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Abstract: Climate change is posing new challenges to forestry management practices. Thinning
reduces competitive pressure in the forest by repeatedly reducing the tree density of forest stands,
thereby increasing the productivity of plantations. Considering the impact of thinning on vegetation
and physiological and ecological traits, for this study, we used Norway spruce (Picea abies) data from
three sites in the PROFOUND dataset to parameterize the 3-PG model in stages. The calibrated
3-PG model was used to simulate the stand diameter at breast height and the stem, root, and leaf
biomass data on a monthly scale. The 3PG-MT-LSTM model uses 3-PG simulation data as the
input variable. The model uses a long short-term memory neural network (LSTM) as a shared layer
and introduces multi-task learning (MTL). Based on the compatibility rules, the interpretability of
the model was further improved. The models were trained using single-site and multi-site data,
respectively, and multiple indicators were used to evaluate the model accuracy and generalization
ability. Our preliminary results show that, compared with the process model and LSTM algorithm
without MTL and compatibility rules, the hybrid model has higher biomass simulation accuracy
and shows a more realistic biomass response to environmental driving factors. To illustrate the
potential applicability of the model, we applied light (10%), moderate (20%), and heavy thinning
(30%) at intervals of 10, 15, 20, 25, 30 years. Then, we used three climate scenarios—SSP1-2.6, SSP2-
4.5, and SSP5-8.5—to simulate the growth of Norway spruce. The hybrid model can effectively
capture the impact of climate change and artificial management on stand growth. In terms of climate,
temperature and solar radiation are the most important factors affecting forest growth, and under
warm conditions, the positive significance of forest management is more obvious. In terms of forest
management practices, less frequent light-to-moderate thinning can contribute more to the increase
in forest carbon sink potential; high-intensity thinning can support large-diameter timber production.
In summary, moderate thinning should be carried out every 10 years in the young-aged forest stage.
It is also advisable to perform light thinning procedures after the forest has progressed into a middle-
aged forest stage. This allows for a better trade-off of the growth relationship between stand yield
and diameter at breast height (DBH). The physical constraint-based hybrid modeling approach is a
practical and effective tool. It can be used to measure long-term dynamic changes in forest production
and then guide management activities such as thinning to achieve sustainable forest management.

Keywords: forest biomass modeling; 3-PG model; LSTM; biomass compatibility; forest thinning

1. Introduction

Forests are the main part of terrestrial ecosystems and also the largest carbon storage
pool on land [1–3]. Human-induced climate change could fundamentally alter forests in the
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21st century, with profound implications for the world [4]. Forest biomass is a key indicator
in global carbon cycle research [5]. Thinning is a common forestry management practice.
It has a significant and direct impact on forest structure. The understory microclimate
will change with the change of structure and then affect the growth and development of
trees [6,7]. Through thinning, stand density is reduced, the interception of precipitation is
decreased while the understory light level is increased, and the decomposition of forest
litter is accelerated [8]. Retained wood can make full use of light, water, and soil, and
forest productivity can finally be improved. Accurately estimating the synergistic effect of
thinning and climate on forest growth is of great significance for optimizing the utilization
of forest resources and improving the ecological quality of forests [9–11]. In recent years,
researchers have extensively explored how to estimate the response of forest biomass to
thinning operations and climate change [12,13].

With the in-depth study of forestry management, mechanistic models have been
developed and have received more and more attention [14,15]. A process model can
simulate the key mechanistic processes of photosynthesis, respiration, and carbon water
balance in tree growth. A process model takes into account the impact of climate factors
and human disturbance on forest growth [16]. Individual-tree process models such as
MAESTRA or TRIPLEX are established based on the three-dimensional spatial information
of a single tree. These models take into account the extent to which the canopy utilizes
solar radiation [17,18]. Individual-tree process models exhibit a high level of precision in
their simulations. However, individual-tree process models rely on field surveys, which
can incur higher costs. A stand process model, such as 3-PG or FORECAST, considers
the effects of stand structure, climate change, and management practices. This model
effectively elucidates and simulates the influence of environmental variables on the growth
of forests [19,20]. Ecosystem process models, such as BIOME-BGC or LPG-DGVM, have
comprehensively incorporated the carbon cycle within the atmosphere-vegetation-soil
system. Its complexity is higher, and it is more suitable for large-scale carbon-water cycle
simulation [21,22]. The essence of the process model is to complete the description of
the material exchange and energy flow processes between the atmosphere, vegetation,
and soil with the help of complex empirical equations. However, due to the fact that the
environment is everchanging and will continue to change in the future, a model established
based on past knowledge may no longer hold true. Therefore, it is difficult to predict
dynamic changes in forests on a long-term scale (e.g., 50a).

