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Abstract: Vegetation and its spatiotemporal variations play a crucial role in regional ecological se-
curity and sustainable development. Examining vegetation dynamics in natural reserves provides
valuable insights for optimizing vegetation patterns and management strategies. This study utilizes
Landsat remote sensing imagery to investigate changes in vegetation pattern and coverage in the
Cangshan mountain of the Cangshan Erhai National Nature Reserve, as well as assesses the effective-
ness of conservation efforts. The results indicate the following: (1) The primary vegetation types in
the Cangshan mountain include warm-temperate coniferous forests, deciduous broad-leaved forests,
bamboo forests, and alpine meadows, exhibiting distinct vertical zonation patterns. The vegetated
area expanded by 1146 hectares during the study period. (2) The average fractional of vegetation
coverage (FVC) in the Cangshan mountain demonstrated an upward trend (0.82 in 1987 to 0.93 in
2017), with the proportion of highly FVC areas increasing from 59.67% in 1987 to 97.89% in 2017.
(3) The vegetation landscape fragmentation in Cangshan mountain and various functional areas
shows an increasing trend, while connectivity decreases, and is accompanied by a more intricate
shape of the vegetation landscape. While conservation and management efforts have yielded certain
results in safeguarding the vegetation in the Cangshan mountain, the degree of vegetation landscape
fragmentation has intensified due to climate change and human activities. Thus, it is imperative
for management authorities to promptly adjust protective measures within the Cangshan mountain.
This study contributes to our understanding of vegetation changes within the Cangshan mountain
and provides essential baseline information for optimizing and enhancing vegetation conservation
management strategies within the reserve.

Keywords: vegetation change; nature reserve; Cangshan mountain; remote sensing

1. Introduction

Vegetation constitutes a critical component of terrestrial ecosystems, playing a signifi-
cant role in material cycling, energy flow, and information exchange [1,2]. As an integral
part of the ecosystem, vegetation provides numerous services essential for human sur-
vival [2–4]. Influenced by factors such as topography, soil, climate, and human activities,
vegetation change serves as a key indicator of regional or global environmental transforma-
tions [5–7]. Monitoring vegetation changes is crucial for understanding regional climate
change characteristics and the extent of human interference [8–12].

National nature reserves play a vital role in establishing ecological security barriers
at the national level [13–16]. Vegetation, as a key protected element within these reserves,
is crucial for maintaining ecological security and habitat quality. Analyzing vegetation
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dynamics provides valuable long-term information for reserve management and environ-
mental changes [17]. This information is essential for understanding reserve ecosystem
structure and function, evaluating conservation effectiveness, and formulating and adjust-
ing conservation policies [5,18–21].

Located on the southeastern edge of the Hengduan Mountains, the Cangshan Erhai
National Nature Reserve features complex and diverse terrain. Influenced by both the
Pacific and Indian Ocean monsoons, the reserve exhibits distinct and varied climatic
conditions, making it a natural repository of biological resources. Its biodiversity holds
national and global importance, encompassing the Cangshan mountain and Erhai lake.
Cangshan Mountain is the naming place of the ‘Tali glaciation’ of the last glacial period
of the Quaternary period (approximately 15,000 years ago) [22], and the core of Cangshan
UNESCO Global Geopark is located in the Cangshan mountain [23]. Nearly all vegetation
in the nature reserve concentrated within the Cangshan mountain. The vegetation in the
Cangshan mountain plays a crucial role in sustaining the Cangshan mountainous ecosystem
and the Erhai lake ecosystem. Changes in vegetation significantly impact environmental
elements such as climate, water resources, ecosystem services, and human habitation within
the reserve. Therefore, a comprehensive understanding of the vegetation condition in the
Cangshan mountain and monitoring its evolution are of vital significance for vegetation
conservation, soil and water resource conservation, and the sustainable development of the
ecological environment within the reserve.

Since the establishment of the Cangshan Erhai Nature Reserve at the provincial level
in Yunnan Province in 1981, the Cangshan mountain has been subject to organized and
regulated management. Following its upgrade to a national-level nature reserve in 1994,
additional efforts have been made to strengthen the protection and management of the
Cangshan mountain. Over the span of more than 40 years of conservation management, a
range of regulations and protective measures have been developed, including restrictions
on cultivation, strict control of fires, prohibition of logging and grazing, among others.
However, empirical evidence regarding the actual impact of these regulations and measures
on the vegetation status of the Cangshan mountain has been lacking, and the effectiveness
of conservation efforts remains unclear. Therefore, it is necessary to conduct vegetation
monitoring in the Cangshan mountain to understand the changes in vegetation over
time, assess the effectiveness of human intervention in conservation, and evaluate the
achievements of the protective regulations and measures.

