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Abstract: Burn severity is commonly assessed using Burn Ratios and field measurements to provide
land managers with estimates of the degree of burning in an area. However, less commonly studied
is the ability of spectral indices and Burn Ratios to estimate field-measured fire effects. Past research
has shown low correlations between fire effects and Landsat-derived Burn Ratios, but with the
launch of the Sentinel-2 constellation, more spectral bands with finer spatial resolutions have become
available. This paper explores the use of several red-edge-based indices and Burn Ratios alongside
more ‘traditional’ spectral indices for predicting fire effects, measured from the Maple and Berry
fires in Wyoming, USA. The fire effects include ash depth, char depth, post-fire dead lodgepole pine
(Pinus contorta; PICO) density/stumps, mean basal diameter, cone density on dead post-fire trees,
coarse wood percent cover/volume/mass, percent cover of ghost logs and initial regeneration of
post-fire PICO/aspen density. All-possible-models regression was used to determine the best models
for estimating each fire effect. Models with satisfactory R2 values were constructed for post-fire dead
PICO stumps (0.663), coarse wood percent cover (0.691), coarse wood volume (0.833), coarse wood
mass (0.838), ash depth (0.636) and percent cover of ghost logs (0.717). Red-edge-based indices were
included in all of the satisfactory models, which shows that the red-edge bands may be useful for
measuring fire effects.

Keywords: fire; remote sensing; Burn Ratios; red-edge indices

1. Introduction

Burn severity is an important measurement of the effect that a wildfire has upon a
landscape. Burn severity impacts vegetation mortality and soil nutrient composition, and
causes increased runoff due to decreased infiltration resulting from soil hydrophobicity.
The degree of burn severity can influence how long it takes for an ecosystem to recover
and can change the composition of flora within an ecosystem. Because of these impacts, it
is important for land managers to be able to assess the varying degrees of burn severity
that result from fire events.

Burn severity can be measured differently depending on the interpretation of what it
represents. Some studies have interpreted burn severity as a measurement of fire severity
metrics and ecosystem responses [1]. Other researchers interpret burn severity solely as the
loss of organic matter in the soil or on its surface. The latter approach is used for Burned
Area Emergency Response (BAER) assessments, which commonly use the delta Normal-
ized Burn Ratio (dNBR) to derive a burn severity map, designated as the Burned Area
Reflectance Classification (BARC). BARC maps generally provide adequate assessments of
post-fire vegetation conditions and allow for rapid assessment of the immediate impacts
of a fire event [2]. BAER assessments commonly use the Composite Burn Index (CBI) for
validation as it is heavily weighted towards the effects a fire has had on vegetation [3].
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Although commonly used, the CBI possesses a major limitation because it is based on
ocular measurements as opposed to more quantitative field methods [4]. This is because
of how difficult it can be to take a significant number of accurate quantitative field mea-
surements for each wildfire to calibrate spectral indices. However, this can lead to different
assessments of CBI depending on the individual performing the assessment. Other mea-
surements of burn severity provide a quantitative assessment of the level of burn severity,
such as the amount of downed coarse wood, the number of live trees per unit area and
ash depth.

The robustness of the dNBR Index has come Into question, with several studies suggest-
ing that the index does not always provide accurate estimates and needs improvement [5–7].
Miller and Thode [7] found that dNBR performs poorly for pixels containing sparse vegeta-
tion because of dNBR detecting absolute change. dNBR detects change through the use of
the whole image, and so a large change relative to the land cover within a given pixel may
not be considered a large change in the context of the image as a whole. Different vegetation
compositions affected by the same fire and possessing the same degree of burning can be
assigned dissimilar dNBR values. To address this issue, RdNBR was proposed.

RdNBR is designed to assess the relative change instead of absolute change. This is
accomplished with an additional step to the dNBR procedure in which the square root of
the absolute value of the pre-fire NBR is used to calculate the quotient of dNBR. Miller and
Thode [7] found that RdNBR more accurately identified high-severity burns in areas of
heterogenous vegetation composition. However, the proposed equation possessed its own
issues, namely, that the square root used to calculate RdNBR produces large, difficult-to-
interpret numbers.

An alternative burn severity index was proposed by Parks et al. [8] and named the
Relativized Burn Ratio (RBR). This index replaces the square root and absolute functions
with the addition of 1.001 to ensure that all NBR values are greater than zero and altered in
a way that preserves the level of NBR assigned to pixels. The RBR provides an index that
estimates relative change without altering the output to the degree that the square-root in
RdNBR does.

Although most studies using remote sensing data for assessing burn severity use Burn
Ratios based on NIR and shortwave infrared (SWIR) [9], a proposed alternative to the
Burn Ratios is to include land surface emissivity (LSE). The inclusion of LSE adds a surface
characteristic that is separate from incoming solar radiation for the assessment of burn
severity [10]. Quintano et al. [11] found that LSE-enhanced vegetation indices resulted
in better burn severity estimates when compared to standard spectral indices, with an
increase of about 16% when used to map burn severity in Sierra del Teleno, Spain. However,
LSE-enhanced vegetation indices can be difficult to generate as they require the LSE and
temperature to be differentiated from surface radiance and atmospheric conditions.