With the development of artificial intelligence technology, Deep Learning (DL) pro-
vides a new means for forecasting forest growth and harvest [23,24]. DL does not restrict
the selection of data sources. It is able to automatically extract knowledge from data streams
to provide more flexible predictions. Kraft et al. [25] used LSTM to build a global model
for fitting the Normalized Difference Vegetation Index (NDVI). Their model shows that
LSTM can identify the memory effect of vegetation state on climate with satisfactory fitting
accuracy. In addition to LSTM, other DL methods are also widely used. Neto et al. [26]
used principal component analysis (PCA) to reduce the dimensionality of input data and
used an Artificial Neural Network (ANN) to estimate productivity dynamics during Eu-
calyptus rotations. With a limited sample size, it shows better results than other forest
productivity estimation methods. Xu et al. [27] proposed a neural network model with
a multi-task loss function. This model solves the compatibility problem of tree biomass
estimation and improves the generalization ability of the model. Despite the numerous
successes of the DL model, its limitations are also evident [28–30]. First of all, the accuracy
and generalization ability of the model depend on the ‘feeding’ of large amounts of data.
However, the collection of forestry data requires a lot of effort and material resources. The
process is also cumbersome and expensive. Secondly, the quality of the collected data
cannot be guaranteed during the data collection process. There may be noise present in
the data. Additionally, the training of the model can be disrupted, producing completely
incorrect results. Thirdly, the training process of DL models does not involve any physical
mechanisms. This can lead to unreasonable simulations in certain scientific problems.
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Building hybrid interpretable models is currently a very active research frontier [31,32].
The hybrid model combines the physical consistency of process models and the high data-
driven performance of DL methods [30]. Reichstein et al. [32] summarized the feasible
avenues for coupling physical models with DL in geoscience problems. Among them,
coupling strategies have been developed in the processes of runoff prediction and biological
regulation [33,34]. Coupling physical processes into the loss function of neural networks
enables more seamless hybrid model building [35]. However, the increase in interpretable
components may generate more errors, resulting in a decrease in system performance.
Therefore, the key to hybrid modelling is to explore the optimal solution to the “accuracy
versus transparency trade-off” problem [36,37].

In the context of climate change, precisely assessing the impact of thinning on forest
growth presents a viable approach to enhance forest structure, ecological quality, and
service functions [12,38]. At present, we still lack the technical means to effectively and
accurately understand how management behaviors affect forest production. The objectives
of this manuscript were to: (1) Take the 3-PG simulation value as the model input variable,
construct a 3PG-MT-LSTM hybrid model to increase model interpretability, sensitivity to
thinning events, and the accuracy of long-term biomass predictions. (2) Introduce biomass
compatibility rules to ensure that the model converges to a solution that follows the basic
physical laws, further improving the generalization ability of the model, and evaluate the
multi-index accuracy of the optimized model. (3) Under the conditions of multi-climate
scenarios, estimate the impact of different thinning practice intervals and intensities on the
growth of Norway spruce.

2. Materials and Methods

In this study, environmental elements, stand biomass observations, and geographic
location information were first obtained from the PROFOUND database [39] (https://
doi.org/10.5880/PIK.2020.006, accessed on 12 December 2022). The study area biomass
data information is shown in Section 2.1. Then, we used the 3-PG model to amplify the
original biomass observation data at different time intervals into monthly scale data. The
3PG-MT-LSTM model was established based on the biomass compatibility rule, using
3-PG simulated values as model inputs. Based on the characteristics of monthly average
temperature, carbon dioxide concentration, monthly frost days, monthly average solar
radiation, monthly precipitation, and monthly average water vapor pressure difference,
the model realizes the prediction n of the forest stand stem, root, foliage, aboveground, and
total biomass, and DBH. Using the single-site model as a basis, the factors of elevation,
slope, and aspect were added to construct a multi-site model. The specific experimental
method is presented in Section 2.2. In Section 2.3, we evaluate the accuracy of single-site and
multi-site models using multiple evaluation metrics. According to the evaluation results,
the model is continuously adjusted and optimized. Subsequently, in conjuction with CMIP6
multi-model and multi-scenario climate data (https://esgf-node.llnl.gov/projects/cmip6/,
accessed on 14 February 2023), we simulate the growth of Norway spruce at the Bily Kriz
site under different thinning regimes in Section 2.4. Finally, also in this paper, according
to the simulation results, we analyze the impact of thinning on Norway spruce growth
and make recommendations for forest management. The research framework is shown in
Figure 1.

https://doi.org/10.5880/PIK.2020.006
https://doi.org/10.5880/PIK.2020.006
https://esgf-node.llnl.gov/projects/cmip6/
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Figure 1. The research framework of this study. In the Data Preparation section, TEM, VPD, PAR,
PRE represent temperature, saturated water vapor pressure difference, photosynthetically active
radiation, and precipitation, respectively. In the 3-PG Model section, GPP and NPP represent gross
primary productivity and net primary productivity. In the Model Evaluation & Future Scenario
Demonstration section, R2, RMSE, MAE, MAPE, and CMIP6 GCMS represent R-square, root mean
squared error, mean absolute error, mean absolute percentage error, and global climate models in the
Coupled Model Intercomparison Project (Phase 6), respectively.

2.1. Norway Spruce Biomass Data

Norway spruce is a large, fast-growing, and highly adaptable evergreen coniferous tree
species commonly used as a timber tree throughout Europe. The growth rate of Norway
spruce is at its peak between 20 and 90 years. After 90 years, the rate gradually slows down.
In this study, the biomass data of Norway spruce and historical meteorological data were
obtained from the PROFOUND database (Table 1).

Table 1. Basic information of biomass data.

