouds along the
whole stem profile, where they emphasized the possibility of canopy penetration and
data representativeness mainly in top canopy parts. Both authors agree that ULS has the
advantage of providing a relatively high canopy point density contrary to the TLS method.
As this study shows, the significant predictors used for classification were located mostly
in the upper part of the stem profile.

The differences between coniferous and broadleaf trees based on the differences in
CHM with regard to seasonal canopy changes were described by Reitberger [45]; however,
this approach is also sensitive to deciduous coniferous trees because these tree species
show similar canopy mean-height changes from the points belonging to the canopy as
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those of broadleaf tree species. Nevertheless, generating time series for canopy changes is a
time-demanding method.

Tree canopy shape was also considered in this study. There were two main assump-
tions regarding the differences in the canopy. The first considers the bottom part, e.g., the
beginning of the crown part along the stem profile, contrary to the second assumption
regarding the top of the tree crown, where it was expected that the difference in shape [46]
could be explained according to the different numbers of points in the current percentile.
The positive impact of the height normalization process for tree shape description was
mentioned by Brandtberg [47]. Regarding the treetop, the broadleaf trees were expected to
have a smooth and round treetop contrary to coniferous trees with a sharper treetop. Both
assumptions were confirmed with the derived GLM.

Leaf-on and leaf-off conditions were also compared by Reitberger, Liang, and
Kim [45,48,49], and because of the leaf-on conditions during the data acquisition for
this study, the results may have been negatively influenced.

The accuracy of the RF was clearly influenced by the different study areas as mentioned
by Vetrivel [50]. In comparison to the accuracy of Pal [33] (around 88%), in this study, we
observed slightly higher accuracy (95%) but with five times (500) more RF decision trees,
and we included the CE index. The study of Shen [51] used a combination of airborne
hyperspectral and LiDAR data for the classification of 18 tree species based on individual
tree metrics, again reaching a similar accuracy but with a combination of two RS methods. A
slightly lower accuracy (76%) was achieved by Pereira Martins-Neto et al. [27] for eight tree
species in tropical forests by UAV hyperspectral data and LiDAR metrics. Still, such forests'
structural composition is more complex than European temperate or boreal forests. As
Belgiu [29] mentions, there have been numerous variable investigations aimed at prediction
power; however, nowadays, the aim is per-pixel classifications. Nevertheless, RF is less
sensitive to the training data [29] than other machine learning algorithms, and this was the
main reason for using it in this study.

RF classification based on geometric 3D shape and intensity was also used in condi-
tions in the Czech Republic by Krzystek et al. [52], who used ALS LiDAR data on a large
scale-area for single tree detection and, afterward, dead tree detection. The LiDAR data
were fused with multispectral data, and the overall accuracy reached over 90%. High
accuracy in tree species classification from multitemporal Sentinel-2 data was attained by
Immitzer et al. [53], who highlighted multitemporal data for this data type.

Another classification method that should be used is SVM [30] with regard to the
recent trends in RS [31,32], where it is used for classifying two classes. However, the
use of SVM and other deep learning algorithms for this kind of data classification needs
more development.

5. Conclusions

The ULS data provided by the sensor VUX-1UAV provide a huge opportunity for
spatial analysis on the individual tree level. Regarding automatic processes and considering
the limitations of manual work, successful individual tree delineation played an important
role in the whole data processing process. Both GLM and RF showed promising results
(94.8% accuracy for derived GLM and 95.1% for RF) in tree species group classification,
where the importance of the CE index was also proven. The derived GLM was mainly built
on the CE index, and the RF testing showed the CE index’s impact in terms of describing
the differences between broadleaf and coniferous trees.
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