To accomplish this, this study employs remote sensing data and geographic informa-
tion system techniques to analyze the evolution of vegetation in the Cangshan mountain
from two perspectives: changes in vegetation patterns and vegetation coverage. The
research aims to comprehensively understand the distribution and change patterns of
vegetation in the Cangshan mountain and evaluate the effectiveness of conservation ef-
forts since the 1980s. The findings of this study can provide scientific data and decision
support for ecological regulation, protection planning, and the formulation and revision of
management regulations for the Cangshan Erhai National Nature Reserve.

2. Materials and Methods
2.1. Study Area

The Cangshan mountain is situated at the intersection of the western part of the Dian
Central Plateau and the southeastern end of the Hengduan Mountains. It belongs to the
eastern branch of the Yunling Mountains in the Hengduan Mountains and is adjacent to
the Yungui Plateau to the east. Located within the Dali Bai Autonomous Prefecture in
western Yunnan Province, its geographic coordinates range from approximately 99◦55′ E
to 100◦12′ E and 25◦34′ N to 26◦00′ N (Figure 1). It encompasses two counties and one
city, with an area of approximately 576.65 km2. The north–south length is about 50 km,
while the east–west width is around 19 km. The highest peak, Malong Peak, rises to an
elevation of approximately 4122 m [24]. The Cangshan mountain features a mountain
range that stretches from north to south, located between Erhai Lake and Yangbi River.
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The tops of Cangshan mountain retain pristine glacial landforms, and the area boasts a
wide range of vegetation types, ranging from subtropical regions of South Asia to alpine
permafrost zones. It stands as one of the most botanically diverse regions globally, playing
significant roles in climate regulation, water resource conservation, soil preservation, and
air purification as well as contributing to human health and local economic development.
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To enhance the management of the nature reserve, the overall plan for the Dali Cang-
shan Erhai National Nature Reserve (1996–2010) was issued in 2002. This plan divided the
Cangshan mountain into three functional zones: core zone, buffer zone, and experimental
zone (Figure 1). In the core zone, aside from essential positional monitoring, scientific
investigations, and research activities, no facilities or activities that could impact or disturb
the ecological environment are permitted. The buffer zone is designated for organized
scientific research, experimental observations, necessary monitoring projects, field patrols,
and the construction of protective facilities. The experimental zone serves as areas for
protected development and can be moderately used for scientific experiments, educational
visits, community co-management, and eco-tourism projects.
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2.2. Data Sources

Since the early 1970s, the ongoing missions of the Landsat satellites have captured
surface landscape information for over half a century [25], providing lots of remote sensing
imagery with high spatial and spectral resolutions [1,3,26]. The Landsat series satellite
images are among the most powerful data sources for studying large-scale and long-term
spatiotemporal changes in vegetation [27].

For this study, we utilized the EarthExplorer data distribution platform (https://
earthexplorer.usgs.gov (accessed on 5 March 2019)) to retrieve all Landsat satellite images
(p131r42) from 1986 to 2017 within the study area, and the maximum cloud cover was
set to 80% [28]. A total of 605 scenes of imagery were retrieved. Using the EROS Science
Processing Architecture (ESPA) platform (https://espa.cr.usgs.gov (accessed on 1 July
2019)), we processed and downloaded the surface reflectance (SR) data, top of atmosphere
reflectance (TOA) data, and brightness temperature (BT) data for each scene of imagery.

The main auxiliary data is Digital Elevation Model (DEM) from the Advanced Space-
borne Thermal Emission and Reflection Radiometer.

