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Abstract: Forest fires have devastating impacts on ecology, the economy, and human life. There-
fore, the timely detection and extinguishing of fires are crucial to minimizing the losses caused
by these disasters. A novel dual-channel CNN for forest fires is proposed in this paper based on
multiple feature enhancement techniques. First, the features’ semantic information and richness are
enhanced by repeatedly fusing deep and shallow features extracted from the basic network model
and integrating the results of multiple types of pooling layers. Second, an attention mechanism,
the convolutional block attention module, is used to focus on the key details of the fused features,
making the network more efficient. Finally, two improved single-channel networks are merged to
obtain a better-performing dual-channel network. In addition, transfer learning is used to address
overfitting and reduce time costs. The experimental results show that the accuracy of the proposed
model for fire recognition is 98.90%, with a better performance. The findings from this study can be
applied to the early detection of forest fires, assisting forest ecosystem managers in developing timely
and scientifically informed defense strategies to minimize the damage caused by fires.

Keywords: wildfire hazard; wildfire detection; dual-channel CNN; multi-level feature fusion

1. Introduction

Forests are often referred to as the “lungs of the Earth” due to their two important
values. One is their visible economic value, and the other is their intangible ability to
regulate the climate and maintain ecological balance. Forest fires have occurred frequently
in recent years due to extreme events such as lightning, volcanic eruptions, and human
activities [1–4]. For example, in 2015, forest fires in Indonesia burned over 2.6 million
hectares of land, resulting in more than USD 16 billion in economic losses, and posing
significant threats to the local biodiversity and endangered species [5,6]. Since September
2019, the prolonged Australian bushfires have burned over 10 million hectares of land,
causing at least 33 deaths and displacing billions of animals [7,8]. Based on the analysis
conducted by Lukić et al. [9] in 2012, the frequency of fires in the Tara Mountains exceeded
the average level of fire occurrence in Serbia, primarily due to the strong influence of
climatic conditions [10]. The occurrence of forest fires and the extent of the damage they
inflict are also influenced by factors connected to the forest itself [11–13], such as the species
of trees present [14], the combustibility of the forest fuels, and the water content [15,16].
Therefore, adopting proactive and effective forest fire monitoring methods is crucial for
ecological, social, and economic reasons [17–19]. The use of image processing and deep
learning methods has become the mainstream research direction in this field [20].

Traditional image-based fire detection methods employ feature extraction algorithms
based on prior knowledge to analyze flame or smoke characteristics, and machine learning
algorithms are then used to determine if a fire has occurred. Among these methods, flame or
smoke features are analyzed under various color spaces [21] such as RGB [22], YCbCr [23],
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and YUV [24], or multiple features related to flame or smoke are fused (e.g., motion
information [25], shape [26], and area [27]) to construct expert systems for fire detection.
In 2009, Rudz et al. [28] accurately identified fire characteristics and achieved better fire
detection through the use of fire color space and segmented fire images. In 2019, Matlani
et al. [29] improved the accuracy of detection by integrating features such as Haar, SIFT, and
others. Some researchers construct fire models by evolving dynamic textures with multiple
spatiotemporal features [30] or by detecting color changes in fire motion regions [31] and
irregular boundaries [32], among others. In 2013, Wang et al. [33] developed prior flame
probability by combining flame color probability and the results of the Wald–Wolfowitz
randomness test. This method was shown to have good robustness and the ability to adapt
to different environments, making it a reliable and practical approach to flame detection.

Forest fires can be roughly divided into the following five stages: the ignition stage,
the propagation stage, the peak burning stage, the stage of fire suppression and weakening,
and the stage of fire termination [34]. Each stage has distinct fire characteristics [35]. For
example, during the ignition stage [36], the fire may only produce faint smoke, while in
the propagation stage, the fire can spread rapidly. At the peak burning stage, flames and
smoke may become very thick, and the fire can reach its maximum intensity. Therefore, fire
monitoring algorithms that are based solely on empirical knowledge may only perform
well in specific scenarios and may have limited generalization to other situations [37].

