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Abstract: Wood material is the foundation of wood structure architecture, and its production technol-
ogy and equipment technology decide the development and upgrading of modern wood structure
architecture. Aiming at the problems of low automation degree, low material utilization rate, low
production efficiency and high labor costs in the process of traditional wood processing, we explore
the integration and innovation of the traditional wood processing industry and modern industrial
Internet information technology on the basis of studying the properties of Betula (Betula costata)
solid wood materials, wood comprehensive utilization rate, wood structure component develop-
ment and processing technology requirements, and form an intelligent, automatic and industrial
production mode for building materials. Through technology and methods such as mechanical
design, automation technology, machine vision, deep learning, optimization algorithm, electronic
design automation, computer aided manufacturing, etc., the key technologies of intelligent automatic
optimization of wood materials were studied, and intelligent automatic production lines of Betula
species identification, log optimization sawing, solid timber longitudinal multiblade sawing, sawn
timber quality detection and solid timber optimizing cross-cuts are built. Based on the machine vision
method, features are extracted; a tree species, defect classification and recognition model database is
established; an image processing algorithm with high recognition accuracy, as well as fast processing
speed and high robustness are studied; non-destructive testing and classification methods of machine
vision are optimized; key problems of online rapid classification, detection and optimization of
sawing are solved and production quality and processing efficiency are improved. Finally, the timber
defect detection accuracy and Betula timber yield are analyzed, and the comprehensive utilization
value of optimized sawing timber is compared with the comprehensive utilization value of manually
marking sawing timber. The processing cost and efficiency of Betula sawing timber with an intelligent
automatic production line are calculated. The test results show that the average detection accuracy
of timber defect type, size and location is 89.69%, 89.69%, 92.25% and 82.29%, respectively, and the
detection stability is high. By adopting intelligent automatic detection, classification and optimization
sawing production line of wood, the comprehensive utilization value of optimized sawing timber is
14.13% higher than that of manual marking sawing timber, and 16,089.29 m3 more building materials
can be processed annually. In the process of intelligent automatic wood processing, the intelligent
detection system is used to detect defects, improve production performance and production efficiency
and reduce labor costs. Compared with the traditional wood processing process, the method studied
in this paper is improved to optimize the production line processing performance and processing tech-
nology. The research and development of an intelligent automatic production system for solid wood
can promote the application and development of an automatic industrial production mode for sawn
timber for the wood structure construction industry, deepen the integration of artificial intelligence
technology, Internet technology and the whole wood processing industry and lead the upgrading of
building materials for wood structures to an intelligent manufacturing production mode.
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1. Introduction

Using wood as the base material, wood structural buildings have renewable raw
materials, a low carbon and energy saving processing process and are biodegradable. The
products can replace a large number of concrete, cement, steel and other building materials,
helping to reduce carbon emissions and enabling global green development [1]. With the
improvement of people’s standards of living, Betula(Betula costata) wood provides a large
amount in savings, has a greater economic value and is a high-quality wood. Betula is light
brown with a bright surface, high mechanical strength and elasticity [2].

Betula’s processing performance is better, the material is expensive and most of the
Betula is used as furniture in some places. Although the cost of Betula for structural
timber is high, a small amount of Betula is used for structure construction. Betula as
a building material has many advantages, with a smooth surface, good strength and
toughness, easy processing, it is not prone to deformation and so on. Solid wood has shown
a rapid growth trend by virtue of its advantages, such as environmental protection, flexible
design and competitive cost (Figure 1). Compared with wood-based panels, Betula solid
wood materials have the characteristics of a higher-utilization rate of wood, environmental
protection and health, unique natural texture, good color and a long service life (Figure 2).
Betula material is unique in the design, manufacture and production technology of wood
structure building components. It is necessary to combine the production process of
wood materials with the design and development of wood structure building components.
According to the different components of a wooden structure building, different quality
grades of solid timber can be selected as raw materials. The value of Betula is determined
by many factors, not least of which is the defect of the wood. Many scholars have concluded
that wood defects have an impact on the strength, quality, processing and economic value
of the sawn timber used in wood structures [3]. Therefore, defect detection is an important
step in wood processing.
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At present, some wood processing and production equipment is simple, with a low
degree of automation, mostly single manual operation and the process has not realized
standardized production. Some enterprises use manual visual markings to judge the
defects of sawn timber in advance and use highlighters to mark the defective area. A
wood-sawing machine can complete the timber cutting operation according to the marking
instructions (Figure 3). Manual visual markings require the manual handling of wood, and
it is difficult to visually mark the four surfaces of large-sized Betula timber, which means it
is inefficient and difficult to make quick statistical and optimization decisions [4]. Due to
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the fast production line speed, it has been challenging for timber inspectors to calculate the
speed mentally, making it difficult to obtain large-size timber characteristics. In the face of
problems such as the low detection efficiency of wood surface defects, large limitation of
artificial batching and lack of intelligent optimization sawing equipment, which has led to a
large input of Betula processing costs, uneven quality, low utilization rate of wood resources
and serious waste, machine vision detection and automation technology are combined to
replace artificial visual marking with multi-sensor technology. In order to maximize the
value of wood production, wood processing plants can reduce labor costs by improving
the processing efficiency and yield of the wood. Therefore, the wood processing industry
can also gradually move toward the direction of automation and intelligent development.
University of Turin, Italy, M. Brunetti et al. [5] studied the methods of artificial visual
inspection and machine inspection of wood, and the test results showed that machine
inspection has a high flexibility and can effectively improve production efficiency.
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The core and most challenging part of timber detection and classification are computer
processing power, computer computing power, data storage ability and scanner sensor
accuracy ability [6]. Department of Forestry and Natural Resources, Purdue University,
United State, Logan Wells [7] and R. Gazo [8], in collaboration with Microtec, Italy, devel-
oped a surface-quality detection and classification method for structural lumber based on
the grading rules of the NHLA in the United States. Centre de Recherche en Automatique
de Nancy, France, V. Bombardier [9] built a numerical model of knot identification and an
improved defect identification system based on the characteristics of the timber surface.
Virginia Tech., United State, F. M. Megahed [10] introduced a machine vision detection
system for industrial applications, and studied a detection method for timber surface-knots
based on image analysis and other methods.