2.3. Methods
2.3.1. Vegetation Extraction and Pattern Analysis

Seasonal variations often introduce errors in landscape extraction and change detec-
tion [29]. To mitigate this, we used cloud-free images collected exclusively during the
autumn seasons of four selected years (1987, 1997, 2007, and 2017) for vegetation extrac-
tion, thereby avoiding uncertainties caused by seasonal changes [3,30]. In this study, we
established an interpretive sign information database and selected training samples by
combining field survey data and historical imagery from Google Earth. We employed
Support Vector Machine (SVM) to categorize the landscape in the study area into eleven
types (Figure 2): alpine meadow (AM), shrub (SH), deciduous broad-leaved forest (DBLF),
cold-temperate coniferous forest (CTCF), evergreen broad-leaved forest (EBLF), warm-
temperate coniferous forest (WTCF), bamboo forest (BF), built-up land (BUL), farm land
(FL), bare land (BL), and water bodies (WB). The accuracy of interpretation exceeded 82%,
meeting the precision requirements of the study.
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Based on the interpreted vegetation distribution data, we conducted an analysis of
the composition and configuration of vegetation in the Cangshan mountain using spatial
pattern indices. We selected the key spatial pattern indices to quantify the composition and
configuration of vegetation in the Cangshan mountain, including two class metrices and
three landscape metrices (Table 1). All indices were calculated by using FRAGSTATS v4.2.

Table 1. Selected spatial pattern indices and their ecological implication.

Indices Type Description

Class area (CA) Class metrics

CA equals the sum of the areas of all patches of the
corresponding patch type [31]. It is a measure of landscape

composition; specifically, how much of the landscape is
comprised of a particular patch type.

Patch density
(PD) Class metrics

PD equals the number of patches of the corresponding patch
type divided by total landscape area [31]. An increase in the PD

usually indicates an increase in fragmentation.

Landscape shape index
(LSI) Landscape metrics LSI provides a standardized measure of total edge or edge

density that adjusts for the size of the landscape [31].

Contagion index (CONTAG) Landscape metrics Contagion is inversely related to edge density [31]. When edge
density is very low, contagion is high, and vice versa.

Shannon’s diversity index (SHDI) Landscape metrics
SHDI equals minus the sum, across all patch types, of the

proportional abundance of each patch type multiplied by that
proportion [31].

2.3.2. Fractional of Vegetation Coverage and Change Analysis

Based on the Normalized Difference Vegetation Index (NDVI) data, this study em-
ployed a dimidiate pixel model to calculate the Fractional Vegetation Coverage (FVC) [32]
in the Cangshan mountain (Equation (1)). Due to the influence of the Pacific monsoon and
Indian Ocean monsoon in the study area, cloud cover is prevalent throughout the year,
making it challenging to acquire Landsat images with minimal or no cloud cover, partic-
ularly during the growing season from June to September [33]. The following procedure
was implemented to obtain the NDVI data.

Firstly, the MFmask algorithm was applied to create a cloud and cloud shadow
mask [34]. TOA, BT, and DEM data were used as the MFmask algorithm inputs. The cloud
and cloud shadow masks were then used to exclude regions with cloud cover from each
SR image from 1986 to 2017, and the NDVI was calculated for all the SR images without
cloud cover. The maximum value composite (MVC) method was employed to generate
the NDVI images. However, due to the large number of images with cloud coverage and
the large area covered by clouds, there are still many gaps in the intra-year NDVI images
using the MVC method. For this reason, the study uses two years of NDVI data (1986/1987,
1988/1989, . . . , 2014/2015, 2016/2017) for MVC to fill the gaps. Finally, the FVC in the
Cangshan mountain was calculated using the MVC NDVI image.

FVC = (NDVI − NDVIsoil)/(NDVIveg − NDVIsoil) (1)

where NDVIsoil represents the NDVI value in areas with bare soil or no vegetation coverage,
while NDVIveg represents the NDVI value in pure vegetation pixels.
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To gain further insights into the changes in FVC in the Cangshan mountain, the study
categorized the FVC into five levels: extremely low FVC (FVC ≤ 0.2), low FVC (0.2 < FVC
≤ 0.4), moderate FVC (0.4 < FVC ≤ 0.6), moderate-high FVC (0.6 < FVC ≤ 0.8), and high
FVC (FVC > 0.8). Additionally, the least squares method was employed to calculate the
trend of FVC changes, using the following formula:

SlopeFVC =
n ∑n

i=1(i× FVCi)−∑n
i=1 i×∑n

i=1 FVCi

n ∑n
i=1 i2 − (∑n

i=1 i)2 (2)

where SlopeFVC represents the trend of FVC changes, n is the number of periods involved
(totaling 16 periods: 1986/1987, 1988/1989, . . . , 2014/2015, 2016/2017), i is the time
variable ranging from 1 to 16 as an integer, and FVCi represents the FVC in the i-th periods.