In contrast, convolutional neural networks (CNNs) automatically extract features from
provided data [38,39], thus avoiding the limitations of manually selected features [40,41].
Furthermore, an excellent CNN can also achieve good results in other application domains.
In 2019, Kim et al. [42] and Lee et al. [43] both utilized Faster-RNN to identify fire regions.
The former directly recognized the fire and smoke characteristics, while the latter used
a combination of local and global frame features as the judgment basis. In 2017, Wang
et al. [44] replaced the CNN’s fully connected layer with SVM to obtain better detection
results. In 2016, Frizzi et al. [45] significantly reduced the time cost by designing a feature
map instead of the original frame. In 2020, Liu et al. [46] proposed a fire recognition
model based on a two-level classifier. They used a first-level classifier composed of HOG
and Adaboost for preliminary recognition and a second-level classifier composed of CNN
and SVM for further fire recognition with a higher accuracy. In 2022, Guo et al. [47]
designed a Lasso_SVM layer to replace the fully connected layer in the original model and
improved the model detection accuracy through segmented training. In the same year,
Qian et al. [48] proposed a weighted fusion algorithm for forest fire source recognition
based on two weakly supervised models, Yolov5 and EfficientDet. In 2020, Xie et al. [49]
designed a network called Controllable Smoke Image Generation Neural Networks-V2
(CSGNet-v2) to generate realistic smoke images based on smoke characteristics, which can
be used for smoke detection in forest fires. In 2021, Ding et al. [50] proposed a dual-stream
convolutional neural network based on attention mechanisms, which pays more attention
to the spatiotemporal characteristics of smoke and enhances the ability to segment and
recognize small smoke particles.

In addition to simply improving the CNN structure, some researchers improved their
algorithms by complementing the advantages of traditional image processing methods
with those of CNNs. For example, in 2022, Yang et al. [51] optimized the method for identi-
fying early spring green tea by using semi-supervised learning and image processing. Wu
et al. [52] proposed an adaptive deep-learning flame and smoke classifier based on tradi-
tional feature extraction algorithms in the Caffe framework in 2017. In 2019, Wang et al. [53]
combined the advantages of traditional image processing and CNNs to propose an adaptive
pooling convolutional neural network that effectively extracts features by pre-learning
the flame segmentation area features and avoiding the blind nature of traditional feature
extraction, thus improving the effectiveness of CNN learning. In 2023, Zheng et al. [54]
effectively extracted target features by using cross-attention blocks to capture differences in
global information and local color and texture feature information.
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The accuracy and generalizability of CNN-based methods are superior to the sug-
gested fire detection algorithms that are based on a priori knowledge. A novel two-channel
CNN model is put forth in this article, and the basic network is optimized using two
feature fusion techniques and the addition of an attention mechanism. A more potent
dual-channel network is created by fusing two single-channel networks that have varying
input sizes but similar structural characteristics. Migration learning provides a solution to
the issue of the model training’s simple overfitting and lowers the model training’s time
cost. The research methodology outlined in this paper can be applied to the task of early
detection and identification of forest fires. Its findings will assist forest ecosystem managers
in gaining timely awareness of forest fires and implementing scientific fire prevention
measures to mitigate the losses caused by such fires. This is crucial for the protection of
forest resources.

2. Materials and Methods
2.1. Construction of the Experimental Dataset

The dataset plays a crucial role in deep learning research and is one of the key factors
in achieving exceptional model performance. In this study, a dataset of 14,000 images
was utilized, which was obtained by members of the research team through the Google
search engine. The images can be categorized into the following two groups: “non-fire”
and “fire” [47]. The “fire” category encompasses images of flames, white smoke, black
smoke, dense smoke, and thin smoke generated by fires in different settings, such as
forests, grasslands, fields, and urban areas. The dataset creation method was inspired by
references [17,55,56], which involved including various angles of regular forest images
in the “non-fire” category, as well as incorporating more complex and disruptive images,
such as clouds, sunlight, and pyrocumulus clouds, under different weather conditions.
By introducing these disruptive factors, the objective was to enhance the model’s ability
to recognize smoke and flames and improve its robustness. Following an approximate
7:3 ratio, the images from the different categories in the dataset were divided into training
and testing sets, with 10,000 images in the training set and the remaining images used for
testing. Figure 1 displays some sample images that can facilitate a better understanding of
the dataset’s composition and characteristics.

2.2. Essential Basic Knowledge

Before building the network model in this article, it is necessary to introduce some fun-
damental concepts, including feature fusion, transfer learning, and attention mechanism.

