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Abstract: The accurate estimation of forest area is of paramount importance for carbon sequestration
projects, ecotourism and ecological safety. Forest segmentation using remote sensing images is a
crucial technique for estimating forest area. However, due to the complex features, such as the size,
shape and color of forest plots, traditional segmentation algorithms struggle to achieve accurate
segmentation. Therefore, this study proposes a remote sensing image forest segmentation model
named SegForest. To enhance the model, we introduce three new modules: multi-feature fusion
(MFF), multi-scale multi-decoder (MSMD) and weight-based cross entropy loss function (WBCE)
in the decoder. In addition, we propose two new forest remote sensing image segmentation binary
datasets: DeepGlobe-Forest and Loveda-Forest. SegForest is compared with multiple advanced
segmentation algorithms on these two datasets. On the DeepGlobe-Forest dataset, SegForest achieves
a mean intersection over union (mIoU) of 83.39% and a mean accuracy (mAcc) of 91.00%. On the
Loveda-Forest dataset, SegForest achieves a mIoU of 73.71% and a mAcc of 85.06%. These metrics
outperform other algorithms in the comparative experiments. The experimental results of this paper
demonstrate that by incorporating the three proposed modules, the SegForest model has strong
performance and generalization ability in forest remote sensing image segmentation tasks.

Keywords: segmentation; remote sensing; forest monitoring; deep learning; feature fusion; forest
image segmentation

1. Introduction

Forest ecosystems are a vital component of terrestrial ecosystems, representing the
largest, most widespread, complex and resource-rich ecosystems on land. The interactions
between forest ecosystems and the atmosphere, involving exchanges of energy, water,
carbon dioxide and other compounds, significantly influence and regulate the climate.
Forests play a pivotal role in global carbon cycling, water cycling, the mitigation of global
climate change, climate regulation, soil conservation and environmental enhancement [1,2].
Moreover, apart from providing a diverse array of ecological services, the forest area
exhibits a strong correlation with sustainable economic development [3] and assumes a
critical role in carbon sequestration engineering, ecotourism and ecological security [4–6].
Therefore, effective forest resource management and monitoring is critical to ensure sus-
tainable development. Remote sensing techniques, such as satellite and unmanned aerial
vehicle (UAV) image segmentation are widely employed for forest area estimation and land
survey [7–9]. Remote sensing image segmentation refers to the process of analyzing and
processing remote sensing image data to partition different regions or objects within the
image into distinct sub-regions or sub-objects based on their independent characteristics.
However, traditional methods often exhibit low precision, along with high computational
complexity and time consumption, making them unsuitable for complex forest remote
sensing image segmentation applications. Therefore, improving the efficiency and precision
of segmentation tasks in complex forest scenes remains a significant challenge.
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Classic segmentation algorithms, including thresholding [10], edge-based [11], region-
based [12], graph-based [13] and energy-based [14] techniques, are often limited by their
computational complexity and struggle to achieve a satisfactory balance between com-
putational efficiency and accuracy. Consequently, these algorithms may not be suit-
able for effectively processing forest remote sensing images. To address this problem,
Wang et al. proposed a scalable graph-based clustering method called SGCNR, which
implements non-negative relaxation to reduce computation complexity [15]. Although
SGCNR showed some improvement over classic segmentation algorithms, its accuracy was
limited and insufficient for precise forest parcel segmentation. Although other conventional
machine learning techniques, such as random forest [16], support vector machine [17,18]
and conditional random field [19], have enhanced accuracy and robustness, they may not
fully meet the precision requirements for forest remote sensing image segmentation.

In recent years, deep convolutional neural networks (DCNNs) have demonstrated
powerful feature extraction and object representation capabilities compared to traditional
machine learning methods [20]. The most advanced methods based on full convolutional
networks (FCNs) [21] have demonstrated great progress. For example, Wu et al. developed
an FCN architecture optimized for polarimetric synthetic aperture radar (SAR) imagery to
classify wetland complexes [22]. Li et al. improved the encoder architecture of U-Net++
and added a local attention mechanism for the accurate segmentation of forest remote
sensing maps [23]. Nevertheless, fixed geometric configurations constrain local receptive
fields and contextual information within a short range. The segmentation of forest remote
sensing images remains a demanding task.