3. Results and Discussion
3.1. Vegetation Composition and Changes in the Cangshan Mountain

The landscape distribution of the Cangshan mountain in 1987, 1997, 2007, and 2017 is
shown in Figure 2. Among the four analyzed years, the Cangshan mountain had less than
4% coverage of BUL, FL, BL, and WB, with over 96% covered by vegetation. The dominant
vegetation types were WTCFs, DBLFs, BFs, and AM (Figure 2). Figure 3 reveals the typical
vertical zonation pattern of vegetation in the Cangshan mountain. EBLFs were distributed
between 1800–2800 m on the western slope and 2100–2600 m on the eastern slope. DBLFs
were found between 2300–3300 m on the western slope and 2600–3600 m on the eastern
slope. BFs were distributed between 2800–3800 m on the western slope and 3100–3600 m
on the eastern slope. CTCFs were observed between 3300 m and the mountain top on the
western slope, as well as between 3100 m and the mountain top on the eastern slope. AMs
were present between 2800 m and the mountain top on the western slope, and between
2600 m and the mountain top on the eastern slope. SHs were distributed between 2300 m
and the mountain top on the western slope, and between 2100 m and the mountain top
on the eastern slope. WTCFs were found between 1800–2300 m on the western slope and
2100–3100 m on the eastern slope.
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The areas of different vegetation types in the Cangshan mountain underwent changes
between 1987 and 2017 (Figure 4). In the Cangshan mountain, over the 30-year period, there
was a decrease in the coverage areas of CTCFs, AMs, and SHs, with reductions of 19.82%,
27.11%, and 42.67%, respectively. Conversely, there was an increase in the distribution areas
of DBLFs, WTCFs, BFs, and EBLFs, with increases of 14.89%, 17.82%, 20.10%, and 21.69%,
respectively. Figure 4 also illustrates the changing distribution areas of vegetation types
within different functional zones from 1987 to 2017. Examining the trends from 1987 to 2017,
the core zone exhibited an increase in the distribution areas of EBLFs, WTCFs, and BFs,
while the distribution areas of AMs, SHs, and CTCFs decreased, with BFs displaying the
largest increase. In the buffer zone, there was an increase in the distribution areas of EBLFs,
DBLFs, WTCFs, and BFs, while the distribution areas of AMs, SHs, and CTCFs decreased.
WTCFs and DBLFs exhibited the largest increases in this zone. In the experimental zone,
there was an increase in the distribution areas of EBLFs, CTCFs, DBLFs, and BFs, while the
distribution areas of AMs, SHs, and WTCFs decreased. EBLFs showed the greatest increase
in this zone.

Forests 2023, 14, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 4. Changes in the distribution areas of different vegetation types from 1987 to 2017. 

From the perspective of vegetation transition in the Cangshan mountain (Figure 5), 

significant changes in the transfer of DBLFs, WTCFs, EBLFs, and AMs were observed 

from 1987 to 2017. The main transition for DBLFs was to WTCFs, with the majority of 

replacement coming from the latter. AMs primarily converted to SHs and BFs. EBLFs 

mainly transitioned to WTCFs. 

Figure 4. Changes in the distribution areas of different vegetation types from 1987 to 2017.



Forests 2023, 14, 1485 8 of 17

From the perspective of vegetation transition in the Cangshan mountain (Figure 5),
significant changes in the transfer of DBLFs, WTCFs, EBLFs, and AMs were observed
from 1987 to 2017. The main transition for DBLFs was to WTCFs, with the majority of
replacement coming from the latter. AMs primarily converted to SHs and BFs. EBLFs
mainly transitioned to WTCFs.
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Figure 5. Landscape transition diagram of the Cangshan mountain from 1987 to 2017.