Spectral mixture analysis (SMA) has also been proposed as an alternative to Burn
Ratios. SMA is a technique that uses the spectral reflectance of the ‘pure’ spectral response
of land cover, referred to as endmembers, to determine the proportion of a mixed pixel
belonging to different cover types. This is accomplished by using the endmembers to
analyze a pixel and determine the degree to which the radiance from a mixed pixel agrees
with each endmember [12]. Currently, SMA is not commonly used as a burn severity
estimation technique. Studies that have compared spectral indices and SMA for estimating
burn severity have shown the two approaches to be analogous [2,13]. However, SMA has
not been shown to consistently outperform dNBR, as seen in Veraverbeke and Hook [13],
which compared SMA to several spectral indices (NBR, dNBR, RdNBR) for burn severity
estimates. They found that dNBR outperformed SMA but also noted that both approaches
performed adequately and that SMA has the benefit of providing transferable quantitative
data and does not need field data for calibration.

Recently, the Sentinel-2 sensor system was launched by the European Space Agency
(ESA). The system contains additional red-edge bands that facilitate the calculation of more
indices that may be useful for burn severity estimates. Fernández-Manso et al. [14] used
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Sentinel-2 imagery to calculate several red-edge indices, as well as several more ‘traditional’
spectral indices, for estimating burn severity. They found that two of the red-edge indices
outperformed the other indices that were tested, showing the potential for red-edge indices
to aid in the assessment of burn severity. However, the capabilities of red-edge bands for
assessing burn severity have not been fully explored and further research is needed.

Although most burn severity studies that use remote sensing to assess severity rely on
field-measured CBI [5–7], few attempts have been published to determine which indices
can be used for assessing more quantitative measurements of fire effects such as tree
mortality by basal area and number of trees, char height and surface char. CBI is useful
for the rapid ocular assessment of burn severity but is limited and may vary depending
on the subjective judgement of the induvial assessor in the field. Saberi [15] found that
CBI estimates corresponded best to field measurements of tree canopy attributes but did
not correspond as well to other field measurements like the deep char index. The authors
suggest that spectral indices can be used to map CBI, which, in turn, can be used to map
various fire effects (particularly those related to tree canopy attributes) using regression
analysis. Hudak et al. [16] attempted to relate several Landsat 5 TM-derived burn indices
to fire effects, finding that none of the indices were highly correlated with the fire effects.

The objective of this study is to test the ability of several indices to estimate field-
measured fire effects using Sentinel-2 imagery. At present, the most commonly used burn
indices, such as dNBR, RdNBR and RBR, are limited to broad near- and shortwave infrared
band intervals. Limited research has been published that examines comparisons of red-
edge bands to traditional data to calculate burn indices. In Fernández-Manso et al. [14],
only post-fire indices were calculated, so this research aims to determine the effectiveness
of using the delta index from pre- and post-fire imagery, as well as the post-fire indices.
Additionally, alterations to the commonly used burn indices are made in which the narrow
NIR band is replaced with a red-edge band to generate the indices and assess whether this
substitution results in a more robust index.

By testing a broad range of indices, this paper seeks to determine the appropriate
indices for estimating field-measured fire effects for two fires in the Greater Yellowstone
Ecosystem. Given the limited availability of red-edge bands in free, publicly available data
sets, this study contributes to an enhanced understanding of their utility for fire effects and
associated estimates. Additionally, the findings from this study build on a limited body of
knowledge regarding the specific effectiveness of Sentinel-2 red-edge bands for assessing
post-fire effects. These bands are not present on similar publicly available sensors, such as
Landsat 8 and 9.

2. Materials and Methods
2.1. Study Area

The Greater Yellowstone Ecosystem is located in northwestern Wyoming and in-
cludes Yellowstone National Park, Grand Teton National Park and their surrounding area
(Figure 1). This study uses data collected from fires within Yellowstone National Park
and Grand Teton National Park. Yellowstone National Park encompasses approximately
898,985 ha of land, including forests, mountains and glacial lakes. The northwestern portion
of the park experienced the Maple Fire in the summer of 2016. The Maple Fire started on
8 August 2016 and burned until late October. The fire affected approximately 18,383 ha
of land.

Grand Teton National Park encompasses approximately 130,000 ha of land that in-
cludes forests, mountains and glacial lakes. The northern section of Grand Teton National
Park experienced a wildfire event in the late summer of 2016. The Berry Fire was dis-
covered on 25 July 2016 and burned until early September of 2016. This fire affected
approximately 8750 ha of land in and around the national park, causing the closure of
Highway 89/191/287.
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Figure 1. Study area within Greater Yellowstone Ecosystem, including Yellowstone National Park
and Grand Teton National Park.

2.2. Field Data

The field data used in this research were collected by Turner et al. [17,18] in the summer
of 2017. Turner et al. [17,18] collected several quantitative measurements for the Berry
and Maple fires in the Greater Yellowstone Ecosystem to examine the effects of reburns
on lodgepole pine (Pinus contorta; PICO) forests (Figure 2). Burn severity measurements
for twenty-seven field plots were quantified using circular subplots measuring 30 m in
diameter. The measurements collected within these plots included ash depth, char depth,
post-fire dead PICO density/stumps, mean basal diameter, cone density on dead post-fire
trees, coarse wood percent cover/volume/mass, percent cover of ghost logs and initial
regeneration of post-fire PICO/aspen density (Table 1).
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Figure 2. Locations of the twenty-seven field plots collected by Turner et al. [17] are shown as yellow
points for the Maple (left) and Berry (right) fires.

Table 1. Field measurement definitions and units of measurement.