2.2.1. Feature Fusion

Feature fusion is a widely used technique applied in fields such as computer vision
and natural language processing. It involves combining feature information from diverse
sources through concatenation, merging, stacking, and cascading operations. This tech-
nique effectively tackles issues such as data sparsity and noise interference, and enhances
feature expression and generalization ability [57–61].

This article presents two feature fusion methods. The first method is inspired by the
SPP idea, which replaces a single pooling layer in the base network with a combination of
a max pooling layer and an average pooling layer that acts simultaneously and fuses the
results of the two pools. The second approach fuses the shallow and deep features of the
network and is influenced by the idea of residual networks. These methods enhance the
richness of feature information, enabling the model to learn data features from multiple per-
spectives and provide a more comprehensive and accurate description of the data’s essence.
Based on the inspiration from SPP and residual structures, two network architectures for
feature fusion methods were designed in this study, as shown in Figure 2.
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Figure 1. Example images from the dataset, including images of fire and smoke in forests and cities, 
typical forest images, and interference images. (a–c) The fire images mainly come from various 
scenes such as forests, wilderness areas, and urban areas, depicting flames, white smoke, black 
smoke, dense smoke, and other associated phenomena during fire incidents. (d) Non-fire undis-
turbed forest images were captured from various angles, including shots from inside the forest and 
aerial views from above the forest. (e–g) Non-fire images are accompanied by various disruptive 
elements, including clouds, sunlight, tree leaves with colors similar to fire, and pyrocumulus clouds. 
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Figure 2. Network architectures for two feature fusion methods. (a) The first feature fusion network 
structure, inspired by the SPP structure. (b) The second feature fusion network structure, inspired 
by the residual structure.  

Figure 1. Example images from the dataset, including images of fire and smoke in forests and cities,
typical forest images, and interference images. (a–c) The fire images mainly come from various scenes
such as forests, wilderness areas, and urban areas, depicting flames, white smoke, black smoke, dense
smoke, and other associated phenomena during fire incidents. (d) Non-fire undisturbed forest images
were captured from various angles, including shots from inside the forest and aerial views from
above the forest. (e–g) Non-fire images are accompanied by various disruptive elements, including
clouds, sunlight, tree leaves with colors similar to fire, and pyrocumulus clouds.

Figure 2. Network architectures for two feature fusion methods. (a) The first feature fusion network
structure, inspired by the SPP structure. (b) The second feature fusion network structure, inspired by
the residual structure.
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2.2.2. Transfer Learning

Training a deep learning model for a specific task is a complex and expensive process
that involves various challenges. Firstly, creating a dataset requires a lot of effort and
resources to collect and label the data accurately. Secondly, training a network from scratch
is time consuming and results in the network having a slow convergence speed. More
powerful hardware is required to mitigate this issue, which can be costly.

Transfer learning was proposed to address the problem of limited annotated training
data. The schematic diagram of transfer learning is shown in Figure 3. Transfer learning
involves transferring the model parameters that were trained on a larger, more general
dataset to a new target task network [62]. By leveraging the knowledge learned from
previous tasks, the model can achieve higher accuracy and faster convergence with less
task-specific annotated data [63–65].

Figure 3. Schematic diagram of transfer learning.

The parameter migration of the single-channel network model structure in this paper
is shown in Figure 4. The parameters of the C1–C2 convolutional layers and the parameters
of the three fully connected layers of the pre-trained Alexnet model on the Imagenet dataset
are migrated to the modified single-channel model and then trained using the fire dataset
in this paper.

Figure 4. Schematic diagram of migration learning for single-channel network.

2.2.3. Attention Mechanism

The neural attention mechanism is a technique that enables neural networks to focus
on input features and applies to data of various shapes. It helps the network to locate the
relevant information from complex backgrounds and to suppress irrelevant information,
thereby improving the network’s performance and simplifying its structure.
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Convolutional block attention module (CBAM) [66] is a lightweight attention mecha-
nism network that can be seamlessly integrated into CNNs to filter out key information
from a large amount of irrelevant background with limited resources and negligible over-
head. The central idea of this module is to attend to the “what” along the channel axis
and the “where” along the spatial axis, and to enhance the meaningful features along both
dimensions by sequentially applying channel and spatial attention modules. By doing
so, the module can capture the most relevant information in both the channel and spatial
dimensions, resulting in improved feature representations [67,68].

The detailed module structure is shown in Figure 5. The parameter settings for the
CBAM module are shown in Table 1.