Many non-destructive defect detection technologies have rapidly developed, including
X-ray, nuclear magnetic resonance detection, stress wave, ultrasonic, infrared and laserto
detect, and these methods help identify lumber defects [11,12]. For some of the above
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methods, if a separate sensor or a separate method is used, sometimes it is difficult to
intuitively and accurately find the location of the defect. In order to improve the accuracy
of defect detection, the appearance quality of timber can be visually scanned by machine
vision technology, and a variety of sensors can be added to the machine vision system.
The algorithm of a machine vision system mainly designs and extracts some features from
wood images, including color, texture and a gray-level co-occurrence matrix (GLCM), to
represent defects [13,14]. The system trains some defect classifiers, such as a matching
algorithm, support vector machine (SVM), neural network and deep learning, to determine
the defect region [15,16]. Luleå University of Technology, Sweden, T. Pahlberg [17] fused
a Block Match algorithm and Speeded-Up Robust Features (SURF) algorithm to achieve
the detection of the defect features of Scottish pine, obtaining good matching accuracy and
improving the recognition rate.

National University of Science and Technology in Islamabad, Pakistan, K. Kamala [18]
proposed a new method for the automatic detection of wood based on a machine vision
method using GLCM, texture feature extractor and a feedforward backpropagation neural
network as a classifier. The square error (MSE) of the training data was 0.0718. The
overall average classification accuracy was 90.5%. Urmia University, Iran, A. Mahram [19]
combined GLCM, local binary pattern (LBP) and a statistical moment method to obtain
an efficient classification, recognition pattern and feature extraction algorithm for defects.
Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to
reduce the dimension feature vector, and SVM and K-nearest neighbor (KNN) were used
to detect defects. University of Telkom, Indonesia, F. Akhyar [20] optimized the baseline
and framework of YOLOv4 model architecture based on a deep learning algorithm and
developed the wood defects detection system.

Intelligent automation systems include sensors, machine vision recognition, image in-
formation processing, optimization decision, data acquisition and so on. Machine learning
is a science of artificial intelligence, and its application in the wood processing industry
is of great significance. A wood intelligent system adopts computer science and machine
vision technology to simulate human brain learning and decision-making, it automati-
cally analyzes and obtains rules from graphic data and it completes the acquisition of
defects. The research and development of intelligent automation systems aims to obtain
high-accuracy images with a high-speed algorithm and highly resilient algorithm. The
definition of a high-precision image is that the camera acquires pictures with higher pixel
points, resulting in better image quality and clarity. In contrast, lower resolution images
tend to have fewer pixels and less image details. A high speed algorithm is an algorithm
designed for fast execution and is used in many productions with more stringent speed
requirements. A highly resilient algorithm is an algorithm designed to continue to operate
even if one or more of its components fail, and it is capable of working properly on a set of
undamaged modules.

With the rapid development of digital image processing technology and pattern
recognition technology, computer processing power and image sensor accuracy have been
improved. In this paper, we study the intelligent automatic optimization technology of
wood materials, establish a rapid nondestructive testing system for wood defects in the
field of wood processing and inspection, improve the accuracy of wood defect identification
and classification based on machine vision and realize nondestructive, rapid, continuous
and comprehensive automatic classification and processing of Betula solid timber. The
Betula was obtained from Latvia, Europe. Through the research and development of
the key technologies of intelligent wood manufacturing and its industrial application,
the traditional wood processing industry uses modern high-tech information technology
to innovate, change the traditional processing mode, research material characteristics as
well as the comprehensive utilization of product development and form an intelligent and
industrialized production mode. We will promote the standardized, serialized and intensive
production of various products. It is of great significance to promote the comprehensive
and efficient use of natural resources by forest product processing enterprises, improve the
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independent innovation ability and competitiveness of the forest product industry, activate
and integrate resources, promote the transformation and upgrading of the wood processing
industry and promote the development of forestry science and technology, as well as the
economy and society.

2. Methodology and Method
2.1. Betula Species Identification

Betula bark has a white, gray, yellow-white, reddish-brown, brown or black-brown
smooth surface, and sometimes there are transverse cracks, longitudinal cracks, thin layer
peeling or massive peeling phenomena (Figure 4). Betula bark contains resin, has transverse
perforations, usually flakes transversely and is thick and deeply furred on older trunks,
cracked into irregular segments. Betula is yellowish-white or brownish and glossy with
slightly distinct rings (Figure 5). The diameter of the orifice is small, but it is distinguishable
to the naked eye. The wood ray on the diameter section is orange and speckled yellow, the
wood fiber binds tightly and after sawing the section has a smooth and uniform color.
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Figure 5. Betula ring stump face.

The sensors of the image data acquisition and detection equipment mainly capture
images from the camera and red stripe light source. The horizontal measuring instrument
is used to measure the angle between the light source and the camera in a vertical direction.
The FLUKE illuminometer is used to measure the illumination of the light source. The
position of the detection system sensor and light source is shown in Figure 6. We adjusted
the inclination degree of the strip light and the vertical angle between the camera to 60◦ and
kept it fixed. A light source device was designed which can automatically adjust the height
and brightness. The device had a wide transverse radiation range and high brightness
to better distinguish the object from the background. By adjusting the appropriate light
source, the characteristics of Betula could be clearly captured, which was conducive to the
processing and analysis of the acquired images.

We scanned and imaged the bark stump face image data of the tree species. The
camera scanned the image data under the lens and sent the final image to the computer for
image processing. Different tree species were photographed using a Basler raL2048-48 gm
line-scan camera with 2048 pixel per line resolution and 51 kHz line-scan rate. The camera
was from the German Basler manufacturing company, located in Ahrensburg, Germany,
founded in 1988, with 30 years of experience in the field of vision technology, is the world’s



Forests 2023, 14, 1510 6 of 26

leading computer vision expert. The following is the basic information of the obtained
images: 2048 × 2048 pixels, 2 k resolution and a bit depth of 8. First, different tree species
images were collected and annotated, then image transformation expansion was performed
and finally the tree species instance segmentation model was trained to achieve tree species
recording and recognition.
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Figure 6. Image acquisition system.