Field Measurement Definition Unit of Measurement

Post-fire Dead PICO Density For plots that reburned, the density of
fire-killed lodgepole pine trees Number per hectare

Post-Fire Dead PICO Stumps

For plots that reburned, the density of
stumps remaining for which the pre-fire

lodgepole pine tree was
completely combusted

Number per hectare

Mean Basal Diameter

The mean value from 25 measured live
trees (on plots that did not reburn) or

fire-killed trees or stumps (in
reburned plots)

Centimeters

Cone Density on Dead Post-fire Trees
In plots that reburned, the remaining

identifiable cones on fire-killed lodgepole
pine trees

Number per hectare

Coarse Wood Percent Cover Percent of surface covered by downed
coarse wood, estimated via line intercept Cubic meters per hectare

Coarse Wood Volume

Volume of coarse wood estimated via
Brown’s planar intercept transects; in
reburned plots, this is the volume of

wood remaining after the
short-interval fire

Megagrams per hectare

Coarse Wood Mass

Mass of coarse wood estimated via
Brown’s planar intercept transects; in
reburned plots, this is the volume of

wood remaining after the
short-interval fire

Millimeters
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Table 1. Cont.

Field Measurement Definition Unit of Measurement

Ash Depth Where recent ash was visible, depth on
soil surface Millimeters

Char Depth
If soil showed evidence of charring,

depth from surface to which soil charring
was evident

Millimeters

Percent Cover of Ghost Logs

On reburned plots, areas of soil surface
covered by log shadows where downed

coarse wood had been
combusted completely

Dimensionless

Initial Regeneration of Post-fire
PICO Density

Density of first-year seedlings of
lodgepole pine Number per hectare

Initial Regeneration of Post-fire
Aspen Density

Density of aspen stumps that resprouted
from surviving roots; if multiple leaders
came from the same stump, it was scored

as one

Number per hectare

2.3. Image Prepossessing and Index Generation

Sentinel-2a data acquired on 15 July 2016 (pre-fire, Berry), 22 November 2016 (post-fire,
Berry), 4 August 2016 (pre-fire, Maple) and 7 June 2017 (post-fire, Maple) were down-
loaded from the ESA open access data hub (https://doi.org/10.6073/pasta/a1b7791376
a04ce8c6ea9043547bb6af, accessed on 12 May 2020) and from the USGS’s EarthExplorer
(https://earthexplorer.usgs.gov/, accessed on 30 March 2020). To ensure image pixel val-
ues were comparable, atmospheric corrections were performed using Sen2Cor to convert
the data to surface reflectance. Two images were needed to capture the extent of the Maple
fire for 4 August and 7 June, which were mosaiced together using nearest neighbor and
most nadir seamline. For the Berry fire, the Monitoring Trends in Burn Severity’s (MTBS)
burned area shapefile was buffered by 6.5 km for use in this analysis, and for the Maple
Fire, a 2 km buffer was applied to the MTBS burned area shapefile for analysis. These
buffers were used to ensure that the collected control plots fell within the image data for
analysis. The reason for the variation in buffer size is that the control plots for the Maple
Fire were located within 2 km of the fire perimeter and the control plots for the Berry Fire
were located within 6.5 km of the fire perimeter. The Berry and Maple fire images were then
used to calculate several spectral indices (Table 1). Each of these indices was calculated for
both the pre- and post-fire imagery, and then, the delta for each index were calculated by
subtracting the post-fire image from the pre-fire image.

Additionally, RdNBR and RBR were calculated using the dNBR and NBR pre-fire
(Equations (1) and (2)). These indices were calculated using the narrow NIR band (8a) to
calculate dNBR, as shown in Table 2.

RdNBR =
dNBR

√∣∣∣NBRprefire
∣∣∣ (1)

where dNBR was calculated using the difference between pre- and post-fire NBR.

RBR =
dNBR

NBRprefire + 1.001
(2)

https://doi.org/10.6073/pasta/a1b7791376a04ce8c6ea9043547bb6af
https://doi.org/10.6073/pasta/a1b7791376a04ce8c6ea9043547bb6af
https://earthexplorer.usgs.gov/
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Table 2. List of indices generated for estimating burn severity.

Spectral Indices Column 2 Equation

NBR Normalized Burn Ratio B8a−B12
B8a+B12

NDVI Normalized Difference Vegetation Index B8a−B4
B8a+B4

GNDVI Green Normalized Difference Vegetation Index B8a−B3
B8a+B3

NDVIre1n Normalized Difference Vegetation Index
red-edge 1 narrow

B8a−B5
B8a+B5

NDVIre2n Normalized Difference Vegetation Index
red-edge 2 narrow

B8a−B6
B8a+B6

NDVIre3n Normalized Difference Vegetation Index
red-edge 3 narrow

B8a−B7
B8a+B7

PSRI Plant Senescence Reflectance Index B4−B3
B6

Clre Chlorophyll Index re-edge B7
B1 − 1

Ndre1 Normalized Difference re-edge 1 B6−B5
B6+B5

Ndre2 Normalized Difference red-edge 2 B7−B5
B7+B5

MSRren Modified Simple Ratio red-edge narrow ( B8a
B5 )−1

√
(B8a/B5)+1

Further, alternative red-edge-based dNBRs, RdNBRs and RBRs were generated (three
each) by replacing the narrow NIR band (0.8483–0.8813 µm) with Sentinel-2 bands five
(0.6955–0.7134 µm), six (0.7312–0.7492 µm) and seven (0.7685–0.7965 µm). This was carried
out to determine how accurately red-edge versions of dNBR, RdNBR and RBR estimated
the various burn severity metrics. The red-edge is a region within the electromagnetic
spectrum from 0.680 to 0.750 µm. The spectral response curve for healthy vegetation
with high chlorophyll content will display a sharp increase in spectral reflectance in this
region [19]. In the past, the lack of freely available red-edge remote sensing data made it
difficult to explore the potential for these wavelengths to enhance burn severity assessment.
The resulting dNBR indices for the Berry Fire study area can be seen in Figure 3.