To overcome this limitation and increase the receptive field and contextual information
over long-term features, self-attention mechanisms have gained widespread usage in com-
puter vision [24–26]. Self-attention mechanisms have consequently been integrated with
DCNNs by some researchers. Fu et al. proposed a recursive and parsimonious attention
module and applied it to the ResNet model to achieve the high-precision recognition of
remote sensing scenes [27]. Moreover, some researchers have implemented transformers in
remote sensing image segmentation tasks [28]. Advanced self-attention mechanisms enable
models to effectively capture various spatial-scale feature information in remote sensing
image segmentation tasks, thereby improving segmentation accuracy, particularly when
handling large area remote sensing images with complex spatial structures and features.

The encoders of different models can effectively extract the spatial feature information
of various scales in remote sensing images by utilizing self-attention mechanisms. However,
forest remote sensing images contain complex information of various sizes, colors and
shapes, and it is crucial to make better use of multi-scale feature information obtained
by encoders for improving the IoU performance of the segmentation models. To solve
this issue, we propose SegForest, a high-performance segmentation network that fully
utilizes the feature information of various scales. This paper introduces a multi-feature
fusion (MFF) module to better fuse features of different scales. Furthermore, an innovative
multilevel decoding multi-scale and multi-decoder (MSMD) module is proposed to utilize
features at fine scales more extensively. To improve model training, we introduce the
weight-based cross-entropy (WBCE) loss function designed specifically for the MSMD.
Additionally, two datasets, DeepGlobe-Forest and Loveda-Forest, are specifically created
for the forest remote sensing image segmentation tasks in this paper.

2. Datasets

The satellite images used in DeepGlobe-Forest are extracted from the DigitalGlobe
+ Vivid Images dataset [29]. The images cover areas taken over Thailand, Indonesia
and India. The ground resolution of the image pixels is 50 cm/pixel. These images
consist of three channels (red, green and blue) each. Each of the original Geotiff images
is 19,584 × 19,584 pixels. We crop 194 RGB images of resolution 2448 × 2448 from the
original images. These images are labeled into two semantic categories, namely, forest and
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background. The class distribution can be seen in Table 1. Figure 1 shows some examples
of DeepGlobe-Forest.

Table 1. Class distributions in the DeepGlobe-Forest dataset.

Class Label Pixel Count Proportion

Background 0 537.13 M 46.20%
Forest 1 625.46 M 53.80%

(a) Original satellite images.

Forest Background

(b) Corresponding segmentation mask.

Figure 1. Some examples of DeepGlobe-Forest dataset.

The Loveda-Forest dataset was created based on the Land-cOVE dataset for Domain
Adaptation (Loveda) [30]. The Loveda dataset is constructed using 0.30 m images acquired
in July 2016 from Nanjing, Changzhou and Wuhan, covering a total area of 536.15 km2 with
red, green and blue bands at a spatial resolution of 0.30 m. Following geometric registration
and preprocessing, each region is covered by non-overlapping images with a resolution
of 1024 × 1024. We retain only the forest classification from the original dataset, while
unifying other classifications as background classifications. To balance the number of forest
and background pixels, we carefully select some images. We change the forest label from
the original dataset to 1, while changing all other labels to 0 to serve as the background.
Table 2 displays the class distribution, while partial examples of Loveda-Forest are shown
in Figure 2.
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Table 2. Class distributions in the Loveda-Forest dataset.

Class Label Pixel Count Proportion

Background 0 332.37 M 48.32%
Forest 1 355.49 M 51.68%

(a) Original satellite images.

Forest Background

(b) Corresponding segmentation mask.

Figure 2. Some examples of Loveda-Forest dataset.

3. Methods

This section presents SegForest, an efficient and robust segmentation framework for
remote sensing image forest segmentation. The SegForest model consists of two main
components: a transformer encoder for extracting multi-scale features; and an efficient
decoder for multi-scale feature fusion, resulting in the final semantic segmentation
mask. The encoder design is based on SegFormer, but we redesigned the entire decoder
structure due to its inefficiency in fusing multi-scale features. Figure 3 illustrates the
structure of SegForest. The following section introduces the decoder that we designed.
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Figure 3. The structure of SegForest.

3.1. Multi-Scale Feature Fusion

Traditionally, coarse-to-fine segmentation neural networks have typically relied
solely on features from coarse-scale subnetworks within fine-scale subnetworks, restrict-
ing information flow. However, the diverse sizes of forest blocks in remote sensing
images present a significant challenge, necessitating multi-scale features. If the decoder
cannot effectively use the complex multi-scale features, accurate segmentation results
are unachievable.