Site Longitude and
Latitude Elevation (m)

a Forest Age
Range (Years)

b Forest Biomass
Range (t/hm2)

c Number of
Thinning

Bily Kriz 18◦19′ E, 49◦18′ N 875 16–34 34.49~147.67 3
Hyytiala 24◦17′ E, 61◦50′ N 185 34–50 128.86~201.78 1
Solling 9◦34′ E, 51◦45′ N 508 85–133 250.67~372.96 4

a Forest Age Range refers to the age of the forest stand from the first to the last field survey conducted in the
experimental plot. b Forest Biomass Range refers to the maximum and minimum values of forest biomass obtained
during the survey and does not represent the biomass of the plot at the minimum (maximum) forest age. c Number
of Thinning refers to the number of times the plot was artificially thinned during the entire survey process and
does not include density changes caused by natural thinning.
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2.2. The 3PG-MT-LSTM Hybrid Modelling Approach
2.2.1. 3-PG Model

The 3-PG (Physiological Principles in Predicting Growth) model is a process-based
model that simulates forest growth and yield with a monthly time scale [19]. It is widely
used for predicting biomass production and carbon sequestration in forest ecosystems. The
model uses environmental variables such as temperature, precipitation, and solar radiation
to predict forest growth. The model illustrates key physiological and ecological processes
such as photosynthesis, respiration, and nutrient cycles in forest production. The key
process formulation of the model is shown in Equation (1).

GPP = αCx × FPAR× PAR× fT × fN × fF × fage ×min{ fVPD, fSW} (1)

Among them, GPP refers to the gross primary productivity of forest stands; αCx refers
to the quantum efficiency of the vegetation canopy, which is the number of CO2 molecules
assimilated by vegetation per absorbed light quantum; FPAR (Fraction of photosynthet-
ically active radiation absorption) refers to the proportion of photosynthetically active
radiation absorbed by vegetation; PAR (Photosynthetically active radiation) refers to the
radiation that drives photosynthesis; and fT , fN , fF, fage, and fVPD represent the correc-
tion factors for temperature, soil fertility, frost, stand age, vapor pressure deficit, and soil
moisture, respectively.

Compared with other models, the 3-PG model is relatively simple to use and requires
fewer input parameters. In addition, the model is available in multiple open-source versions
such as EXCEL [40], Python [41], and R. We followed the method of 3-PG and used the
‘r3pg’ package of R program [42] to estimate biomass [43]. In this study, we used the Morris
method to analyze the sensitivity of physiological and ecological parameters involved
in the 3-PG model. The Morris sensitivity analysis method facilitates a global sensitivity
analysis of parameters by calculating model outputs by changing only one input value
between successive simulation runs [44]. Considering that forest growth is a dynamic
process, we re-fitted and optimized the model parameters (i.e., phased localization model)
after the thinning events and changes in the structure of the stand age groups. Finally, we
used the built-in biomass allocation module in the 3-PG model to simulate the allocation of
stand biomass among leaves, stems, and roots. The estimated values were used as inputs
for the multi-task LSTM.

2.2.2. Multi-Task Learning and LSTM

MTL (Multi-task learning) is a machine learning technique that enables the joint
training of multiple related tasks [45,46]. In this study, MLT is used to jointly predict the
individual organ and total biomass changes in forest stands. LSTM is a type of recurrent
neural network that can process sequential data by selectively remembering or forgetting
past information [47,48]. The key process in LSTM is mathematically shown below.

ft = σg

(
W f xt + W f mt−1 + b f

)
(2)

it = σg(Wixt + Wimt−1 + bi) (3)

ot = σg(Woxt + Womt−1 + bo) (4)

ct = ft � ct−1 + it � σc(Wcxt + Wcht−1 + bc) (5)

mt = ot � σh(ct) (6)



Forests 2023, 14, 1482 6 of 20

From Equation (2) to Equation (6), σg, σc, and σh represent logistic sigmoid function,
the input activation function, and the output activation function, respectively. f , i, o, and c
represent the forget gate, input gate, output gate and cell activation vector, respectively. m
depicts the hidden state vector, also known as output vector, of the LSTM units. W denotes
the weight matrix (for example, Wi represents the weight matrix of input gate). The

⊙
stands for element-wise multiplication, and b denotes the bias term.

For this study, LSTM was used to model the temporal dynamics of biomass change.
The combination of multi-task learning and LSTM allows the model to capture the complex
relationships between thinning rules and climate change. By sharing the LSTM layer and
jointly training the model on multiple related tasks, the MT-LSTM model can learn to
generalize better and make more accurate predictions [49,50].

2.2.3. Loss Function

In this study, the loss function used in the MT-LSTM model consists of mean squared
error (MSE) loss function and biomass compatibility rules. MSE loss function is defined as
the average of squared differences between the actual and the predicted value (Equation (7)).
In the MT-LSTM model, stem (ystem), root (yroot), leaf biomass (ylea f ), aboveground biomass
(yaboveground), and total biomass (ytotal) were all estimated independently. The addition of
biomass correlation ensures the compatibility of the model, which is important for accurate
biomass estimation. The rule is based on the principle of mass balance, which states that
the total biomass in the system must always be consistent with the sum of the components.
The following equations (Equations (8) and (9)) are the biomass correlation rules added to
the loss function:

MSE =
1
n

n

∑
i=1

(yi_true − yi_prediction)
2 (7)

ytotal = yaboveground + yroot (8)

yaboveground = ystem + ylea f (9)

In Equation (7), n is the number of samples, while yi_true and yi_prediction are the
observed value of the ith sample and its corresponding predicted value, respectively. ytotal ,
yaboveground, yroot, ystem, and ylea f are the predicted values of the total, aboveground, root,
stem (with bark and branch), and leaf biomass of the forest stand, respectively.