The vegetation conversion within each functional zone is illustrated in Figure 6. The
different vegetation types in each functional area are transformed into each other, and
some of the vegetation types are transformed into each other more obviously. For example,
during 1987–2017, in the core zone, 8.42% of DBLF was converted to WTCF, and 21.23% of
CTCF was converted to BF; in the buffer zone, 14.26% of DBLF became WTCF, and 22.47%
of BF was converted to DBLF between 1987 to 2017; and in the experimental zone, during
1987–2017, 13.60% of DBLF was converted to WTCF, and 6.0% of WTCF was converted
to EBLF.
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3.2. Vegetation Configuration and Changes in the Cangshan Mountain

At the class level (Figure 7), the vegetation types with higher PD in the Cangshan
mountain are BFs, DBLFs, and WTCFs. During the study period, there was an overall
increasing trend in PD for AMs, BFs, CTCFs, DBLFs, EBLFs, and WTCFs, indicating an
increasing number of vegetation patches and a tendency towards landscape fragmentation
for these vegetation types. In the core zone, there was an increase in the PD values for EBLFs,
AMs, CTCFs, DBLFs, WTCFs, and BFs. CTCFs and DBLFs showed significant increases
in PD, while SHs exhibited a decrease. This indicates enhanced landscape fragmentation
for vegetation types other than SHs in the core zone. In the buffer zone, there was an
increase in PD values for EBLFs, CTCFs, DBLFs, WTCFs, and BFs, with the largest increase
observed for DBLFs. On the other hand, there was a decrease in PD values for AMs
and SHs, suggesting improved landscape connectivity for AMs and SHs, while other
vegetation types experienced increased landscape fragmentation in the buffer zone. In the
experimental zone, all vegetation landscapes showed an increasing trend in PD during the
study period.
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At the landscape level (Figure 8), the CONTAG value in the Cangshan mountain
decreased, indicating a reduction in patch connectivity and an overall trend towards
landscape fragmentation. The LSI showed an increasing trend, suggesting that the shape
of landscape patches has become more complex. The SHDI exhibited a slight downward
trend, indicating a slight decrease in landscape diversity. In the core zone, the LSI and
SHDI showed an overall increasing trend, indicating an increased complexity of landscape
patch shapes and enhanced landscape heterogeneity. The decrease in the CONTAG value
suggests the emergence of more small patches in recent years, while the number of large
patches has decreased, leading to a fragmented overall spatial distribution. In the buffer
zone, the LSI exhibited an increasing trend, indicating a growing complexity of landscape
patch shapes. The LSI value in the buffer zone was higher than that in the core zone
and experimental zone, indicating that the landscape patch shapes in the buffer zone are
more complex. The SHDI in the buffer zone showed a downward trend, indicating a
decrease in landscape diversity. The CONTAG value in the buffer zone increased year
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by year, indicating enhanced landscape connectivity and reduced heterogeneity. In the
experimental zone, the LSI and SHDI showed an overall increasing trend, indicating an
increasing complexity of landscape patch shapes and enhanced landscape heterogeneity.
The decrease in the CONTAG value suggests the emergence of more small patches, while
the number of large patches has decreased.
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Figure 8. The changes of spatial pattern indices at the landscape-level from 1987 to 2017.

3.3. FVC and Changes in the Cangshan Mountain

The overall area with high FVC in the Cangshan mountain showed an increasing trend
from 1987 to 2017 (Table 2). The area of high FVC (0.8 ≤ FVC < 1.0) and moderate-high
FVC (0.6 < FVC ≤ 0.8) had relatively high proportions in the Cangshan mountain and its
three functional zones during different study periods.

Table 2. Proportion of five levels of FVC (%).

Periods 0 ≤ FVC < 0.2 0.2 ≤ FVC < 0.4 0.4 ≤ FVC < 0.6 0.6 ≤ FVC < 0.8 0.8 ≤ FVC < 1.0

Cangshan
mountain

1987 0.00 0.02 4.87 35.44 59.67
1997 0.02 0.56 3.90 17.79 77.73
2007 0.13 2.61 7.93 24.15 65.18
2017 0.00 0.00 0.20 1.90 97.89

Core zone

1987 0.00 0.07 6.15 34.83 58.95
1997 0.06 1.60 8.70 20.90 68.74
2007 0.33 5.34 14.52 32.29 47.52
2017 0.00 0.02 0.49 3.47 96.01

Buffer zone

1987 0.00 0.01 3.08 31.38 65.54
1997 0.00 0.08 1.38 15.40 83.13
2007 0.02 1.24 4.43 20.30 74.00
2017 0.00 0.00 0.01 0.87 99.11