Figure 5. (a) Structure of the CBAM, (b) structure of the channel attention module, (c) structure of
the spatial attention module.

Table 1. The parameter settings for the CBAM module.

Module Type Input Size Kernel Size Kernel Number Output Size Stride Padding

Channel

MaxPool H ×W × C H ×W None 1 × 1 × C 1 None
AvgPool H ×W × C H ×W None 1 × 1 × C 1 None

Fc1 C None None C/16 None None
Fc2 C/16 None None C None None

Spatial Conv1 H ×W × 2 7 × 7 1 H ×W × 1 1 3
Pool1 56 × 56 × 64 3 × 3 None 27 × 27 × 64 2 0

The calculation formulas for the channel attention module and spatial attention mod-
ule are shown in Equations (1) and (2), respectively.

Mc(F) = σ(MLP(MaxPool(F)) + MLP(AvgPool(F))) (1)

Ms
(

F′
)
= σ

(
f 7×7([AvgPool

(
F′
)
; MaxPool

(
F′
)]))

(2)

Assuming that the size of the inputs F and F′ for both the channel attention module
and spatial attention module is RC×H×W , the corresponding output sizes for Mc and Ms are
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RC×1×1 and R1×H×W , respectively. The notation f 7×7 represents a convolution operation
with a 7× 7 kernel size, where σ denotes the sigmoid function.

2.3. Establishment of an Improved Single-Channel Model

The classical Alexnet network [69] is chosen as the base network, which consists of
5 convolutional layers, 3 pooling layers, and 3 fully connected layers.

The improvement of the single-channel model is divided into two main aspects. On
one hand, there is feature fusion. One approach is to perform global average pooling and
global maximum pooling operations on the extracted features, and then combine the results
to improve feature characterization. In this case, the two pooling layers within the same
layer share the convolution kernel size, step size, padding, and other parameters. The
second fusion uses convolutional layers to combine shallow and deep features. Conv6 and
Conv7, a 1 × 1 convolutional layer, are added in parallel at the location of the original
network Conv3 and Conv4, respectively, for the fusion of shallow and deep features. The
Conv6 layer adjusts the output of the Pool2 layer to 13 × 13 × 384 and then fuses it with
the output of the Conv3 layer. Conv7 processes the first feature fusion result and then fuses
it with the result of the Conv4 layer.

The structure diagram of the improved single-channel model is shown in Figure 6.

Figure 6. Structure of the improved single-channel network.
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2.4. Establishment of a Novel Dual-Channel Network

In this part, a two-channel CNN model that can cover different-sized fire scenes is
designed. First, another network with structurally similar inputs of 336 × 336 × 3 is
designed based on the improved single-channel model. Then, the feature extraction results
of the two networks are fused to obtain a novel two-channel network, whose structure is
shown in Figure 7.

Figure 7. Structure of the novel dual-channel network.

To facilitate the distinction, the two single-channel networks are renamed; the channel
network where the input is 227 × 227 × 3 is called the first channel, and the one with
the input of 336 × 336 × 3 is called the second channel. The parameters of the novel
dual-channel network are shown in Table 2.
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Table 2. Parameters of the novel dual-channel network.

Type Input Size Kernel Size Kernel Number Output Size Stride Padding

Conv1 227 × 227 × 3 11 × 11 64 56 × 56 × 64 4 2
Pool1 56 × 56 × 64 3 × 3 none 27 × 27 × 64 2 0
Conv2 27 × 27 × 64 5 × 5 192 27 × 27 × 192 1 2
Pool2 27 × 27 × 192 3 × 3 none 13 × 13 × 192 2 0
Conv3 13 × 13 × 192 3 × 3 384 13 × 13 × 384 1 1
Conv4 13 × 13 × 384 3 × 3 256 13 × 13 × 256 1 1
Conv5 13 × 13 × 256 3 × 3 256 13 × 13 × 256 1 1
Conv6 13 × 13 × 192 1 × 1 384 13 × 13 × 384 1 0
Conv7 13 × 13 × 384 1 × 1 256 13 × 13 × 256 1 0
Conv8 336 × 336 × 3 11 × 11 64 83 × 83 × 64 4 2
Pool4 83 × 83 × 64 3 × 3 none 41 × 41 × 64 2 0
Conv9 41 × 41 × 64 5 × 5 192 41 × 41 × 192 1 2
Pool5 41 × 41 × 192 3 × 3 none 20 × 20 × 192 2 0