2.2.4. Constrained Hybrid Models

We used the 3-PG model to expand the observational data on stand biomass at unequal
time intervals into monthly time series data. LSTM is trained using amplified data. MTL
aims to enhance the generalization ability of LSTM by simultaneously learning multiple
tasks. We added the biomass compatibility constraint to the LSTM loss function based on
MTL. Minimize the difference between the stand’s biomass and the sum of the biomass
of each organ in the stand. Additionally, the superposition of unjustifiable errors in the
prediction results is reduced, and the hybrid model’s performance is enhanced. The 3PG-
MT-LSTM model consists of two LSTM layers and one fully connected layer. The activation
function of the hidden layer is ReLU (rectified linear unit). The activation function of the
output layer is linear. The model optimizer is Adam (Adaptive Moment Estimation). The
model learning rate is set to 10−4.

2.3. Model Evaluation and Validation

The paper uses four evaluation indicators to assess the accuracy of the 3PG-MT-LSTM
model: R2, RMSE, MAE, and MAPE (Equations (10)–(13)). Among them, yi represents the
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observed biomass value at time i, ŷi represents the estimated biomass value at time i, y
represents the average value of the observed biomass.

R2 =
∑n

i=1 (ŷi − y)2

∑n
i=1 (yi − y)2 (10)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (11)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (13)

R2 measures the proportion of the variance in the dependent variable that is predictable
from the independent variable. The closer R2 is to 1, the better the model performance.
RMSE, MAE, and MAPE measure the error between the predicted and observed values.
When MAE and MAPE are used together, they provide a comprehensive evaluation of the
model’s fit to data of different scales. In the context of this paper’s data, using both metrics
can help to assess the model’s performance in simulating the stand biomass of different
ages. Combining the above metrics can provide a more comprehensive evaluation of a
regression model’s accuracy.

2.4. Future Climate Scenarios and Thinning Treatments

The Coupled Model Intercomparison Project Phase 6 (CMIP6) is a collaborative effort
among climate scientists to assess and improve the performance of climate models’ [51].
SSP1-2.6, SSP2-4.5, and SSP5-5.8 are three future projection scenarios in CMIP6, and their
primary differences lie in greenhouse gas emissions and climate change predictions. The
climate scenarios of SSP1-2.6, SSP2-4.5, and SSP5-5.8 estimate that global warming will
be 1.7 ◦C, 2.0 ◦C, and 4.4 ◦C by 2081–2100, respectively. We used the average simulated
value of three models—IPSL-CM6A-LR, MPI-ESM1-2-HR, and BCC-CSM2-MR—in the
three climate scenarios (Figure A1). To study the synergic effects of climate and thinning on
forest growth, we designed 18 thinning regimes for spruce from the Bily Kriz site, including
an unthinning control group (Figure 2). Considering that spruce is a coniferous forest and
our study plot is an even-aged stand, we only applied the low thinning method to our
simulation. We designed the thinning intensity according to the number of trees. The
thinning intensity is the proportion of trees cut to the total number of trees in the forest.
Considering the ecological characteristics of spruce and its age groups, the stands were
thinned at an intensity of 10% (light thinning), 20% (moderate thinning), or 30% (heavy
thinning) in the stand stage where they are considered young (age less than 61). In the
middle-aged stage, the stand was only lightly thinned. When the stand is near mature (over
90 years of age), thinning operations are no longer carried out. To distinguish the effects
of thinning intervals on stand growth, we applied 10-, 15-, 20-, 25-, and 30-year intervals.
We added a third thinning operation for shorter intervals (10 or 15 years) based on two
thinning operations.
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Figure 2. Thinning regimes and time. The horizontal axis represents the year. The vertical axis
represents different thinning regimes. 10Y, 15Y, 20Y, 25Y, and 30Y represent the intervals of 10, 15,
20, 25, and 30 years with respect to forest stand thinning, respectively. L, M, H represent light
(10%), moderate (20%), and heavy (30%) thinning intensity, respectively, which are distinguished by
different colors in the figure; 2T/3T represent simulated thinning two times and three times within
the set thinning period.

3. Results
3.1. 3-PG Model Calibration and Picea asperata Biomass Simulation

We performed Morris sensitivity analysis using the r3pg package and identified the
three most sensitive parameters of the 3-PG model. They are the ratio of leaf biomass to
stem productivity when DBH is 20 cm (PFS20), the minimum fraction of NPP to roots
(PRn), and the canopy quantum efficiency (AlphaCx), respectively. Parameters related to
biomass allocation and photosynthesis are always sensitive to model performance. The
model parameterization process and results are similar. Therefore, this section uses the
Solling site with the most measured data and the longest temporal range as an example to
show the 3-PG calibration results. First, we calibrated the model using all the measured
values at the Solling site from 1967 to 2014, as introduced in Section 2.1. There is a deviation
between the estimated value (3-PG simulation) and the measured value (Observation)
(Figure 3a). From 1967 to 1970, the stand was not thinned, and the estimated value of 3-PG
was close to the measured value. But after the first thinning, the model did not properly
capture the immediate impact of thinning. This led to a persistent underestimation of
stand biomass. After the second thinning in 1981, the model continued to use the original
parameters. This can lead to overly optimistic estimates of the stand’s growth potential,
resulting in consistently higher estimates. In order to make the estimated value reflect the
true situation of the stand as much as possible, we re-optimized the sensitive parameters
of the model every time a thinning event occurred. After correcting the parameters in
stages, the model simulation results (3-PG staged simulation) were consistent with the
observation data. They can meet the data quality requirements of deep learning. Through
model simulation, we obtained a total of 3904 augmented data points to support LSTM
training. With the decrease in stand density, the optimal values of sensitive parameters in
the 3-PG model also change (Figure 3b). As the age of the forest increases and the density
of the stand decreases, there is a corresponding increase in the PRn value. In comparison to
the initial value, there is a 5.23% increase; PFS20 decreased by 7.09% compared with the
initial value, and AlphaCx changed by 2.6% overall from the initial value. The performance
of AlphaCx is subject to real-time thinning and exhibits notable fluctuations. A reduction
of 100 trees per hectare in stand density resulted in a fluctuation of 13.67% in the parameter
value. It is noteworthy that the parameters exhibit a relatively narrow range of variation
with respect to their values. Nonetheless, in the 3-PG model, even minor alterations to the
aforementioned three critical parameters can significantly impact the model’s trajectory.
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3.2. Calibrate and Evaluate the 3PG-MT-LSTM Model