According to the triangular projection relationship of machine vision, the actual size of
the wood corresponding to the image pixel is related to the camera detection accuracy, focal
length, working distance of the camera and optical path position. After we determined the
accuracy requirements of the wood images, the sensor selection was carried out and the
system structure distribution was designed. The camera imaging distribution is shown in
Figure 7. In a similar triangle relationship of machine vision, different imaging coordinate
systems were defined to carry out the imaging transformation. We first converted the
camera coordinate system to the physical coordinate system, and then converted the
physical coordinate system to the pixel coordinate system. In the process of the object being
detected, we required an accuracy of 0.1 mm, that is, the surface area measured in units of
1 mm with 10 pixels on the wood. The resolution of each pixel represents the clarity of each
pixel. In this system, the image has 10 pixels per millimeter, the pixel density can meet the
recognition requirements of the system and the detailed changes of the wood are presented
in a clear form. The camera sensor pixel size (H × V) was 7 µm × 7 µm and the camera
sensor resolution (H × V) was 2048 px × 1 px. The effective number of bits-per-pixel
component of each channel of the image was 8 and can represent 256 different colors.
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(ROI), and parts containing two or more complete feature primitives were intercepted.
Betula characteristics were acquired by the shooting equipment, and then the ROI region
was captured after the display by electronic equipment. The acquired images had different
degrees of image distortion, and the gray scale was slightly black or white, affecting the
accuracy of feature extraction. Histogram equalization was used to process the image
to solve the problem of gray concentration and improve the image characteristics and
quality. Histogram equalization used the image histogram to adjust the contrast. Through
the intensity transform function, the image contrast was increased, the image clarity was
improved and the image features were improved. The processing result of the image
histogram equalization algorithm is shown in Figure 8. The visualization of the wood
image features automatically extracted by the deep learning model was used to form a
Betula, spruce, Douglas fir, larch, red pine and other tree species classification feature
database. After a series of convolution and pooling operations, the deep abstract features
of the images were extracted and generated, and these feature matrices were converted
into one-dimensional vectors as the input of the fully connected layer, which completed
the task of tree species classification (Figure 9).
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2.2. Log Sawing Optimization

During log sawing, computed tomography (CT) technology was used to scan the
internal features of logs in real time, and we obtained the characteristic information of defect
type, size and location in the log space. The repeated physical sawing of logs was simulated
by computer software, and the sawing value of different sawing modes applied to the same
log sample was compared. The sawing simulation study was carried out to optimize the
sawing parameters (sawing mode, sawing position etc.), determine the best mode of log
optimization sawing and maximize the value of the sawing products (Figure 10).
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Before sawing the logs, we placed them in the scanning system and scanned them
using CT technology. During the CT scan, the largest log was 500 mm in diameter. The
scanning equipment shot X-rays through the log and recorded the data reflected back. Log
moisture and density affected the selection of the CT scanning parameters. When the log has
high moisture content, lower scanning parameters are needed to avoid image blurring [21].
Additionally, logs with higher density require higher scanning parameters to obtain a better
image quality by the X-rays. The log data obtained by the scanner were collected, and
the data were converted into computer graphics to obtain a three-dimensional image of
the internal structure of the log. The image can be used to detect defects and diseases
inside the log and measure the internal features of the log in three dimensions. The 3D
image reconstruction was performed by a computer vision algorithm, which converted the
scanned data into a 3D coordinate system and used geometric algorithms to calculate the
image. We converted the three-dimensional structural data into a two-dimensional structure
of a virtual sawn timber surface and calculated variable based on the two-dimensional
structure to obtain log information. The location and size of the defects were determined
based on image processing technology. We determined the sawing method based on sawn
timber grading rules [22].

In the log optimization cutting process, the cutting process was modeled and the linear
programming algorithm was used to find the best cutting scheme. Each cutting scheme
was represented as a linear programming problem, and the linear programming algorithm
was used to solve the optimal solution to minimize material waste.

The linear programming algorithm is shown as follows:
Solution objective:

Y1 = maxVk = Lw1h1q1k + Lw2h2q2k + · · · + Lwnhnqnk (1)

Constraints:
0 < wk < W (2)
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0 < hk < H (3)

where V represents the total timber volume of the k scheme, mm3; qnk represents the
corresponding quantity of the n scheme timber; wk represents timbers width of the k
scheme and hk represents timbers height of the k scheme.

By solving the target problem of timber yield Y1, several excellent sawing schemes
can be obtained. All the sawing schemes were taken out to obtain the corresponding
timber yield, and the scheme with the maximum timber yield was selected as the final
sawing scheme.

The down-sawing method of log defects was adopted. According to the distribution of
defects in logs, serious defects should be concentrated or removed. General defects should
be properly dispersed on a few sawn timbers, so as to minimize the impact of defects on the
quality of the sawn timber. When the knots in the log are large but few, parallel to the knot
under sawing, the knot is, as much as possible, concentrated on a few sawn timbers. When
the knots are small and of a large quantity, the log is vertically sawed down to the knot so
that the knot is circular. When there is edge rot in the log, the board is sawed according to
the width of decay. Both diameter cracks and ring cracks should be sawed down parallel to
the crack direction to make the crack concentrate on a few timbers as much as possible.

2.3. Solid Sawn Timber Longitudinal Multiblade Sawing

On the basis of log optimization sawing, the timber was cut lengthwise. Longitudinal
cutting plays a very important role in wood processing, because longitudinal optimization
is also an important process to improve the yield of sawn timber. Variations in wood
defects result in an average of 8% of wood being wasted when sawing using a traditional
fixed multi-blade saw. To solve the above problems, the width, quality, edge bark width
and defect location of the wood were scanned, the scanned information the evaluation
requirement were input and the different quality areas of the sawn timber were divided.
The software simulated different sawing sizes, positions and combination modes, and the
optimal longitudinal sawing mode of the timber was calculated (Figure 11).
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The optimal sawing mode was adopted, the unequal width was adopted in the longi-
tudinal sawing and the yield was taken as the optimization objective. The sawing position
was adjusted according to the timber width and timber defect, so as to avoid sawn timber
defects as much as possible, improve the yield of sawn timber and reasonably consider
economic factors. Based on the optimization decision, automatic control technology was
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used to adjust the position of the blade to maximize the yield of wood. A saw blade motor, a
driving wheel and a guide wheel for a transport chain plate were arranged in a longitudinal
sawing frame. The transport chain plate was equipped with a prismatic guide rail, and the
sawing section was turned by a pair of sliding rods. Thus, the accurate steering movement
of the transport chain plate and the precise sawing of the wood could be ensured. We
optimized the longitudinal sawing of timber fast calculation of the best cutting scheme.
The saw blade was efficiently and automatically positioned according to the calculation
results. This process can be used in the selection of circular saw machine and multi-blade
saw switching, which is better used in the building materials industry.