2.4. Analysis

The x, y locations for each field data point were entered into a GIS environment
with the recorded field measurements as attributes. Next, a 30 m buffer was applied
to each plot point and zonal statistics were calculated to determine the mean value of
pixels that fell within the buffer. This was carried out because the field plots collected by
Turner et al. [17,18] were collected in 30 m circular plots, and so will encompass multiple
20 m Sentinel-2 pixels. By buffering and using zonal statistics, the mean of these pixels can
be extracted and this value will better correspond to the field measurements than using
just the value of the pixel that plot centers fell into. Finally, the mean values for each index
were extracted to these points. A correlation matrix was generated to determine whether a
relationship between the field measurements and the spectral indices exists. Finally, using
all-possible-models regression, models for predicting the field-measured burn severity
metrics using the spectral indices were constructed. These models were validated using the
prediction error sum of squares (PRESS) statistic, a form of leave-one-out cross-validation.
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3. Results
3.1. Descriptive Statistics for Spectral Indices

The spectral indices were generated for a 6.5 km buffered area around the Berry Fire
and for the 2 km buffered area of the Maple Fire. Table 3 shows the descriptive statistics
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for each spectral index calculated for the Berry Fire grouped into five categories: post-fire
normalized red-edge indices, difference normalized red-edge indices, difference normalized
Burn Ratios, other Burn Ratios and other indices (n = 1,478,229 pixels). The non-Burn Ratio
indices are defined in Table 2. In Table 3 the PF following the index acronym signifies
post-fire, while the d before the index acronym signifies the result of the delta between
pre- and post-fire imagery. For the Burn Ratios, the B# following the index signifies which
red-edge band was used for NIR in the NBR equation. Table 4 shows the same breakdown
of indices for the Maple Fire (n = 970,055 pixels). Note that the CLre, MSRren and PSRI
indices are also red-edge indices, which are not normalized, and so are grouped under
other indices, whereas the GNDVI indices are normalized but are not red-edge indices and
so are also under other indices.

Table 3. Descriptive statistics for Berry Fire indices.

Index Min Max Mean Standard Deviation

Post-fire Normalized Red-edge Indices
NDre1_PF −0.994 0.997 0.130 0.222
NDre2_PF −0.994 0.998 0.154 0.244

NDVIre1n_PF −0.996 0.998 0.178 0.264
NDVIre2n_PF −0.986 0.993 0.060 0.109
NDVIre3n_PF −0.987 0.992 0.031 0.078

Difference Normalized Red-edge Indices
dNDre1 −1.202 1.805 0.025 0.152
dNDre2 −1.719 1.946 0.026 0.151

dNDVIre1n −1.857 1.892 0.017 0.145
dNDVIre2n −1.747 1.787 −0.011 0.094
dNDVIre3n −1.886 1.798 −0.013 0.078

Difference Normalized Burn Ratios
dNBR_B8a −1.749 1.637 0.010 0.423
dNBR_B5 −1.798 1.666 −0.036 0.436
dNBR_B6 −1.769 1.627 0.026 0.479
dNBR_B7 −1.736 1.693 0.030 0.460

Other Burn Ratios
RdNBR_B8a −73.309 32.330 −0.133 1.612
RdNBR_B5 −84.548 42.966 −0.318 2.002
RdNBR_B6 −68.660 48.944 −0.214 1.937
RdNBR_B7 −75.090 28.094 −0.148 1.765
RBR_B8a −70.076 0.994 −0.014 0.442
RBR_B5 −198.320 0.996 −0.073 0.609
RBR_B6 −161.290 0.997 −0.021 0.657
RBR_B7 −159.930 0.997 −0.007 0.534

Other Indices
GNDVI_PF −0.997 0.999 0.270 0.436

PSRI_PF −280.000 80.000 −2.107 17.112
MSRren_PF −0.997 28.284 0.466 1.194

CLre_PF −3836.000 3662.000 217.252 365.007
dGNDVI −1.627 1.624 0.012 0.205

dPSRI −295.300 279.860 1.944 17.172
dMSRren −27.486 15.185 −0.081 1.048

dCLre −2740.000 4979.000 297.265 523.168

3.2. Correlation Results

To determine whether the indices and field measurements were related, Pearson corre-
lations between the field measurement and spectral indices were assessed (Table 5; n = 27).
Coarse wood percent cover and coarse wood mass were correlated with the most indices,
with each field measurement possessing strong correlations with twenty-two spectral in-
dices. Other field measurements that possessed strong correlations with spectral indices
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were post-fire dead PICO stumps, ash depth, coarse wood volume and percent cover of
ghost logs.

Table 4. Descriptive statistics for Maple Fire indices.