For the present section, we initially employed the residual index to assess the efficacy
of 3PG-LSTM, 3PG-MT-LSTM without compatibility rules, and 3PG-MT-LSTM with com-
patibility rules. Next, we analyzed whether there was a significant difference between the
model residuals (Figure 4). Our findings indicate that incoporating biomass compatibility
rule into the model can substantially enhance its precision. Simultaneously, the difference
between the different models obtained by the Solling site with a large dataset and the
joint training of multi-site data is more significant. When the datasets are small, like at the
Hyytiala or Bily Kriz sites, the difference in performance between the single-task LSTM
models and the multi-task LSTM models is not statistically significant. Following the
incorporation of compatibility regulations, in contrast to the solitary-task LSTM model, the
performance of the four models was substantially enhanced to differing extents.

Our assessment of the model was conducted based on the metrics outlined in Section 2.3
(Figure 5). The compatibility rule makes the model more capable of explaining the growth
process and variation trend of distinct Norway spruce components (R2 > 0.9). We observed
that there is essentially no change in the prediction ability of the model for samples of vary-
ing forest ages since MAPE is comparable to the product of MAE and the average value of
the data. This demonstrates that the coupling model described in this study performs better
and is less susceptible to influence from outside sources. From the ratio of RMSE and MAE
(RMSE/MAEsolling_stem = 6.96, RMSE/MAEhyytiala_stem = 6.45, RMSE/MAEbily_stem = 4.95,
RMSE/MAEmulti-model_stem = 7.97), it is clear that adding the biomass compatibility rule
makes it harder for the model’s forecast process to avoid residual extremes. The model
prioritizes minimizing the penalty values of the biomass compatibility loss function and
the mean squared error (MSE) loss function. This results in models that sometimes sacrifice
the accuracy of individual variables to improve overall model accuracy. Because of the
volume and range of the data, the Solling site and multi-site estimation models have larger
RMSE and MAE values. The inaccuracy is fairly substantial as a result of the wide variance
in the stem biomass.
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Figure 4. Residual distribution and significance analysis of three models in different sites.
(a–c) represent the results obtained from training at the Solling site, Hyytiala site, and Bily Kriz
site, while (d) represents the results obtained from training on data from all three sites combined.
Asterisks refer to the significant differences in the models’ residuals (NS, no significant difference;
*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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3.3. Changes in Norway Spruce Biomass under Different Future Climate Scenarios