Conv10 20 × 20 × 192 3 × 3 384 20 × 20 × 384 1 1
Conv11 20 × 20 × 384 3 × 3 256 20 × 20 × 256 1 1
Conv12 20 × 20 × 256 3 × 3 256 20 × 20 × 256 1 1
Conv13 20 × 20 × 192 1 × 1 384 20 × 20 × 384 1 0
Conv14 20 × 20 × 384 1 × 1 256 20 × 20 × 256 1 0
Conv15 20 × 20 × 256 1 × 1 256 13 × 13 × 256 2 3
Pool3 13 × 13 × 256 3 × 3 none 6 × 6 × 256 2 0
Fc6 9216 none none 4096 none none
Fc7 4096 none none 4096 none none
Fc8 4096 none none 2 none none

It should be noted that the output of the second channel at the Conv12 layer is
20 × 20 × 256, which is different from the output size of the Conv12 layer of the first
channel. Therefore, the two need to be resized before fusion. In this paper, we chose to
build a 1 × 1 convolutional unit (Conv15), and the output of the Conv12 layer was adjusted
to 13 × 13 × 256. After the fusion of the features of the two channels, it is still necessary
to process them using CBAM and then continue with operations such as pooling layers
(Pool3) and fully connected layers (Fc6–Fc7–Fc8).

3. Results

The experiment was carried out in the Pytorch framework of Windows 10, using an
Intel® Core™ i7-12700k CPU (Santa Clara, CA, USA) running at a standard frequency of
5.00 GHz, 128 GB of RAM, and a GPU with an NVIDIA RTX 3090 (Santa Clara, CA, USA)
acting as the hardware gas pedal for model training.

3.1. Simulation Analysis of the Improved Single-Channel Model

The image size of the forest fire dataset photos is scaled to 227 × 227 × 3 by scaling the
transformation to meet the Alexnet network’s input image size requirement. After 60 rounds
of training using the resized pictures, the model’s test set accuracy reaches 95.30%.

The improved single-channel model achieves superior results in the task of recog-
nizing forest fires because the fusion of deep and shallow features enhances the feature
representation. Figure 8 displays the accuracy curves of the enhanced Alexnet model
before and after the enhancement of the test set. When compared to the accuracy before
modification, the improved Alexnet forest fire recognition accuracy is 1.50% higher at
96.8%, and the recognition error rate drops by 31.9%.

The accuracy curves of the training set and test set of the improved single-channel
model are shown in Figure 9. With a training set accuracy of 99.59% and a test set accuracy
of 96.80%, the training set accuracy is higher, and the model exhibits significant overfitting.



Forests 2023, 14, 1499 10 of 16

Figure 8. The test set accuracy curve of the basic model before and after improvement.

Figure 9. Accuracy curves of the training and test sets of the improved single-channel model.

It was demonstrated that transfer learning can address the issue of model overfitting
or insufficient datasets [70–72]. This approach is also used in this study to address the ease
of model overfitting and reduce the time cost. The accuracy curves of the test set of the
model before and after using migration learning are shown in Figure 10, and it is clear that
migration learning improved the test accuracy of the model. The accuracy of the model
test set before using migration learning is 96.80%, and after using it, the accuracy is 98.45%,
with a 1.65% improvement in accuracy and a 51.56% decrease in the recognition error rate.

Figure 10. Accuracy curves of the test set before and after using migration learning.
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3.2. Simulation Analysis of the New Dual-Channel Network

The second channel CNN with the input size of 336 × 336 × 3 is designed concerning
the improved single-channel network. It is trained separately, and the accuracy of the
model is 98.15% after 60 rounds of training, which is higher than the accuracy of the first
channel. This indicates that designing models with different input sizes is effective in
improving accuracy.

The test set accuracy of the two-channel network obtained from the fusion of the
two single-channel networks is 98.90%, which is an improvement of 0.45% and 0.75% in
accuracy relative to the first and second channel models, respectively. The accuracy curves
of the two-channel network as well as the two separate networks on the test set are shown
in Figure 11.

Figure 11. Accuracy curves of test sets for different models.