To optimize the utilization of multi-scale features, we propose the integration of a
multi-scale feature fusion (MFF) module, as depicted in Figure 4. This module enables our
model to produce information streams from various scales. The MFF block leverages the
Transformer block’s results from each scale by employing convolutional layers to merge
the multiscale features. In this model, the MFF formulation is as follows:

MFFout
1 = MFF1

(
TBout

1 ,
(
TBout

2
)↑, (TBout

3
)↑, (TBout

4
)↑), (1)

MFFout
2 = MFF1

((
TBout

1
)↓, TBout

2 ,
(
TBout

3
)↑, (TBout

4
)↑), (2)

MFFout
3 = MFF1

((
TBout

1
)↓, (TBout

2
)↓, TBout

3 ,
(
TBout

4
)↑), (3)

where TBout
k is the feature map of the Kth scale output of the Transformer blocks, MFFout

k
denotes the MFF output of the K-th scale, ↑ represents upsampling, and ↓ represents
downsampling. As a result, SegForest significantly enhances its multi-scale feature fusion
ability and thus improves forest segmentation performance.
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Figure 4. The structure of MFF module.

3.2. Multi-Scale Multi-Decoder

The decoder in SegFormer first performs an upsampling of the fine-scale features and
then concatenates the features from all scales. Finally, the decoder outputs the resulting
feature map through a convolution operation. However, this structure may result in the
underutilization of the detailed features and the lack of effective fusion among different
scales. To mitigate this issue, we introduce a novel multiscale multi-decoder (MSMD)
structure in SegForest. The decoder architecture of the second and third levels can be
observed in Figure 5a, and the first level’s decoder structure is depicted in Figure 5b.
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Figure 5. The structure of MSMD module.

In Figure 5, Transpose k+1
out refers to the convolutional transpose output at a finer

level of scale and MFFout
k refers to the MFF output at the same level of scale. We chose

convolutional transpose instead of upsampling to reduce the information loss caused by
upsampling. The green dashed line in Figure 5a represents that this part only runs when
training. We let the decoders of each scale output the result to calculate the loss during
training so that each decoder can be trained to obtain better performance.

This multi-scale, multi-decoder structure allows the features at each scale to be fully
utilized, allowing for more accurate results when dealing with forest segmentation of
varying shapes and sizes.
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3.3. Loss Function

The SegForest model employs a multi-scale multi-decoder structure. To optimize the
model training, we suggest using a weight-based cross-entropy loss function (WBCE) in
the following formula:

Loss = 0.8Loutput + 0.13Loutput2 + 0.07Loutput3 , (4)

where Loutput is the cross-entropy loss of the final output of the network, and Loutput2

and Loutput3 are the cross-entropy losses of the output of level 2 and level 3, respectively;
see Figure 3. The formula for calculating the cross-entropy loss L for each component is
shown below:

L =
1
b

b

∑
j=1

n

∑
i=1
−y log(ŷ)− (1− y) log(1− ŷ), (5)

where b is the batch size, n is the total number of samples within the training set, y is the
true distribution, and ŷ is the probability distribution of the model output.

Experimental results show that the weight-based cross-entropy loss function improves
model performance. Specifically, it enables the model to better handle the complex area, size
and shape of the forests in remote sensing images by fusing the outputs of different scales.

4. Experiments
4.1. Experimental Settings

SegForest is implemented in PyTorch [31]. Training on the Globe-Forest and Loveda-
Forest datasets is performed for 160,000 iterations with an initial learning rate of 0.00006,
which is linearly decreased from the 1500th iteration onwards. A crop size of 512 × 512
is used on both datasets. We do not employ commonly used techniques, such as OHEM,
auxiliary loss or class balance loss for simplicity. The experimental setup consists of a single
RTX3060 graphics card, an i9-12900hs CPU and 64 GB of memory.

4.2. Evaluation Metrics

This study utilizes two evaluation metrics, intersection over union (IoU) [32] and
accuracy (Acc), to assess the performance of the models. The formulas for calculating mIoU
and IoU are presented below:

IoU =
pii

∑k
j=0 pij + ∑k

j=0 pji − pii
, (6)

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
, (7)

where pi j denotes the prediction of category i into category j, and k + 1 is the total number
of categories. Similarly, the accuracy and mAcc formulas are presented below:

Accuracy =
TP + TN

TP + FP + FN + TN
, (8)

mAcc =
1

k + 1

k

∑
i=0

TPi + TNi
TPi + FPi + FNi + TNi

, (9)

where TP represents the true positive, TN the true negative, FP the false positive, FN the
false negative, and k + 1 signifies the total number of categories.