Young, middle-aged, and near-mature forests are the primary types of forests that
benefit from thinning as a management strategy [52]. Considering this, in the later stages
of the long-term simulation, the spruces in the Hyytiala and Solling sites will reach the
mature forest stage. We chose the Bily Kriz site for simulation prediction. We estimated the
changing trend of stand biomass and average diameter at breast height using the thinning
regimes described and the gathered future climate data in Section 2.4. The ensemble means
of three CMIP6 models were utilized to analyze the trend of each meteorological factor
(Figure A1). The results indicate that there is a rising trend in the future daily minimum
and maximum temperatures, as well as the daily average solar radiation, across all climate
scenarios observed at the Bily Kriz site. The results also indicate that, under SSP1-2.6 and
SSP2-4.5 scenarios, the precipitation in 2090s increased by 9.79% and 7.02% compared
with that in 2010s. On the contrary, under the SSP5-8.5 scenario, the precipitation in 2090s
decreased by 12.84% compared with that in 2010s. However, the precipitation in the
SSP5-8.5 scenario decreased by 12.84%. The number of frost days had a greater impact
on forest productivity. The reduction in the number of frost days persisted because of the
steady escalation of the daily minimum temperature within the contexts of the SSP2-4.5
and SSP5-8.5 scenarios. In contrast to the frost days recorded in the 2010s, those observed
in the 2090s exhibited a reduction of 40.26% and 69.33% for the respective years. Despite a
slight increase in the daily minimum temperature under the SSP1-2.6 scenario, there was no
significant alteration in the annual count of frost days. Based on the above climate scenario,
we simulated the mean DBH and biomass of Norway spruce at the Bily Kriz site for the
2020–2100 period (Figure 6).
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Figure 6. The future Norway spruce stand’s mean diameter at breast height and biomass trends at
the Bily Kriz site. (a,b) show the average diameter at breast height and biomass variation trend of
the Norway spruce in 2040, 2060, 2080, and 2100 under several climate scenarios and 18 thinning
strategies. Sections (c,d) identify the five most effective thinning techniques, based on the average
diameter at breast height and biomass estimations of the forest stand in the year 2100. Where
(i) represents the value difference between SSP1-2.6 and SSP5-8.5 scenarios, and (ii) Indicates the
difference in values between SSP2-4.5 and SSP5-8.5 scenarios. The presented data display the
simulated values of stand diameter at breast height and biomass for various thinning techniques in
the years 2040, 2060, 2080, and 2100, arranged in a left-to-right formation.
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The simulation results indicate that the productivity and DBH growth of spruce were
most significant in the SSP5-8.5 scenario, regardless of the combination of thinning intensity
and interval, when thinning from below was used (Figure 6a,b). Additionally, with the same
thinning intensity and a climate scenario with a higher average temperature, the growth of
Norway spruce varied more significantly. We selected the five thinning regimes with the
highest biomass and DBH values for spruce in 2100 to verify our views (Figure 6c,d). The
figures show the difference in spruce’s response to the same thinning regimes and different
climate scenarios at four time nodes in 2040, 2060, 2080, and 2100. Using the 10Y_H3T
thinning approach as an example, the difference in DBH between the SSP5-8.5 and SSP1-2.6
scenarios increased from 0.35 cm in 2040 to 3.01 cm in 2100. The difference in biomass
increased from 1.65 t hm−2 in 2040 to 17.28 t hm−2 in 2100. The same trend was present
among the other thinning regimes (i.e., 10Y_H2T, 10Y_M3T, and other regimes) and climate
scenarios. For stand diameter at breast height, with an increase in thinning intensity, the
growth rate of stand diameter also increased. However, once the stand age reached 100a
(2080), the growth of DBH per unit time began to slow. Furthermore, we discovered that
when the thinning frequency was 10 years, the stand diameter was substantially greater
than when the cutting frequency was 15 or 20 years. Light thinning at the middle-aged
stage of spruce influenced stand diameter, but this effect depended on the thinning intensity
at the young stage. For the light- and moderate-thinning plots, the impact on diameter at
breast height was not obvious after light thinning in the middle-aged forest stage. However,
on highly thinned plots, there was a greater potential for individual tree DBH growth after
thinning at the middle-aged forest stage. For stand biomass, the number of Norway spruce
trees in the stand fell constantly with increasing thinning severity during the continuous
thinning era (before 2060). When compared to the un-thinned instance, the reduced number
of trees resulted in lower total biomass. The number of trees was basically stable after
the thinning period. When the trees reached the near-mature forest stage in 2080, the
productivity of the 10Y_LT and 10Y_MT thinning forests were higher than that of the
non-thinned stands. In 2100, The 10-year-cut and 15-year-cut stands’ productivity was at a
relatively high level, and the trees still had great growth potential. When Norway spruce is
young, moderate-to-heavy thinning of the stand every 10 years makes it easier to produce
large-diameter timber. Thinning at extended time intervals (more than 20 years) not only
inhibits the growth of single-tree diameter at breast height but also limits the increase in
total biomass.

4. Discussion
4.1. Estimation Accuracy and Interpretability of the Hybrid Model

The 3-PG model is designed to simulate key processes in the growth of forest stands.
The model necessitates numerous parameters, and acquiring their values through direct
observation is a challenging task [53]. Utilizing the LSTM approach driven by data, it is
possible to effectively extract the spatio-temporal features of stand growth and their associ-
ations with climate, geography, and anthropogenic factors, based on historical data [54,55].
The process of training deep learning models typically necessitates a substantial amount of
data. This study utilized the optimized 3-PG model to address the challenge of acquiring
biomass data by boosting the available observation data. A substantial quantity of superior-
grade data needs to be acquired to bolster the training of the LSTM model. The present
study incorporates LSTM as a shared layer, multi-task learning, and biomass compatibility
rules. The model adheres to the fundamental principle of mass conservation. Improve-
ments in estimation accuracy, reliability, and generalization ability were also observed. The
3PG-MT-LSTM model more accurately captures the impact of thinning and climate change
on stand biomass. The reasonable use of models for prediction and estimation can reduce
uncertainty in forest management.

The density of tree stands is a crucial factor in determining the level of competition for
resources among trees, ultimately impacting their growth [56,57]. The Norway spruce at
the Solling site transitions from near-mature forest to mature forest. Thinning alters the
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structure of the canopy, allowing more light to reach the understory, which promotes forest
growth. However, according to the studies described in Section 3.1, the age of the forest
is a constraint that causes the photosynthetic efficacy of trees (or AlphaCx) to fluctuate
and decline. The decrease in the PFS20 parameter value can also reflect the change in
forest photosynthetic efficiency. After thinning, the leaf area index decreases, the gap
increases, and each tree is allocated more appropriate growing space. The light resource is
no longer the main object of tree competition. Whilst there was a gradual increase in leaf
biomass, there was a decrease in the proportion of biomass that trees allocated to leaves.
This discovery is in line with the research conducted by Deng et al. [58] and Chen et al. [59].
On the other hand, soil resources are finite. As forest grows, there is a concomitant decrease
in soil fertility for a given plot. At this time, there is a tendency for forest stands to allocate
a greater amount of carbon towards their root system, resulting in an increase in the PRn
parameter. This phenomenon has the potential to enhance the competitive advantage of
vegetation in acquiring soil resources. Competition for biomass allocation among stand
organs is considered to be an adaptive feature of forests [60]. Similar findings were reported
by Wang et al. [61] and Subedi et al. [62] in their respective investigations of the effects of
thinning on tree biomass distribution.