Experimental
zone

1987 0.00 0.02 6.44 44.75 48.79
1997 0.00 0.03 2.12 19.16 78.69
2007 0.04 1.31 5.24 19.23 74.18
2017 0.00 0.00 0.16 1.73 98.11
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Figure 9 illustrates the trend of FVC changes, where a positive SlopeFVC value indicates
an increasing trend in vegetation coverage, while a negative SlopeFVC value indicates a
decreasing trend. Overall, the majority of the Cangshan mountain exhibits an increasing
trend in vegetation coverage, with some areas in the western and southern parts showing a
decreasing trend.
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Figure 9. Trend of FVC changes. The area of color from green to blue indicates an increasing trend of
FVC. Colors closer to blue indicate that the SlopeFVC value is larger and the trend of increasing FVC is
more obvious. The area where the color is close to yellow indicates that there is almost no change in
FVC. And colors closer to red indicate smaller SlopeFVC values and a more pronounced decreasing
trend in FVC.

3.4. Impacts of Conservation Management on Vegetation Changes in the Cangshan Mountain

Since the establishment of the Cangshan Erhai Nature Reserve at the provincial level
in 1981, the Cangshan mountain has undergone systematic and organized management. In
1994, it was upgraded to a national-level nature reserve, and dedicated institutions were
established to oversee the development planning and management of the reserve, aiming
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to strengthen the protection and management of the Cangshan mountain. The results
mentioned above indicate that, after nearly 40 years of conservation management, various
measures such as planning and regulations have been successively implemented within
the area, leading to significant changes in the vegetation pattern and coverage.

(1) With the implementation of various conservation management measures, such as
cultivation restrictions, strict control of wildfires, logging bans, and grazing prohibitions,
significant changes have occurred in the human activity areas within the reserve since its
establishment as a nature reserve. Artificial landscapes, such as buildings, have gradually
been removed from the Cangshan mountain (Figure 10), and the amount of land used for
construction has been decreasing year by year. During the study period, the vegetation
area increased by 1146 hectares (370 hectares in the core zone, 643 hectares in the buffer
zone, and 133 hectares in the experimental zone), indicating significant effects in terms of
vegetation protection and restoration. This also demonstrates the effectiveness of the nature
reserve in protecting regional ecology and minimizing anthropogenic influences [12].
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Figure 10. Changes in area of bare land, built-up land, and farm land between 1987 and 2017.

It is worth noting that, throughout the study area, there is a trend of increasing FL.
However, the area of FL in the core zone has gradually decreased, while it has increased
mainly in the buffer zone and the experimental zone, with the largest increase observed
in the experimental zone. Additionally, the increased FL is primarily concentrated in the
foothills of the eastern experimental zone and the western buffer zone, which are adjacent
to the peripheral boundaries of the reserve where agricultural production and tourism
activities occur. These areas are characterized by relatively flat terrain, making them highly
vulnerable to human disturbances. The increase in FL in the eastern experimental zone and
the western buffer zone reflects the conflicts between conservation efforts in the Cangshan
mountain and community development.

(2) Between 1987 and 2017, there was an increasing trend in average FVC in the
Cangshan mountain and its three functional zones. The proportion of areas with high FVC
(0.8 ≤ FVC < 1.0) in the Cangshan mountain increased from 59.67% in 1987 to 97.89% in
2017. The three functional zones also showed an increasing trend in the ratio of high FVC
(Table 2), with the experimental zone exhibiting the largest increase (49.32%). This indicates
effective protection and restoration of vegetation in the Cangshan mountain.
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Examining the annual trend of FVC (Figure 10), we can observe that FVC has continued
to increase in most areas of the Cangshan mountain during the study period, with the
core zone showing a particularly significant improvement. However, certain regions of
the buffer zone to the west and south have experienced a decrease in FVC. This change
in pattern reflects the influence of climate change on FVC in the Cangshan mountain.
For example, during the years 2009 to 2012, the study area faced moderate to severe
drought, characterized by prolonged dry periods and consecutive years of drought [35,36],
which had a negative impact on FVC [37]. It also demonstrates the effectiveness of macro-
level ecological protection measures and management in the Cangshan mountain. The
establishment of the nature reserve and the implementation of various protection measures
and projects have positively impacted the vegetation in the Cangshan mountain.