4.3. Comparison to State of the Art Methods

We benchmark SegForest against multiple state-of-the-art models, including ad-
vanced fully convolutional segmentation models and transformer models, on two datasets:
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DeepGlobe-Forest and Loveda-Forest. The comparison comprises deeplabv3+ [33], pid-
net [34], pspnet [35], knet [36], segformer[24], mask2former [25] and segnext [26,37].

Table 3 presents a summary of the results on DeepGlobe-Forest, which includes the
mIoU and accuracy results. The highest evaluation index score is highlighted in bold. Our
method outperforms the Segformer approach that uses the same encoder. Specifically,
our approach improves mIoU by 2.54% and mAcc by 1.59%. The results indicate that
Segformer’s simple and lightweight all-MLP (multi-layer perceptron) decoder cannot
achieve the full potential of the encoder due to the complex size, edge and shape features
of forest plots in remote sensing images. By incorporating our proposed multi-scale
feature fusion module and multi-scale multi-decoder module to SegForest, our network
demonstrates superior performance. In comparison to other benchmarks, SegForest exhibits
the highest IoU in both the forest and background, which is crucial for the remote sensing
image forest area and forest biomass estimation tasks that require forest area information.
Pidnet records the highest accuracy in the forest category, which is only 0.01% higher than
SegForest. Nevertheless, SegForest attains the highest score in the background category,
as well as the mean accuracy. Figure 6 showcases some prediction result examples of
each method on the DeepGlobe-Forest dataset. As illustrated in Figure 6, our method’s
segmentation results are significantly closer to the ground truth on the forest edges, which
is particularly important for forest expansion monitoring. The experiment demonstrates
SegForest’s superior performance in forest segmentation from remote sensing images.

Table 3. Performance of models on DeepGlobe-Forest dataset.

IoU
mIoU

Accuracy
mAcc

Forest Background Forest Background

Deeplabv3+ 77.69 79.67 78.68 87.42 88.70 88.06
Pidnet-s 78.78 80.96 79.87 87.35 90.21 88.78
Pspnet 79.86 80.79 80.33 91.17 87.22 89.20

Knet-s3-r50 80.23 81.22 80.73 91.24 87.63 89.44
Segformer 79.98 81.71 80.85 89.02 89.80 89.41

Mask2former 80.52 81.61 81.06 91.09 88.17 89.63
Segnext 80.60 81.84 81.22 90.69 88.71 89.70

SegForest 82.80 83.99 83.39 91.79 90.20 91.00

Bold font means the best performance.

(a) Original satellite
image.

(b) Ground truth. (c) Deeplabv3+ (d) Pidnet-s (e) Pspnet

(f) Knet-s3-r50 (g) Segformer (h) Mask2former (i) Segnext (j) SegForest

Figure 6. Example results of each method’s prediction on the DeepGlobe-Forest dataset.
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Table 4 presents the results obtained on Loveda-Forest, reporting values for mIoU and
accuracy. The highest evaluation index score is highlighted in bold. SegForest outperforms
Segformer in all scores, with improved mIoU and mAcc by 3.75% and 2.20%, respectively.
Moreover, when compared with state-of-the-art methods, SegForest achieves the highest
score for each IoU score, demonstrating its effectiveness. Knet exhibits the highest accuracy
in forest classification, with a 1.13% advantage over SegForest, while Pspnet displays
the highest accuracy in background classification, with a 2.04% benefit over SegForest.
Nonetheless, SegForest achieves the highest mean accuracy, representing its balanced and
comprehensive performance. Figure 7 presents the predictions obtained by the different
methods on Loveda-Forest.

Table 4. Performance of models on Loveda-Forest dataset.

IoU
mIoU

Accuracy
mAcc

Forest Background Forest Background

Deeplabv3+ 64.22 75.88 70.05 80.37 84.85 82.61
Pidnet-s 64.36 74.08 69.22 84.82 80.85 82.84
Pspnet 62.68 77.08 69.88 73.93 89.18 81.56

Knet-s3-r50 65.99 76.16 71.08 84.11 83.45 83.78
Segformer 64.63 76.31 70.47 80.36 85.35 82.86

Mask2former 65.67 76.83 71.25 81.69 85.30 83.50
Segnext 64.42 76.96 70.69 78.31 87.01 82.66

SegForest 68.38 79.04 73.71 82.98 87.14 85.06

Bold font means the best performance.

(a) Original satellite
image.