It is challenging to adequately depict forest tree growth using a “white box” model
because it is a complex process. For instance, the spatiotemporal dependence of vegetation
and physiological and ecological characteristics needs to be considered in the prediction
process. The LSTM regulates the flow and output of information by means of its distinc-
tive gating mechanism. In contrast to Artificial Neural Networks and Recurrent Neural
Networks, LSTM exhibits superior capacity in acquiring long-term dependencies within a
sequence [63]. The temporal correlation between climate-induced effects on forests remains
unclear. This is difficult to explain and quantify using known mechanisms [64,65]. Because
of its gating mechanism, LSTM is better suited to processing and predicting a long-time
series with relatively large intervals and delays [66,67]. LSTM can accurately capture the
effect of events on forest biomass, whether it be forest thinning with extended gap intervals
or climatic change with lag effects. While LSTM models can achieve high levels of accu-
racy during training, it is important to remain cautious of their inherent uncertainty. The
constraints of physical processes must also be considered while maximizing knowledge
learning from data. The 3-PG model exhibited more accuracy in simulating the allometric
growth of the tree. The output of the process model was employed as the training sample
for deep learning for this paper, and underlying physical law restrictions were introduced
in the training process. The aforementioned approach not only satisfies the data prereq-
uisites of Long Short-Term Memory (LSTM) and enhances the precision of the model but
also upholds a degree of conformity with the principles governing plant growth. Through
multi-task learning and penalty terms in loss function, the 3PG-MT-LSTM model integrates
biomass compatibility rules. In forest ecosystems, the biomass compatibility rule is a rare
and strong physical limitation. The principles of mass conservation-based compatibility
rules are universally applicable to trees of all species, regardless of the age of the forest
or its geographical location. During our research, we also considered models of volume
compatibility (i.e., biomass = plant volume * plant density). However, after discussion, we
discovered that the density of wood will alter slightly with the expansion of forest age,
even for the same tree species. Additionally, obtaining the volume also presents challenges.
This could cause the model to contain more mistakes and uncertainties. Because of this, for
this study, we ultimately decided to solely employ the biomass compatibility constraint
as the model’s additional penalty. In deep learning algorithms, this reduces the build-up
of unjustified errors. The accuracy of the 3PG-MT-LSTM model remains unaffected by
variations in forest age or external environmental factors, irrespective of whether the model
is trained on a single site or multiple sites. The integration of process modeling, and deep
learning techniques enhances the predictive capabilities of the model in predicting future
changes, thereby introducing a novel avenue for precision forestry research.
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4.2. Synergistic Effects of Thinning and Climate on Forest Growth

Examining the relationship between tree growth and environmental and management
practices is a crucial aspect of the advancement of precision forestry. In the young forest
stage, stand density is generally higher. Thinning reduces competition among trees for
nutrient space and resource constraints on tree growth. Based on the 3PG-MT-LSTM model
proposed in this paper, we performed long-term predictions of Norway spruce biomass
at the Bily Kriz site. The results showed that, when using the identical thinning strategy,
SSP5-8.5’s simulation of Norway spruce had the highest overall biomass and single-tree
diameter. After combining the differences between different climate scenarios in Section 3.3,
we can conclude that solar radiation and temperature are the most important driving
variables for Norway spruce growth without considering the impact of extreme climates.
This agrees with conclusions from earlier studies examining the environmental factors
that influence spruce growth [68–70]. The observed variations in DBH and biomass across
different scenarios indicate that the beneficial impact of forest management is particularly
pronounced in warmer climates. The differences observed in SSP5-8.5 compared to other
scenarios have evidenced that the Norway spruce species exhibits favorable ecological
adaptability and thrives in areas with abundant sunlight and moderate humidity levels.
The Norway spruce species can tolerate a variety of environmental conditions but prefers a
climate with moderate humidity and lots of sunlight [71]. Temperature and solar radiation
will exponentially increase after the 2070s, according to the SSP5-8.5 climate change scenario
(Figure A1). The amount of precipitation exhibited a further decrease. As a result, in the
SSP5-8.5 scenario, Norway spruce growth continued to increase. But compared to other
situations, the growth rate was lower.