During the entire study period, we found that the areas where vegetation types have
changed are also the areas where there is a significant increase in FVC, specifically in the
central part of the core zone and the northern part of the buffer zone. In the central part
of the core zone, the main vegetation changes include the conversion from CTCFs to BFs,
from SHs to CTCFs and BFs, and from AMs to BFs and CTCFs. In the northern part of the
buffer zone, transitions involve the conversion from BFs to DBLFs and WTCFs, from AMs
to DBLFs and WTCFs, and from SHs to WTCFs. Additionally, we also found conversions
from SHs to AMs and BFs and from BFs to AMs, which resulted in a decrease in SlopeFVC.
These findings may provide us some inspiration for vegetation management in the nature
reserve, and we can control the trend of FVC change by regulating the mutual conversion
between vegetation types.

(3) Analysis of vegetation configuration reveals an increasing trend in vegetation
landscape fragmentation and connectivity in the Cangshan mountain and its three func-
tional zones, with the shape of the vegetation landscape becoming increasingly complex.
However, there are variations in fragmentation characteristics among the functional zones.
In the core zone, vegetation landscapes, excluding SHs, have experienced increased frag-
mentation. In the buffer zone, the connectivity of Ams and SHs has improved, while other
vegetation types have become more fragmented. In the experimental zone, all vegetation
types have exhibited a trend of fragmentation.

We believe that two main factors contribute to the fragmentation of vegetation land-
scapes and the increase in scattered vegetation islands in the Cangshan mountain: (1) The
surrounding area of the nature reserve is densely populated with villages and has a sig-
nificant proportion of agricultural land. In addition, being a scenic area [38] and the main
body of the Cangshan UNESCO Global Geopark, the Cangshan mountain faces high and
frequent disturbances. Particularly, the buffer zone and experimental zone are heavily
influenced by human activities, resulting in the formation of numerous fragmented patches
that exacerbate vegetation fragmentation in the nature reserve. Landscape fragmentation
caused by anthropogenic interference is an issue that many nature reserves face and need
to be solved [39,40]. (2) Strong protection and management measures, such as restrictions
on cultivation, strict control of fires, and prohibition of logging and grazing, have led to the
continuous increase in the total area and vegetation coverage of the Cangshan mountain.
Simultaneously, human disturbances in the area have gradually decreased, especially in
the core zone where human interference is strictly limited to scientific research purposes.
In areas with minimal human interference, such as the core area, vegetation structure char-
acteristics are primarily influenced by climate factors [41]. On one hand, climate change
hinders or amplifies the natural succession process of different plant species, resulting
in the extinction of certain plants in specific locations or the rapid expansion of climate-
adaptive plant species. Many small islands of vegetation thus are formed, intensifying the
fragmentation of the vegetated landscape. On the other hand, climate change has provided
refuge for some invasive species, further contributing to the fragmentation of vegetation
landscapes [42].
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4. Conclusions

This study utilized Landsat satellite images and remote sensing and GIS technologies
to analyze the landscape pattern and coverage changes of vegetation in the Cangshan Erhai
National Nature Reserve (Cangshan mountain part) and evaluate the effectiveness of the
nature reserve.

Thanks to the long-term and high spatial resolution observation of the Landsat mission,
we can conduct a comprehensive and detailed assessment of vegetation information in
Cangshan mountain for a long time. Therefore, this study highlights the critical role of
Landsat mission in long-term sustained Earth’s surface observations.

During the study period, the Cangshan Erhai National Nature Reserve (Cangshan
mountain part) demonstrated significant conservation outcomes, including a substantial
increase in vegetation area and notable improvement in FVC. Among the different func-
tional zones, the core zone exhibited the highest conservation effectiveness, followed by
the buffer zone, while the experimental zone showed relatively weaker results. However,
the fragmentation of vegetation landscapes in the Cangshan mountain has intensified due
to the influence of climate change and human activities. It is crucial for the relevant man-
agement authorities to address this issue promptly and adjust conservation management
measures to reduce fragmentation, improve connectivity, and increase the number of large
patches in the vegetation landscape.

The study quickly and visually identifies the vegetation pattern and FVC in the
Cangshan mountain. The results of this study offer decision-making support and data for
relevant management agencies, which is conducive to optimizing the conservation and
management measures and improving the quality and stability of the forest ecosystem in
the Cangshan mountain.
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