2.4. Solid Sawn Timber Optimizing Cross-Cut
2.4.1. Betula Sawn Timber Detection and Optimization

Based on the machine vision and deep learning algorithms, the surface defects of sawn
timber were extracted and the wood morphology and feature extraction algorithms were
studied so as to accurately identify and locate defects and improve efficiency. Through the
computer automatic learning algorithm, the defect classification and recognition models
were established to reduce the error rate of recognition, and the sawn timber defects
were efficiently and accurately identified. The sawn timber surface intelligent grading
technology, based on machine vision, was studied to form a production line scheme for the
classification and complete processing of sawn timber surface defects. The defect database
of Betula sawn timber was established. The regional target detection technology based on
deep learning was used to collect sufficient data information from the defect images of the
Betula sawn timber, and the different defects image database was increased by labeling
a large number of defect categories and framing samples of defect characteristics. The
identification, classification and processing technology of sawn timber were studied, and
non-destructive testing and classification methods were applied to improve the mechanical
properties, utilization rate and quality of the structural sawn timber applications (Figure 12).
The optimized crosscut was able to satisfy the processing size range of Betula sawn timber:
length: 1200 mm–6300 mm; width: 30 mm–150 mm; thickness: 12 mm–100 mm. Detection
speed: 150 m/min or 214 m/min; the two running speeds can be adjusted.
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The working parameters of the scanner station were the following: processor was a
12th Gen IntelR Core(TM)i9-12900K 3.20 GHz, with RAM 64.0 GB, the system type was
a 64-bit operating system based on a ×64 processor, Windows 11 system, GPU model:
NVIDIA GeForce RTX 3090. Gen IntelR Core(TM)i9-12900Kwas from Intel Corporation in
the United States, received equipment in Beijing, China. The image parameters collected
by the camera sensor were a resolution of 2048 × 12,288 pixels and bit depth of 8.

According to the camera triangle imaging model, there are three coordinate systems in
the camera imaging process (which can also be regarded as four with the world coordinate
system): the camera coordinate system (also known as the optical center coordinate system),
the physical (imaging plane) coordinate system and the pixel coordinate system. We
converted the image coordinate system u-v to the world coordinate system x-y-z. As shown
in Figure 13, the vision imaging model takes O as the optical center, and the plane W passes
through the feature point P1 and is parallel to the imaging plane. P1Q1 is the image of the
wood feature size P1M on the plane W. P′1Q′1 is the image of the feature size P1M on the
imaging plane and O′′ is the intersection of the plane W and the optical axis [23].

Forests 2023, 14, x FOR PEER REVIEW 12 of 28 
 

 

−𝑋′

𝑓
=
𝑋

𝑍
 (5) 

−𝑌′

𝑓
=
𝑌

𝑍
 (6) 

In the formula, X, Y and Z indicate that there is a point P(X,Y,Z) in the camera coor-

dinate system, and X′, and Y′ indicate that it is P′ (X′,Y′) projected into the imaging plane 

coordinate system, and the coordinate value of the detected object on the imaging plane 

can be calculated. 

Convert the physical coordinate system to the pixel coordinate system, and the con-

version formula is as follows: 

𝑢 = 𝛼𝑋′ + 𝑐𝑥 = 𝛼𝑓
−𝑋

𝑍
+ 𝑐𝑥 (7) 

𝑣 = 𝛼𝑋′ + 𝑐𝑦 = 𝛽𝑓
−𝑌

𝑍
+ 𝑐𝑦 (8) 

In the formula, α and β represent the scaling multiple of the X′ axis and Y′ axis, re-

spectively, and cx and cy represent the offset value of the coordinate points, respectively. 

The coordinate value p(u,v) of the detected object in the pixel plane can be calculated. 

In the image detection system, the camera sensor resolution (H × V) was 2048 px × 1 

px and the camera sensor pixel size (H × V) was 7 µm × 7 µm and the number of effective 

bits per pixel component of each channel of the image was 8. On the timber image, we 

detected the surface area of the actual timber with the 10 matrix pixel points representing 

1 mm as a unit, and the resolution = 1 mm (the size of the actual timber)/10 pixel (the 

number of pixels of timber detected on the image) = 0.1 mm/pixel. The minimum observ-

able dimension of timber object that could be observed on this image matrix was 0.1 mm. 

 

Figure 13. Vision imaging model. 

The machine vision image processing system converts pixels into digital signals 

based on information such as brightness, color and distribution. After digital image pre-

processing, image segmentation, morphological processing, feature extraction and pattern 

recognition, the image of the sawn timber surface defect is processed and analyzed. Based 

on deep learning convolution and matrix multiplication, the first layer detects the edges, 

corners, sharp or non-smooth areas of defects, and the second layer combines the results 

of the first layer detection to detect the location, grain, shape, etc. of different defects and 

passes these combinations to the next layer. According to the digital signal, various oper-

Figure 13. Vision imaging model.

According to the principle of triangular similarity imaging, P1Q1 = L, P′1M′1 = s′,
OO′′ = H, f represents the focal length and the distance from the camera’s optical center
to the physical imaging plane. The relationship between the above four parameters is
as follows:

L
s′

=
H
f

(4)

In the imaging conversion process, the camera coordinate system is transferred to the
physical coordinate system, and the conversion formula is as follows:

−X′

f
=

X
Z

(5)

−Y′

f
=

Y
Z

(6)

In the formula, X, Y and Z indicate that there is a point P(X,Y,Z) in the camera
coordinate system, and X′, and Y′ indicate that it is P′ (X′,Y′) projected into the imaging
plane coordinate system, and the coordinate value of the detected object on the imaging
plane can be calculated.

Convert the physical coordinate system to the pixel coordinate system, and the con-
version formula is as follows:

u = αX′ + cx = α f
−X
Z

+ cx (7)
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v = αX′ + cy = β f
−Y
Z

+ cy (8)

In the formula, α and β represent the scaling multiple of the X′ axis and Y′ axis,
respectively, and cx and cy represent the offset value of the coordinate points, respectively.
The coordinate value p(u,v) of the detected object in the pixel plane can be calculated.