Different thinning intensities and intervals had a substantial impact on stand growth,
in addition to climate change. The regimes taken during the young-aged forest stage for
thinning played a decisive role in the growth of the stand’s average diameter at breast
height. For even-aged spruce forests, we used low thinning to reduce stand density and
intra-stand competition. Under the low-thinning method, the heavy thinning of stands
in young forests is conducive to the production of large-diameter timber. On this basis,
further light thinning of stands in the middle-aged forest stage can increase the growth
potential of stand diameter at breast height. Over time, the growth rate of a single tree in
the light-to-moderate thinning stand slowed down significantly (at the same time interval,
the average increase in diameter at breast height decreased). This is due to the limitations
of light resources and soil resources [72]. Managers can improve ventilation and light
conditions in the forest at this time by pruning branches and increasing forest gaps. In the
thinning stage, there was an inverse relationship between thinning intensity and stand
biomass. The higher the thinning intensity, the smaller the stand number and remaining
biomass. This is consistent with the findings of Simon and Ameztegui [73]. After thinning,
the stand entered a rapid growth period. In Section 3.3, we found that the growth rate of
biomass in moderate- and heavy-thinning forests is much higher than that of light-thinning
forests. In 2100, the biomass of moderate-thinning stands was the highest compared with
other thinning regimes. This is a consequence of the regulation of multiple conditions, such
as the total number of trees, soil resources, and competition within the forest. Rimal et al.
examined the effects of different thinning intensities and intervals on the biomass growth
of a 75-year-old Norway spruce stand [13]. They found that light thinning applied at longer
intervals (greater than 25 years) resulted in higher stand biomass. However, according to
our research, conducting moderate-to-heavy thinning 1–2 times during the young-aged
Norway spruce forest stage and light thinning 0–2 times during the middle-aged forest
stage are more favorable for biomass accumulation. The 10Y_H2T thinning regime can
better balance the relationship between DBH and production. We attributed the differences
in Rimal et al.‘s results to the difference in the ages of the subjects. Specifically, our study
was conducted on a 34-year-old forest stand, whereas Rimal et al. conducted their research
on a 75-year-old one. Consequently, variations exist in the choice of thinning techniques
and the resultant findings.
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In the context of forest stand management, it may be advisable to conduct heavy
thinning during the early stages of stand development in instances where there is a high
demand for large-diameter timber. This approach is particularly relevant for operators in
this field. To enhance the stand’s overall productivity within a limited timeframe, opting
for light thinning as a stand management strategy is advisable. To maximize the stand’s
long-term carbon sink capacity, we recommend implementing periodic moderate thinning
with intervals of 10 to 15 years during the young-aged forest stage. Using the 3PG-MT-
LSTM model has the potential to aid forest managers in promptly revising stand growth
information. Before thinning, operators can formulate suitable thinning measures based
on the results of model simulations. This can provide a direction to help them achieve
a balance between producing large-diameter timber and economic benefits while taking
forest carbon storage into account. After thinning, the model can be used to continuously
monitor the growth of forest stands. By evaluating the real-time impact of management
measures on the value of forest carbon sinks, operators can promote the development of
sustainable forest management.

4.3. Limitations of Modeling Methods

The 3-PG model provides a larger training sample for deep learning algorithms. At
the same time, the cost of data collection is reduced. However, limited by the output of
the 3-PG model, we can only constrain the compatibility rules among stem, leaf, root,
aboveground biomass, and total biomass. The biomass of bark and branches cannot be
estimated. Due to constraints in data acquisition during the variable selection process,
variables such as soil fertility were not included. Although the 3-PG sub-model has the
capability to simulate alterations in soil fertility. To mitigate the potential for heightened
ambiguity within the model, we refrained from incorporating its simulated value as a
feature variable. Furthermore, we lack thinning regime designs for different thinning
methods. Our model currently only provides forest growth estimates for a single thinning
method. In the future, we hope to obtain more relevant data support, combined with
feature coding technology, to design a more complete thinning experiment. This provides a
reliable technical means of clarifying the long-term impacts of thinning on forests.

For the 3PG-MT-LSTM model, in addition to increasing the type and amount of data,
the coupling mechanism is also an important avenue for improvement. Despite the fact that
the interpretability of the hybrid model has improved, it fundamentally remains a model
driven by data. The model exhibits a high degree of precision in its response to alterations
in both climatic and human management factors. However, the challenge lies in accurately
measuring the individual impact of each variable on the simulation outcomes. During the
process of training a model, there is a relatively high demand for professional expertise and
hardware capabilities, resulting in a relatively high computational cost. Researchers will be
able to build genuine data–mechanism hybrid driving models in the future using methods
such as mechanism model parameter optimization, model sub-module proxy, and model
system error correction. This could further improve the robustness of forestry model and
provides technical support for forestry accurate management.

5. Conclusions

Data gaps are a common problem in forestry modeling. In this paper, combined
with the existing data parameterizing the 3-PG model, the stand diameter and biomass
data were successfully filled using the monthly scale simulation results. The LSTM is
trained based on the augmented data, and the 3PG-MT-LSTM model is constructed by
adding MTL and compatibility rules. In contrast to the conventional LSTM architecture,
the coupling model demonstrates enhanced precision in biomass estimation following
thinning operations while also circumventing the accumulation of errors across individual
components. There is no significant difference in the applicability of the model when it is
applied to spruce forest stands in different regions and forest ages, and the generalization
ability has improved. Utilizing the hybrid model, the present study showcases the impact
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of diverse thinning techniques on the growth of Norway spruce trees situated at the Bily
Kriz location in light of anticipated climate change scenarios. According to our analysis, the
periodic light-to-moderate thinning of Norway spruce stands at intervals of 10 to 15 years
had a favorable impact on the accumulation of biomass over an extended period.

The heavy thinning technique is deemed more appropriate to produce timber with
large diameters. Additionally, thinning management during the young-aged stages of
forest growth is imperative for any production objective. The decision to implement
additional management practices during the middle-aged stage of forest growth can be
appropriately modified based on the current condition of the stand. The application of a
hybrid model can help managers balance large-diameter timber production with economic
benefits. The carbon sink value of a stand is determined through comprehensive research to
provide scientific guidance for sustainable forest development. In conclusion, the in-depth
application of deep learning presents an opportunity for the field of forestry management,
but it also poses new challenges for forest managers.
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Figure A1. Change trends of annual average maximum and minimum temperature (a), annual
average solar radiation (b), and annual total precipitation (c) under SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios. The values shown here are from the same source as the future meteorological factors
in the text. They are taken from the ensemble averages of three climate models: IPSL-CM6A-LR,
MPI-ESM1-2-HR, and BCC-CSM2-MR.
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