Index Min Max Mean Standard Deviation

Post-fire Normalized Red-edge Indices
NDre1_PF −0.829 0.947 0.168 0.138
NDre2_PF −0.991 0.967 0.204 0.155

NDVIre1n_PF −0.990 0.941 0.238 0.165
NDVIre2n_PF −0.981 0.882 0.077 0.047
NDVIre3n_PF −0.974 0.994 0.037 0.027

Difference Normalized Red-edge Indices
dNDre1 −0.912 0.708 0.049 0.123
dNDre2 −0.867 0.735 0.057 0.128

dNDVIre1n −0.828 0.893 0.059 0.117
dNDVIre2n −1.172 0.997 0.015 0.022
dNDVIre3n −1.022 0.762 0.005 0.020

Difference Normalized Burn Ratios
dNBR_B8a −0.888 1.229 0.159 0.294
dNBR_B5 −1.207 0.938 0.072 0.181
dNBR_B6 −1.028 1.260 0.140 0.301
dNBR_B7 −0.969 1.268 0.154 0.306

Other Burn Ratios
RdNBR_B8a −59.367 18.309 0.248 0.652
RdNBR_B5 −15.804 23.850 0.352 1.120
RdNBR_B6 −45.937 26.669 0.275 0.994
RdNBR_B7 −56.675 23.814 0.257 0.827
RBR_B8a −7.268 0.985 0.114 0.214
RBR_B5 −1.747 0.983 0.076 0.196
RBR_B6 −69.379 0.852 0.106 0.259
RBR_B7 −53.673 0.989 0.112 0.243

Other Indices
GNDVI_PF −0.985 0.995 0.409 0.250

PSRI_PF −9.818 1.238 0.053 0.087
MSRren_PF −0.993 5.488 0.423 0.319

CLre_PF −1447.000 4516.000 556.645 540.477
dGNDVI −0.717 1.349 0.058 0.113

dPSRI −1.211 13.981 −0.014 0.097
dMSRren −5.318 1.423 0.130 0.262

dCLre −1447.000 13.981 −0.014 0.097

Coarse wood mass possessed the strongest positive relationship with the spectral
index, with NDre2_PF having a correlation of 0.886. The NDre2_PF index also possessed
a strong positive correlation with coarse wood percent cover and coarse wood volume.
Coarse wood mass also possessed the strongest negative correlation of −0.811 with both
dNDre2 and GNDVI_PF.

dNDre2_PF was significantly related to the most field measurements, with six field-
measured fire effects being strongly correlated with this index. The RdNBR_B8a index
was significantly correlated with only one field measurement, coarse wood percent cover.
Several indices were found not to possess strong correlations with any field measurements,
including dPSRI, dNDVIre2n, dNDVIre3n, NDVIre2n_PF, NDVIre3n_PF and RdNBR_B5.
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Table 5. Correlations between field measurements and spectral indices. Strong positive correlations (r ≥ 0.60) are highlighted in green and strong negative
correlations (r ≤ −0.60) are highlighted in orange.

Index
Post-fire

Dead PICO
Density

Post-fire
Dead PICO

Stumps

Mean Basal
Diameter

Post-fire
Cone

Density

Coarse
Wood

Percent

Coarse
Wood

Volume

Coarse
Wood Mass

Ash Depth Char Depth
Percent

Cover of
Ghost Logs

Initial
Regen

Initial
Regen
AspenPICO

dCLre_Avg 0.294 0.358 −0.167 0.443 −0.669 −0.551 −0.617 0.674 0.227 0.518 0.274 0.346
dPSRI_Avg −0.170 −0.078 0.001 −0.295 0.529 0.367 0.438 −0.515 −0.440 −0.387 −0.038 −0.328