In the image detection system, the camera sensor resolution (H × V) was 2048 px × 1 px
and the camera sensor pixel size (H × V) was 7 µm × 7 µm and the number of effective bits
per pixel component of each channel of the image was 8. On the timber image, we detected
the surface area of the actual timber with the 10 matrix pixel points representing 1 mm as a
unit, and the resolution = 1 mm (the size of the actual timber)/10 pixel (the number of pixels
of timber detected on the image) = 0.1 mm/pixel. The minimum observable dimension of
timber object that could be observed on this image matrix was 0.1 mm.

The machine vision image processing system converts pixels into digital signals based
on information such as brightness, color and distribution. After digital image preprocessing,
image segmentation, morphological processing, feature extraction and pattern recognition,
the image of the sawn timber surface defect is processed and analyzed. Based on deep
learning convolution and matrix multiplication, the first layer detects the edges, corners,
sharp or non-smooth areas of defects, and the second layer combines the results of the
first layer detection to detect the location, grain, shape, etc. of different defects and passes
these combinations to the next layer. According to the digital signal, various operations
are carried out to extract the features of the target, and then output the results according
to the preset tolerance and other conditions to achieve automatic detection, identification,
positioning and measurement functions, as shown in Figure 14.
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Figure 14. Sawn timber inspection equipment based on machine vision technology.

Timber detection and optimization software consists of three steps: (1) timber image
scanning, (2) image processing and (3) optimization processing, as shown in Figure 15.
Sawn timber scanning can obtain better quality images by multi-sensor technology for
later application analysis. The upper computer controls the instructions to start and
stop the sawn timber scanning, and image processing is used to identify and classify the
defects. Considering the requirements of the factory and quality control requirements, the
best sawing scheme was designated to optimize the sawn timber processing, as shown
in Figure 16.
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Figure 16. Optimal sawing decision of timber based on four surface defect information points.
Note: A–D represents the four faces of the sawn timber, except for the two ends of the sawn timber.

2.4.2. Optimized Sawing Procedure

After the longitudinal sawing of the sawn timber, the cross-cutting operation was
carried out, considering the two objectives of the yield and economic value. For the yield
target, it was regarded as a whole piece of sawn timber with an available length of L to
be sawn laterally, and the length was l1, ll2, ll3, . . . ln billets (small pieces of sawn timber
after cross-cutting) which were combined in width. The higher the total billet length
Z1, the larger the material yield, but the total length cannot exceed the available length.
For the economic value target, the corresponding blank value and quantity in the blank
combination were calculated. The higher the total blank value V, the better the overall
economic value, as shown in Figure 17. The integration of the above two objectives and
constraints is:
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Solution objective:

Z1 = maxLk = l1q1k + l2q2k + ···+ lnqnk (9)

Z2 = maxVk = v1q1k + v2q2k + ···+ vnqnk (10)

Constraints:
l1q1k + l2q2k + ···+ lnqnk ≤W (11)

qnk ≥ (k = 1, 2, ···, n) (12)

where L represents the total blanks length of the k scheme, mm; Vt represents the total
billet value of the k scheme; vk represents the corresponding value of the k scheme and qnk
represents the corresponding quantity of the n scheme billet.

By solving the above double objective problem, multiple sets of sawing schemes were
achieved (S1, S2, S3, . . ., Sn). We took out all the sawing schemes, simulated sawing the
original timber with defects to obtain the corresponding lumber yield (y1, y2,... yn) and
selected the scheme with the maximum yield as the final sawing scheme. The sawing
scheme with higher timber yield and better economic value was AA obtained, as shown
in Figure 18.
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Final solution objective:
Z3 = max fk (13)

(1) Based on the machine vision method, defect features were extracted, defect classifi-
cation, as well as a recognition model and tree species defect database were established,
image processing algorithms with high robustness, fast processing speed and high recogni-
tion accuracy were studied, non-destructive testing and classification methods of machine
vision were optimized, key problems of online rapid defect detection were solved and
production quality and processing efficiency were improved.

(2) We constructed an engineering database of wood structural building materials,
proposed a quality evaluation method for solid wood and wood structure building compo-
nents and established a processing standard for sawn timber suitable for wood structures.
According to the wood quality evaluation standard and production scale, the optimization
method of wood board was studied to improve the comprehensive utilization rate of wood.
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(3) We constructed a wood intelligent automatic optimization sawing demonstration
production line to achieve the intelligent automatic optimization of wood, as well as the
sawing and efficient intelligent automatic production of wood.

2.4.3. Material Standard Setting of Betula SAWN Timber

We established a wood information digital intelligent manufacturing basic engineering
database. By combining database technology with computer aided engineering design
process and management, the sawn timber design, manufacturing, management and even
operation of timber structure were integrated on the basis of a unified database.

Not all surface defects of Betula sawn timber need to be removed in the application of
building materials. Some defects of a relatively small size are allowed, which requires the
manufacturer to set the detection type and size. Material standards were thus set to provide
a flexible processing platform for wood production. According to the requirements of sawn
timber with different application functions, the processing plant limits the defect size of
sawn timber with different values. Among them, birch_a, birch_b, birch_c, birch_d, etc.
respectively represent Betula sawn timber of different value (quality) grades, ranked from
top to bottom. The processing plant can also consider customer requirements, industry
standards and product requirements, limit the defect size of sawn timber of different values
and produce wood that meets the actual use requirements, as shown in Table 1.

Table 1. Setting of defect size for Betula(Betula costata) timber processing.

Defect Type birch_a (mm ×mm) birch_b (mm ×mm) birch_c (mm ×mm) birch_d (mm ×mm)

Bark 10.0 × 1.0 15.0 × 2.0 15.0 × 2.0 20.0 × 3.0
Dead knot 3.0 × 3.0 10.0 × 7.0 10.0 × 8.0 10.0 × 8.0

Crack × × 2.0 × 2.0 3.0 × 3.0
Heartwood 50.0 × 10.0

√ √ √

Hole × 7.0 × 3.0 9.0 × 4.0 8.0 × 4.0
Inbark 60.0 × 4.0 60.0 × 4.0 60.0 × 4.0 60.0 × 4.0

Material lack +Wane 100.0 × 3.0 100.0 × 3.0 100.0 × 3.0 100.0 × 3.0
Mineral 50.0 × 6.0 300.0 × 10.0 600.0 × 22.0

√

Sound knot 15.0 × 1.0 30.0 × 20.0 70.0 × 40.0 70.0 × 40.0
Under thickness 1000.0 × 1.5 1000.0 × 1.5 1000.0 × 1.5 1000.0 × 1.5

Under width 1000.0 × 1.2 1000.0 × 1.2 1000.0 × 1.2 1000.0 × 1.2

Note: × indicates that the item is not included, and
√

indicates that the item is included.