(b) Ground truth. (c) Deeplabv3+ (d) Pidnet-s (e) Pspnet

(f) Knet-s3-r50 (g) Segformer (h) Mask2former (i) Segnext (j) SegForest

Figure 7. Example results of each method’s prediction on the Loveda-Forest dataset.

4.4. Ablation Studies

We conducted a series of ablation studies on the DeepGlobe-Forest dataset to assess
the efficacy of the individual modules. The results of these studies are presented in Table 5,
where MFF denotes the multi-feature fusion module, MSMD represents the multi-scale
multi-decoder module, and WBCE denotes the weight-based cross-entropy loss function.

The addition of only the MFF module increases the model’s mIoU by 1.80% and mean
accuracy by 0.57%. The MFF module improves performance by allowing the decoder to
effectively leverage features across scales. The addition of only the MSMD module results
in more modest improvements, increasing mIoU and mean accuracy by 0.24% and 0.04%,
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respectively. By adding the WBCE loss function, the performance is further improved,
increasing the mIoU and mean accuracy by 1.02% and 0.59%, respectively. The MSMD
and WBCE modules enable hierarchical decoding at different scales, thereby resulting in
a significant performance boost. The best performance is achieved by adding all three
modules simultaneously, improving the mIoU and mean accuracy by 2.54% and 1.59%,
respectively, and enabling the model to better handle complex forest conditions in remote
sensing images.

Table 5. Results of ablation studies on DeepGlobe-Forest dataset.

MFF MSMD WBCE
IoU

mIoU
Accuracy

mAcc
Forest Background Forest Background

79.98 81.71 80.85 89.02 89.80 89.41
X 81.54 83.75 82.65 89.83 90.13 89.98

X 80.53 81.64 81.09 88.71 90.18 89.45
X X 81.31 82.90 82.11 89.95 90.12 90.04

X X X 82.80 83.99 83.39 91.79 90.20 91.00

X indicates the addition of this module.

5. Discussion

Experimental comparisons show that SegForest outperforms other models for forest
segmentation tasks, especially achieving the best mIoU and mAcc on the DeepGlobe-
Forest and Loveda-Forest datasets. However, it is observed that SegForest does not always
achieve the optimal accuracy. This issue may be due to the transformer encoder, which
is not completely applicable to segmentation tasks. Therefore, there are plans to design a
transformer encoder that is more suitable for segmentation tasks. Additionally, ablation
studies were conducted on the DeepGlobe-Forest dataset to validate three proposed mod-
ules (MFF, MSMD and WBCE) and their performance differences. Specifically, the MFF
module enables the model to obtain information flow from different scales and better fuse
features from each scale. The MSMD module allows step-by-step decoding at different
scales, enabling the model to fully utilize fine-scale features. Moreover, the WBCE module
significantly improves post-training performance without increasing the model parame-
ters. The integration of these three modules fortifies SegForest’s handling of intricate size,
shape and color features of forest areas in remote sensing imagery. Further improvement
measures will be explored to enhance SegForest’s performance, such as introducing more
feature fusion strategies and more effective complexity control methods.

One of the challenges of this study is the dataset. Currently, we use the DeepGlobe-
Forest and Loveda-Forest datasets, which have low spatial resolution and lack precise
annotations. Therefore, a key focus of our future work is to develop a new, more detailed re-
mote sensing image dataset specific to forest segmentation. We plan to use drones equipped
with multispectral lenses to capture higher spatial resolution images and multispectral
data, which will then be annotated more precisely. Additionally, we will design a network
that incorporates multispectral features to achieve even higher accuracy in remote sensing
image segmentation [38].

6. Conclusions

This study proposes SegForest, a powerful model for forest segmentation tasks in
remote sensing images. We proposed three modules to enhance the utilization of different
scales of feature information in the model, namely the multi-feature fusion (MFF) module,
multi-scale multi-decoder (MSMD) module and weight-based cross-entropy (WBCE) loss
function. Additionally, we introduced two forest remote sensing image segmentation
datasets named DeepGlobe-Forest and Loveda-Forest. Both datasets are binary classifi-
cation datasets, including forest and background pixels in equal quantity. We evaluated
SegForest with numerous state-of-the-art methods on these two datasets, and it achieved
the highest mIoU of 83.39% and 73.71% on DeepGlobe-Forest and Loveda-Forest, respec-
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tively, demonstrating its excellent performance. We also conducted a series of ablation
studies to verify the performance of the three proposed modules.
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