MSRren_AVG 0.283 0.636 −0.417 0.345 −0.636 −0.754 −0.742 0.572 −0.195 0.491 0.484 0.094
NDre1_Avg 0.352 0.565 −0.354 0.462 −0.756 −0.765 −0.798 0.696 0.088 0.581 0.414 0.190
NDre2_AVG 0.346 0.658 −0.428 0.418 −0.752 −0.793 −0.811 0.697 −0.021 0.580 0.450 0.139
NDVIre1n_A 0.291 0.726 −0.481 0.291 −0.657 −0.777 −0.763 0.626 −0.160 0.552 0.460 0.065
NDVIre2n_A −0.139 0.228 −0.183 −0.326 0.243 0.037 0.126 −0.194 −0.477 −0.111 0.070 −0.240
NDVIre3n_A −0.040 0.344 −0.537 −0.172 −0.057 −0.430 −0.354 0.107 −0.315 0.201 0.131 −0.005
CLre_PF_Avg −0.316 −0.347 0.204 −0.379 0.671 0.587 0.658 −0.673 −0.281 −0.587 −0.260 −0.286
PSRI_PF_AVG 0.142 0.018 0.034 0.263 −0.499 −0.337 −0.413 0.469 0.472 0.371 0.001 0.318
MSR_PF_AVG −0.145 −0.623 0.524 −0.026 0.650 0.808 0.776 −0.485 0.185 −0.580 −0.331 −0.120
NDre1_PF_AVG −0.258 −0.557 0.431 −0.257 0.821 0.855 0.883 −0.668 −0.139 −0.688 −0.312 −0.212
NDre2_PF_AVG −0.235 −0.658 0.522 −0.174 0.805 0.879 0.886 −0.649 0.001 −0.686 −0.337 −0.162
NDVIr1_PF_A −0.167 −0.707 0.570 −0.022 0.671 0.826 0.798 −0.548 0.153 −0.630 −0.330 −0.085
NDVIr2_PF_A 0.133 −0.280 0.259 0.367 −0.172 0.035 −0.059 0.153 0.485 0.038 −0.062 0.181
NDVIr3_PF_AVG 0.168 −0.162 0.147 0.375 −0.260 −0.042 −0.137 0.230 0.431 0.089 −0.020 0.161
dNBR_B5_AVG 0.415 0.326 −0.277 0.551 −0.612 −0.569 −0.641 0.667 0.290 0.443 0.372 0.195
dNBR_B6_AVG 0.418 0.358 −0.299 0.539 −0.626 −0.589 −0.656 0.683 0.238 0.477 0.359 0.230
dNBR_B7_AVG 0.412 0.385 −0.293 0.549 −0.641 −0.600 −0.667 0.687 0.266 0.484 0.380 0.197
dNBR_8a_AVG 0.417 0.414 −0.319 0.547 −0.644 −0.619 −0.682 0.703 0.257 0.499 0.397 0.190
RBR_B5_AVG 0.388 0.272 −0.249 0.519 −0.610 −0.552 −0.626 0.650 0.333 0.463 0.325 0.346
RBR_B6_AVG 0.382 0.334 −0.278 0.501 −0.658 −0.603 −0.671 0.678 0.314 0.520 0.274 −0.328
RBR_B7_AVG 0.387 0.356 −0.294 0.501 −0.660 −0.608 −0.675 0.688 0.306 0.518 −0.038 0.094
RBR_8a_AVG 0.396 0.390 −0.322 0.503 −0.663 −0.630 −0.693 0.706 0.293 −0.387 0.484 0.190
RdNBR_B5_AVG 0.383 0.326 −0.180 0.520 −0.425 −0.414 −0.479 0.468 0.227 0.491 0.414 0.139
RdNBR_B6_AVG 0.208 0.172 −0.253 0.273 −0.615 −0.554 −0.614 0.674 −0.440 0.581 0.450 0.065
RdNBR_B7_AVG 0.228 0.205 −0.250 0.296 −0.673 −0.584 −0.617 −0.515 −0.195 0.580 0.460 −0.240
RdNBR_8a_AVG 0.353 0.349 −0.325 0.441 −0.687 −0.551 0.438 0.572 0.088 0.552 0.070 −0.005
GNDVI_AVG 0.237 0.709 −0.541 0.124 −0.669 0.367 −0.742 0.696 −0.021 −0.111 0.131 −0.286
NDVI_AVG 0.357 0.705 −0.479 0.443 0.529 −0.754 −0.798 0.697 −0.160 0.201 −0.260 0.318

GNDVI_PF_AVG −0.131 −0.673 −0.167 −0.295 −0.636 −0.765 −0.811 0.626 −0.477 −0.587 0.001 −0.120
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3.3. Regression Results

Within the statistical analysis software JMP 14, all-possible-models (i.e., best subsets
regression) was used to construct models for predicting field measurements using the
spectral indices. All-possible-models regression tests all possible subsets of the predictor
variables, and returns models that contain one variable, two variables, etc., along with
their summary statistics. This allows the researcher to quickly assess the performance
of every combination of predictor variables to determine which models performed best.
With a sample size of twenty-seven field plots, a maximum of three independent variables
were allowed for model construction. Each model was assessed based on the significance
of its independent variables and on the variable multicollinearity. The p-value of each
model covariate had to be less than 0.05 for the model to be accepted. Multicollinearity was
assessed using the Variance Inflation Factor (VIF), where all input variables had to possess
VIF values of < 10. The models for one, two and three input variables that met these criteria
and possessed the highest R2 for a given field measurement are reported in Table 6.

Table 6. Results from all-possible-models regression. Models with moderately strong results (0.6 <
R2s < 0.7) are highlighted in yellow, while models with R2 > 0.7 are highlighted in green.

Field Measurement Model Variables R2 RMSE PRESS R2 PRESS RMSE

Post-fire Dead PICO Density dNBR_B6 0.174 16,859.88 0.066 17,255.543

Post-fire Dead PICO Density None N/A N/A N/A N/A

Post-fire Dead PICO Density None N/A N/A N/A N/A

Post-fire Dead PICO Stumps dNDVIre1n 0.527 21,687.91 0.383 23,854.682
Post-fire Dead PICO Stumps dNBR_B5, dNDVI 0.663 18,705.19 0.502 21,414.479
Post-fire Dead PICO Stumps None N/A N/A N/A N/A

Mean Basal Diameter GNDVI_PF 0.349 2.542 0.248 2.629

Mean Basal Diameter dNDVIre3n,
NDre2_PF 0.440 2.406 0.2853 2.562

Mean Basal Diameter None N/A N/A N/A N/A

Cone Density on Dead
Post-fire Trees dNBR_B5 0.304 75,553.4 0.184 78,703.305

Cone Density on Dead
Post-fire Trees

dNDre2,
NDVIre1n_PF 0.419 70,417.16 0.2411 75,900.966

Cone Density on Dead
Post-fire Trees

dPSRI, dMSRren,
NDVIre2n_PF 0.571 61,865.44 0.333 71,184.947

Coarse Wood Percent Cover NDre1_PF 0.674 3.244 0.620 3.370

Coarse Wood Percent Cover MSRren_PF,
dNDVIre3n 0.691 3.226 0.627 3.341

Coarse Wood Percent Cover None N/A N/A N/A N/A
Coarse Wood Volume NDre2_PF 0.773 42.735 0.7403 43.944