3. Results and Analysis

The logs were sawn into timber and all pieces of timber were planed. The tim-
ber was kiln-dried to moisture contents between 12% and 15% using drying tempera-
tures of 70◦C–80 ◦C and relative humidity of 60–70%. The density range of timber was
0.5 g/cm3~0.7 g/cm3. Four thousand pieces of timber with different types of defects on
the surface were randomly selected for detection and optimization. In the experiment, the
timber length was approximately 4000 mm, the width was approximately 58 mm and the
thickness was approximately 43 mm. The factory application experiment was completed
at Fujian Dushi Wooden Industry Co., Ltd. of Shaowu City, Fujian Province, China. The
environmental temperature of that day was 29 ◦C and the relative humidity was 73%. In
the wood processing plant, we tested the surface defects of Betula sawn timber, including
bark, dead knot, crack, heartwood, hole, inbark, material lack, wane, material lack + wane,
mineral, sound knot, under thickness and under width.

3.1. Testing and Verification Procedure of Sawn Timber Optimizing Cross-Cut

During 2021–2023, we scanned, inspected and optimized Betula sawn timber. Sawn
timbers for the test were in a total of 10 packages, and each pack contained 400 sticks.
Optimizing cross-cut equipment (Scanner) was used to measure the size of the sawn
timber, detect the defect types, measure the size and position information of defects,
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optimize the sawing strategy and calculate the yield of Betula sawn timber. Manual visual
inspection was carried out to determine and classify the defects of sawn timber, and a
vernier caliper, triangle ruler, tape measure and other tools were used to measure and locate
the defects. The defect detection results of the equipment were compared with the results
from manual measurement, and the detection and decision results of the two methods
were recorded. We compared the comprehensive utilization value of optimizing crosscuts
with the comprehensive utilization value of the manual marking sawn timber used in
some production lines. The production cost and efficiency of the Betula sawn timber with
optimizing crosscuts were calculated.

3.2. Betula Sawn Timber Defect Detection Accuracy

Four surface defects of Betula sawn timber were detected by scanner, as shown
in Table 2. The test results show that the scanner easily misidentifies the hole as knot.
Misidentification is easy between dead knots and sound knots. In general, the detection
accuracy of dead knots is higher than that of sound knots. Misidentification is easy between
sound knots and the mineral thread. The stain on the surface of sawn timber (non-defect
area) is easy to be detected as a mineral, sound knot and other defects, which reduces the
recognition rate of minerals and sound knots. The color of heartwood is similar to that of
sawn timber. Light bark is easily mistaken for mineral threads.

Table 2. Detection accuracy of defect type of Betula sawn timber.

Defect Type 1 2 3 4 5 6 7 8 9 10 All

Bark (%) 85.3 86.2 84.4 88.3 88.3 89.3 90.3 87.1 87.2 91.4 87.8
Dead knot (%) 86.0 87.8 88.8 88.9 85.9 89.6 87.7 88.6 87.5 86.2 87.7

Crack (%) 90.9 90.8 90.3 89.3 89.6 90.0 92.3 91.2 92.6 87.3 90.4
Heartwood (%) 98.3 98.2 98.0 97.5 97.3 96.5 99.0 97.2 99.1 98.6 98.0

Hole (%) 80.3 80.5 76.3 70.2 75.2 78.3 82.2 83.2 78.1 84.3 78.9
Inbark (%) 90.1 95.3 96.3 94.5 93.6 92.3 91.2 91.3 92.6 94.0 93.1

Material lack
+ Wane (%) — — — — — — — — — — —

Mineral (%) 88.1 84.5 83.3 82.5 80.3 81.4 81.9 84.3 83.3 82.3 83.2
Sound knot (%) 80.3 81.3 82.3 79.1 78.3 79.3 85.3 86.5 88.3 86.9 82.8
Under thickness

(%) — — — — — — — — — — —

Under width
(%) — — — — — — — — — — —

For some defects of a relatively small size, it is not necessary to determine the correct
sawing position of the timber. This defect can be allowed without affecting the surface
quality of the sawn timber. We set the defect size requirements to be detected through
standard parameters.

It is difficult for human eyes to detect defects that are not very large, such as material
lack, wane, under thickness and under width. The scanner equipment can accomplish
a better detection. The scanner was set according to the defect size standard of wood
structure components to screen out the defect area of sawn timber which is not allowed,
such as under thickness, to guide the later processing. In the test process, we tested and
verified material lack, wane, the under thickness and the under width, and the effect was
good. Due to the poor effect of manual visual inspection for material lack, wane, under
thickness and under width, the detection data were not compared with manual visual data
in advance.

Based on the above analysis, we found that the detection accuracy of bark, dead knot,
cracking and heartwood was higher than 85%. The identification accuracy of some defect
types was affected, and the detection accuracy of hole and mineral defects was relatively
low (Figure 19). The scanner had misidentifications between defects, but it was still able to
find the defects, and the average missed detection rate was low, 0.084.
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Figure 19. Detection accuracy of defect type of Betula sawn timber.

The average value of the detection accuracy of different defect types of 10 packets of
sawn timber samples was calculated, and the detection accuracy of the defects of 10 packets
of timber samples (400 pieces per packet) was plotted by boxplot (Figure 20). An outlier value
labeled 71 was obtained in the figure, and the outlier value was 88.1%. The interquartile range
(IQR) in the boxplot is the difference between the upper quartile and the lower quartile, where
the upper limit = upper quartile + 1.5IQR, lower limit = lower quartile − 1.5IQR. Upper
quartile position: 8.25, lower quartile position: 2.75, median position: 5.5. Considering the
particularity of the sample data, the method of mean replacement was used in the outliers of
one sample data. A bar chart of mean error was drawn (Figure 21). According to the variation
trend of the mean value in Figure 21, it was concluded that the heartwood had the highest
detection accuracy (97.97%), followed by the Inbark detection accuracy (93.12%). Among
the 10 groups of timber samples, the error of the heartwood and dead joint defect types was
relatively large, while the error value of the other groups was small. Through the homogeneity
test of variance (p < 0.05), we found that the difference in detection accuracy of different defect
types in each group was statistically significant.
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Figure 20. Difference of detection accuracy of defect types of Betula timber. Note: B—Bark, DK—Dead
knot, C—Crack, HW—Heartwood, H—Hole, I—Inbark, M—Mineral and SK—Sound knot.
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Figure 21. Average of detection accuracy of defect types of Betula timber. Note: B—Bark, DK—Dead
knot, C—Crack, HW—Heartwood, H—Hole, I—Inbark, M—Mineral and SK—Sound knot.