The performance of the novel two-channel model proposed in this paper is analyzed
with the help of a confusion matrix. The confusion matrix is shown in Figure 12, and
there are only 44 recognition errors among 4000 test samples. The model has a strong
performance with an accurate prediction rate of 98.9%, a precision of 99.24%, a recall rate
of 98.55%, and a specificity of 98.56%. An inspection of the misidentified images shows
that the model misidentifies images of heavy clouds, images of fire clouds, and images of
forests with large fire-like colors.

Figure 12. The confusion matrix of the dual-channel CNN.

Additionally, this study contrasts VGG16 [73] and Resnet50 [74], which are two differ-
ent deep-learning methods. The test results are provided in Table 3, and the model in this
research has the greatest accuracy of 98.90% among these methods.
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Table 3. Performance comparison between different models.

The Relevant Literature Models Model Accuracy (%)

This paper Novel dual-channel CNN 98.90
[73] VGG16 95.88
[74] Resnet50 97.78

4. Discussion

As shown in Table 4, the performance of the two-channel network model previously
proposed in this paper and the subject group [47] is compared. Obviously, the new two-
channel network outperforms the previous network in terms of accuracy, precision, and
recall. It is worth mentioning that the recognition error rate of the new two-channel network
is reduced by 28.89% compared with the previously proposed two-channel network, in
which the probability of misclassifying a fire as a non-fire is reduced by 48.28%.

Table 4. Performance comparison between dual-channel CNNs.

The Literature TP FN FP TN Accuracy Precision Recall

This paper 1971 29 15 1985 98.90 99.24 98.55
[47] 1968 32 29 1971 98.48 98.55 98.40

The model described in this research is also compared to other models in the field. The
RMSN proposed in [75] is a fire detection model based on RNN architecture. It combines
temporal and spatial network features to achieve enhanced accuracy in fire detection.
However, the use of RNNs in this model results in slower detection speeds and increased
hardware requirements.

Furthermore, the dataset itself is an important limiting factor. The dataset utilized
in [75] focuses solely on fire smoke images in different scenarios, disregarding the consider-
ation of other potential interferences such as clouds, fog, or fire-like objects and their impact
on fire detection. This limitation is not only evident in [75] alone, but also in [76,77], and in
the other related literature. These datasets predominantly consider the influence of specific
factors while neglecting the comprehensive consideration of multiple factors. However, the
dataset in this study is more comprehensive. In addition to the typical forest fire data, it also
includes a wide range of interfering factors such as clouds, sunlight, fire clouds, and forest
areas with fire-like colors. It is foreseeable that in future research on deep-learning-based or
machine-learning-based forest fire identification methods, there will be an increased focus
on improving the dataset in addition to enhancing the network structure.

5. Conclusions

Forest fires have the potential to negatively impact forest ecosystems, cause eco-
nomic losses, and even pose a threat to human lives. Therefore, the development of an
effective fire detection method is crucial. In this paper, a novel two-channel network
forest fire identification method is proposed that achieves higher accuracy in fire detec-
tion. Two different feature fusion approaches are utilized to combine features at various
stages of the underlying network, thereby enhancing the characterization capability of
the features. Subsequently, the enhanced features are streamlined, key information is
extracted, and feature redundancy is reduced through the use of an attention mechanism.
This process improves the effectiveness of the extracted features. And the dual-channel
model exhibits superior performance as it is capable of accommodating varying input sizes.
Furthermore, transfer learning plays a pivotal role in mitigating model overfitting and
minimizing training time costs. The experimental results show that this new two-channel
network significantly outperforms the single-channel network in fire recognition with an
accuracy of 98.90%.
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However, there are still some issues in particular circumstances. The thick fog in the
forest might closely match the thick smoke characteristics produced during the peak stages
of a fire when the weather is exceptionally foggy. Reddish-hued forests are already prone
to erroneous interpretation; sunlight interference makes this risk even worse. Given that
both fog and sunlight frequently occur in the actual world, future research on image-based
forest fire monitoring should pay particular attention to these two sources of interference.
To further improve the model, we intend to increase the quality and quantity of wildfire
photographs, with a special focus on examining fog properties, sunshine during various
seasons, and leaf traits that resemble fire colors. In order to increase the model’s accuracy
and resilience, we will also add more difficult images that can result in identification failures
to the training dataset.
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Forest Fire Analysis and Classification Based on a Serbian Case Study. Acta Geogr. Slov. 2017, 57, 51–63. [CrossRef]
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