Coarse Wood Volume dNDVIre3n,
NDre1_PF 0.833 37.336 0.782 40.229

Coarse Wood Volume None N/A N/A N/A N/A
Coarse Wood Mass NDre2_PF 0.784 15.878 0.753 16.367

Coarse Wood Mass dNDVIre3n,
NDre1_PF 0.838 14.066 0.787 15.175

Coarse Wood Mass
dNDVIre3n,
NDre2_PF,

NDVIre2n_PF
0.842 14.157 0.770 15.776

Ash Depth dNDVI 0.548 3.455 0.493 3.520

Ash Depth dCLre, dNDVIre3n 0.581 3.396 0.486 3.543
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Table 6. Cont.

Field Measurement Model Variables R2 RMSE PRESS R2 PRESS RMSE

Ash Depth dPSRI, dNDVIre2n,
dNBR_B5 0.636 3.233 0.392 3.853

Char Depth NDVIre2n_PF 0.235 0.177 −0.008 0.195

Char Depth dNDre2, RBR_B8a 0.328 0.169 0.148 0.179

Char Depth None N/A N/A N/A N/A

Percent Cover of Ghost Logs NDre1_PF 0.473 2.430 0.361 2.574

Percent Cover of Ghost Logs NDVIre1n_PF,
RdNBR_B5 0.587 2.194 0.421 2.450

Percent Cover of Ghost Logs
dNDre2,

NDVIre1n_PF,
RdNBR_B5

0.717 1.855 0.574 2.100

Initial Regeneration of
Post-fire PICO Density dMSRren 0.234 8440.969 0.030 9140.458

Initial Regeneration of
Post-fire PICO Density RBR_B6, PSRI_PF 0.328 8071.69 0.078 8915.812

Initial Regeneration of
Post-fire PICO Density None N/A N/A N/A N/A

Initial Regeneration of
Post-fire Aspen Density None N/A N/A N/A N/A

Initial Regeneration of
Post-fire Aspen Density

MSRren_PF,
GNDVI_PF 0.249 81.299 0.037 86.791

Initial Regeneration of
Post-fire Aspen Density

dCLre,
dNDVIer3n,

dNDVI
0.448 71.177 0.224 77.933

Of the field measurements, coarse post-fire dead PICO stumps, coarse wood percent
cover, coarse wood volume, coarse wood mass, ash depth and percent cover of ghost logs
possessed models with R2s above 0.6. Of these, coarse wood mass achieved the highest
R2 (0. 847), followed by Coarse wood volume (R2 = 0.833). Ash depth had the lowest R2

(0.636), with post-fire dead PICO stumps possessing the second lowest (R2 = 0.663) of the
variables with R2s greater than 0.6.

Of the single-variable models, Coarse wood volume possessed the highest R2 (0.784)
with NDre2_PF as the input variable. The single-variable model for post-fire dead PICO
density performed the worst, with an R2 of 0.174 when dNBR_B6 was used as the input
variable. For the two-variable models, coarse wood mass performed the best, with an R2 of
0. 847, and initial regeneration of post-fire aspen density performed the worst, with an R2

of 0.249. Of the three-variable models, coarse wood mass possessed the highest R2 (0. 847),
whereas initial regeneration of post-fire aspen density had the lowest R2 (0.448). Several
field measurements did not have any models that met the p-value and/or VIF criteria, and
so their variables are reported as none and their statistics as N/A.

The PRESS statistic was used to determine which of the models generated for each
field measurement possessed the best predictive power. This statistic determines model
performance by leaving one sample out at a time to determine how well the data predict the
left-out sample [20]. The model with an R2 > 0.60 that yielded the highest PRESS R2 for each
field measurement was determined to be the best model for predicting the field-measured
fire effect. Standard least squares was then used to plot these models and determine their
corresponding prediction equation (Figure 4).
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the red buffer zone is the confidence interval.
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Of the variables used to construct these models, dNDVIre3n, NDre1_PF and dNBR_B5
were the only indices used in more than one model. A total of three Burn Ratio indices
were used across all the models, whereas ten red-edge indices were used. Of the Burn
Ratio indices, all the selected input variables for the models used red-edge bands in place
of narrow NIR.

4. Discussion
4.1. Correlations between Spectral Indices and Field Measurements

When examining the correlation between the various spectral indices and the fire
effects measurements, the strongest correlations were found to involve indices generated
using band 5 for all field measurements. Of the red-edge indices, the only indices to
possess strong correlations with field measurements not generated using band 5 were
CLre_PF and dCLre. Of the red-edge NDVI indices, both post-fire and difference NDVIre1n
outperformed their NDVIre2n and NDVIre3n counterparts. Previous research has reported
similar findings, with red-edge indices generated using the band closest to red, band 5,
outperforming the other red-edge indices, as well as more traditional spectral indices, for
burn severity detection [14,21].