Under the condition that the surface defect type identification of the timber is correct,
the measurement accuracy of the defect size and position is counted (Table 3). In the
inspection of each package of timber by scanner, the defect length, width and defect
positioning accuracy of the X and Y axis were all greater than 80% (Figure 22). Negative
values easily appeared in the location and identification of timber defects (such as under
width), especially in the Y-axis direction.

Table 3. Defect size measurement and positioning accuracy statistics of timber.

Defect Type Length Detection
Accuracy (%)

Width Detection
Accuracy (%)

Position (on the X
Axis) Detection

Accuracy (%)

Position (Y Axis
Direction) Detection

Accuracy (%)

Bark 83.10 87.32 88.63 82.36
Dead knot 81.0 82.3 83.2 85.4

Crack 94.4 91.7 94.6 94.8
Heartwood 83.33 88.89 86.11 80.55

Hole 85.23 84.32 86.36 83.96
Inbark 87.53 88.40 86.54 86.45

Material lack + Wane — — — —
Mineral 87.18 90.87 90.56 94.23

Sound knot 92.98 87.72 92.98 91.23
Under thickness — — — —

Under width — — — —

The average value of the detection accuracy of the different defect sizes (length) of
10 packets of timber samples was calculated, and the detection accuracy of the defects of
10 packets of timber samples (400 pieces per packet) was plotted by boxplot (Figure 23).
Three outlier values labeled 35, 44, 68 were obtained in the figure, and the outlier values
were 98.6%, 86.3% and 84.34%. Considering the particularity of the sample data, the
method of mean replacement was used for the outliers of three sample data. A bar chart
of mean error was drawn (Figure 24). According to the variation trend of the mean value
in Figure 24, it can be seen that the identification accuracy of crack and sound knot size
(length) was relatively high, and the mean detection accuracy of crack length and sound
knot was 93.98% and 92.98%, respectively. The error value of 10 groups of data for each
defect was small. We used the homogeneity test of variance (p < 0.05), to demonstrate
that the difference in detection accuracy of the different sizes (length) in each group was
statistically significant.
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The average value of the detection accuracy of the different defect sizes (width) of
10 packets of timber samples was calculated, and the detection accuracy of the defects of
10 packets of timber samples (400 pieces per packet) was plotted by boxplot (Figure 25). It
was a normal value in the picture figure. A bar chart of mean error was drawn (Figure 26).
According to the variation trend of the mean value in Figure 26, it can be seen that the
identification accuracy of crack and mineral size (width) was relatively high, and the mean
detection accuracy of crack width and mineral was 91.70% and 90.87%, respectively. The
error value of 10 groups of data for each defect was small. We used the homogeneity test
of variance (p < 0.05), to demonstrate that the difference in detection accuracy of different
defect sizes (width) in each group was statistically significant.
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The average value of the detection accuracy of different defect positions (on the X axis)
of 10 packets of timber samples was calculated, and the detection accuracy of the defects of
10 packets of timber samples (400 pieces per packet) was plotted by boxplot (Figure 27).
Two outliers value labeled 15, 55 were obtained in the figure, and the outlier value was
90.61% and 90.26%, respectively. Considering the particularity of the sample data, the
method of mean replacement was used for the outliers of the two sample data. A bar
chart of mean error was drawn (Figure 28). According to the variation trend of the mean
value in Figure 28, it can be seen that the identification accuracy of crack, sound knot and
bark position (on the X axis) was relatively high, and the mean detection accuracy of crack
position (on the X axis) and sound knot was 94.60%, 92.98% and 88.63%, respectively. The
error value of 10 groups of data for each defect was small. We used the homogeneity test
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of variance (p < 0.05), to demonstrate that the difference in detection accuracy of different
defect positions (on the X axis) in each group was statistically significant.
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The average value of the detection accuracy of different defect positions (on the Y
axis) of 10 packets of timber samples was calculated, and the detection accuracy of the
defects of 10 packets of timber samples (400 pieces per packet) was plotted by boxplot
(Figure 29). It was a normal value in the picture figure. A bar chart of mean error was
drawn (Figure 30). According to the variation trend of the mean value in Figure 30, it
can be seen that the identification accuracy of crack and mineral position (on the Y axis)
was relatively high, and the mean detection accuracy of crack position (on the Y axis) and
mineral was 94.80% and 94.23%, respectively. The error value of 10 groups of data for each
defect was small. We used the homogeneity test of variance (p < 0.05), to demonstrate that
the difference in detection accuracy of different defect positions (on the Y axis) in each
group was statistically significant.

The accuracy of the length and width detection of timber affects the defect location.
The scanner had a high detection accuracy for the size (length, width and thickness). The
average measurement error of the length, width and thickness of the timbers were 0.31%,
1.16% and 1.18%, respectively (Table 4), which were within the allowable range. We selected
10 timbers for six tests. The standard deviation of length (STDEV) was less than 4, the
standard deviation of width (STDEV) was less than 4 and the standard deviation of width



Forests 2023, 14, 1510 22 of 26

and thickness (STDEV) was less than 2. The stability of the scanner timber size detection
was better.
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Table 4. Betula timbers size measurement accuracy statistics.

Serial Number of
Timber

Percentage of Error
in Length

Detection/%

Percentage of Error
in Width

Detection/%

Percentage of Error
in Thickness
Detection/%

1 0.13 0.97 0.83
2 0.07 1.40 0.65
3 0.08 2.37 0.89
4 0.07 1.64 0.38
5 0.05 0.38 0.47
6 0.10 1.20 1.89
7 0.12 0.53 3.11
8 1.89 0.84 1.23
9 1.20 1.12 1.56
10 0.65 0.89 0.52

Average 0.31 1.16 1.18
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3.3. Betula Solid Sawn Timbers Yield

The scanner was able to realize the statistical function of the total timber length, total
timber volume and total timber yield in the production (Table 5). The yield of timber was
fitted by Gaussian function, as shown in Figure 31.

Table 5. Statistics of timber yield.