4.2. Spectral Indices’ Ability to Estimate Field Measurements

Although many studies have estimated burn severity using spectral indices [5–7], only
a few have attempted to estimate field-measured fire effects using these indices [16,22,23].
Although field-measured fire effects are not as commonly assessed because of the time-
intensive nature of these measurements, they provide valuable ecological information that
can be used in fire recovery efforts. However, previous research has shown little relationship
between Landsat-derived burn indices and field-measured fire effects [16,22,23]. This can be
attributed to a number of variables, including the spatial resolution of Landsat images, the
radiometric resolution of the sensors used during the time of these studies being inadequate
to capture the slight variations in radiance, and the lack of spectral bands in the red-edge
region. Previous research has shown slight improvement in the performance of Sentinel-2
NBR-based indices when compared to Landsat 8 NBR-based indices [24,25]. However, this
research was limited to indices that could be calculated by both sensor systems, which
eliminates the use of red-edge indices. The results of this research suggest that several
field-measured fire effects can be estimated using the Sentinel-2 sensor constellation, and
the use of red-edge indices improved Sentinel-2’s performance of this task.

Of the fire effects estimated by the spectral indices, those related to tree canopy
characteristics resulted in the best estimates. This agrees with the findings of Saberi [15],
who found that CBI and the three primary burn severity indices (dNBR, RdNBR, and
RBR) were more highly correlated with tree canopy fire effects than they were with other
effects. Additionally, we found that the red-edge spectral indices explained approximately
64% of field-measured variation in ash depth and 72% of the variation in percent cover of
ghost logs.

Of the best-performing models, coarse wood mass and coarse wood volume possessed
the highest R2 values, at 0.837 and 0.833, respectively. Both models were generated using
the same red-edge indices, with neither of the models requiring a Burn Ratio index. These
high accuracies, combined with the use of solely red-edge indices, suggest that further
research into the utility of using red-edge indices for estimating and mapping various fire
effects should be explored.

4.3. Performance of Red-Edge Bands and Indices

With the launch of the Sentinel-2 sensor constellation, red-edge bands for index
generation have become freely available. Fernández-Manso et al. [14] show that red-edge
indices can accurately discriminate between levels of burn severity and found that indices
generated using Sentinel-2 band five were most suited to this task. Our results show that
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indices that were generated using band five were included in all six of the best-performing
models, suggesting agreement with other research [14,21,26].

Interestingly, of the best-performing models, only one contained a non-red-edge index
(percent dead PICO stumps). The two best-performing models (coarse wood volume and
mass) both only used red-edge indices, and both achieved R2 > 0.8. The indices used in
these models relied on bands 5, 7 and 8a. This suggests that red-edge indices, which have
shown promising results in estimating burn severity [14,21,27], may also be useful for
estimating fire effects.

4.4. Sources of Uncertainty

Although these results are promising, there are a few sources of uncertainty. The
largest sources of uncertainty are the sample size of the field data (n = 27) as well as
the limitation of the data to a single ecosystem. As a result, the data do not provide a
comprehensive explanation for the tested dependent variables, and our results should be
considered preliminary.

The field measurements were collected for circular subplots measuring 30 m in diam-
eter, but the spatial resolution of the Sentinel-2 data was 20 m. We used the average of
the pixels that fell within a 30 m buffer to address this issue, but some of these pixels lay
partially outside the buffer and other pixels were excluded because too small a proportion
of these pixels fell within the buffer. This may lead to the spectral reflectance of the pixels
corresponding to these measurements only partially representing the measured conditions
and/or including reflectance from outside the buffer in the average.

Additionally, a geolocation error between images can create uncertainty in index
calculation and value-to-points extraction. For Sentinel-2, this error is less than 1 pixel in
most cases, with errors exceeding this threshold primarily because of coarse corrections. No
coarse corrections were documented for any of the images used in this analysis; however, a
single pixel error could potentially impact the results.

The use of samples from two separate fires is also a source of uncertainty. These
fires started and ended around the same time (summer 2016 to fall 2016) and were both
located in the Greater Yellowstone Ecosystem, possessing similar vegetation and landcover.
However, different image acquisition dates and a more limited number of samples for the
Maple Fire could create uncertainty in the results. However, because of the lack of snow
cover in the November imagery and the evergreen forests that make up the majority of the
in-scene vegetation for both fires, we do not expect the difference in acquisition dates to
considerably influence our results. After examining the residuals for the primary regression
models, it was noted that overall, the two fires’ residuals were similarly distributed, except
in the case of post-fire dead PICO stumps, where the upper end of the predicted values
for the Maple Fire possessed larger negative and positive residuals than any residual for
the Berry Fire. This can be explained by the limited sampling for both fires, which ideally
would have at least thirty sample plots per fire. Because of this limited sample size, these
results should be considered preliminary and further research should be conducted to
determine their validity.

5. Conclusions

This study assessed the ability of spectral indices, both traditional and red-edge-based,
to estimate various field-measured fire effects. Several fire effects were accurately estimated
using a combination of red-edge and Burn Ratio indices and multivariate regression. These
fire effects included post-fire dead PICO stumps, coarse wood percent cover, coarse wood
volume, coarse wood mass, ash depth and percent cover of ghost logs. Of the indices
generated, the most useful for estimating these fire effects were red-edge indices, especially
those generated using Sentinel-2 band 5 (0.6955–0.7134 µm).

Despite the field data being of limited sample size and from a single forested ecosystem,
this research shows that red-edge indices have potential for mapping various fire effects
when used in combination. Further, although the methodology used to calculate the
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indices and evaluate the comparisons is not novel, this study contributes to a growing
body of literature, emphasizing the improved performance of red-edge-based indices over
traditional near- and shortwave infrared-based indices. Future research should incorporate
a larger validation data set and extend to other ecosystems, as these results are preliminary.
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