Betula Timbers/Package Total Length/m Total Volume/m3 Total Yield/%

1 1600.1 4.1 81.2
2 1598.2 4.0 80.2
3 1593.5 4.0 79.1
4 1610.1 4.1 78.4
5 1600.0 4.0 85.6
6 1621.1 4.3 83.2
7 1599.6 4.0 81.7
8 1584.3 4.0 82.6
9 1600.3 4.1 80.3
10 1600.9 4.2 82.1
All 16,008.1 4.8 84.4
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The yield of Betula timbers was mainly 81–90%, followed by 71–80% and 90–100%.
The experiment proves that the yield of this batch of timbers was high. Based on the above
test results, timber meet the requirements of production and processing.

3.4. Comparison of the Comprehensive Utilization Value of Optimized Sawing Timber and Manual
Marking Sawing Timbers

After 100 packets of Betula sawn timber were tested, the timber yield of different
values was counted. According to the different quality of timber, the utilization value of
this batch of optimized sawn timber was calculated. According to Figure 32 (distribution
of yield of Betula timber), the total yield of this batch of materials is calculated: yield
60% (≤60%) × timber number of × single timber volume + yield 65% (61–70%) × timber
number of × single timber volume + yield 75% (71%–80%) × timber number of × single
timber volume + yield 85% (81–90%) × timber number of × single timber volume + yield
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95% (91–100%) × timber number of × single timber volume 60% × 30 × 0.010 + 65% × 85
× 0.010 + 75% × 835 × 0.010+85% × 2321 × 0.010 + 95% × 726 × 0.010 = 33.56 m3.
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According to the total yield, the volume distribution of Betula timber with different
values was calculated, as shown in Figure 25. We calculated the utilization value of
a whole batch of materials: total volume × ratio1 × value1 (birch_a) + total volume
× ratio2 × value2 (birch_b) +. . .+ total volume × ratio 6 × value 6 (birch_f) = 33.56
× 25.85% × 407.40 USD$ (2800 CNY¥) + 33.56 × 24.43% × 392.85 USD$ (2700 CNY¥) +
33.56 × 22.13% × 378.30 USD$ (2600 CNY¥) +33.56 × 22.13% × 363.75 USD$ (2500 CNY¥)
+ 33.56 × 13.90% × 349.20 USD$ (2400 CNY¥) + 33.56 × 8.08% × 334.65 USD$ (2300 CNY¥)
+ 33.56× 5.63%× 320.10 USD$ (2300 CNY¥) = 12,844.52 USD$ (88,241.89 CNY¥). Therefore,
the comprehensive utilization value of scanner-optimized sawn timber was 12,844.52 USD$.
When the manual marking method was used on the sawn timber, according to the value
of Betula sawn timber of 334.65 USD$ (2300 CNY¥), the comprehensive utilization value
of timber was calculated, and the comprehensive utilization value = 33.56 × 334.65 USD$
(2300 CNY¥) = 11,236.27 USD$ (77,193.19 CNY¥). After adopting the optimized scanner,
the comprehensive utilization value of timber increased by 1608.25 USD$ (11,048.69 CNY¥),
an increase of 14.13%. If 12,000 m3 is produced per month, the annual comprehensive
utilization value of timber can be increased by 690,026.20 USD$ (4,740,480 CNY¥).

3.5. Cost and Efficiency Calculation

Combined with Betula timber processing technology, the manual visual inspection pro-
cess was replaced by the scanner program. With the same production capacity, 3–4 workers
can be saved. If the average person is 724.13 USD$ (5000 CNY¥)/month, the annual savings
can be 34,758.43 USD$ (240,000 CNY¥). Combining timber detection and optimization
algorithms with wood processing equipment can form an unmanned production line,
which can not only save labor costs, but also promote the development of unmanned wood
plants. According to the production test, the yield of timber increased by 10–15% after
the application of the scanner equipment. If the production rate is 1000 m3 per month,
and 334.65 USD$ (2300 CNY¥) per cubic meter, the annual savings can be 1000 × (10–15%)
× 2300 × 12 = 399,700–599,600 USD$ (2,760,000–4,140,000 CNY¥). If we classify the value
of timber according to different uses, we improve the additional value of the products and
increase the value by at least 144,826.79 USD$ (1,000,000 CNY¥) every year. The scanner
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application improves the working environment of workers, produces a high yield, reduces
labor intensity and reduces the industrial injury accident rate.

In the machine vision inspection system, the sawn timber scanning time is 0.311 s,
and the image analysis time is 0.368 s. The scanner speed is 150 m/min, 214 m/min, the
minimum distance between timbers (open signal) is 1500 mm, the minimum time interval
between timbers (open signal) is 1500 ms and the average decision-making speed of this pro-
cess can reach at least 60 m/min. Manual marking and highlighter detection of 20 m/min
when using the scanner can process more than 6,451,200 m per year, 16,089.2928 m3. Com-
pared with manual detection, machine detection can also save manual rest time.

4. Conclusions

The research carried out the research and development and industrial application of
key technologies of intelligent manufacturing of wood structure building materials, and
the construction of intelligent automatic optimization sawing production line of wood
structure building components can realize the automatic and flexible manufacturing goals
of prefabricated components. Intelligent automated detection and optimization grading
can improve the precision and production efficiency of wood processing, lay the foundation
for the formation of a complete set of intelligent production system for the future wood
industry, and has high theoretical value and broad market application prospects.

In the process of test analysis, taking the detection of Betula solid timber algorithms
and optimizing crosscuts as an example, in general, the average detection accuracy of
defect types of timber was 89.69%, the average detection accuracy of size was 89.69% and
the average localization accuracy was 92.25%. The average yield of Betula timber was
82.29%, and the Betula timber could be scanned and decided at the highest detection speed
of 702 ft/min (214 m/min) to verify the applicability of the system. Detection errors could
be further reduced by improving the defect detection, which is currently in the works. We
can compare the defect detection results with the manual measurement results, record the
detection and decision results of the two methods and count the items of detection error.
These data can guide the later improvements of the detection algorithm.

In the production application, the automatic intelligent processing system of Betula
structural building materials hhadas a good ability of detection, classification, sawing and
optimization, saving labor, labor cost, productivity and improving the yield of Betula sawn
timber and the added value of materials. The application and promotion of mechanical
design, automation technology, machine vision inspection, deep learning recognition,
optimization sawing algorithms, electronic design automation and other technologies and
methods are of great significance to improve the automation and intelligence level of the
wood processing industry.
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