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Abstract: In order to clarify the combined impact of tree species composition, site quality, and
stand age on the growth and harvest of mixed forests, the prediction models of average DBH and
stand volume for mixed forests were established, respectively. The interval period and tree species
composition coefficient (TSCC) were considered as independent variables. These models were then
optimized by using the particle swarm optimization algorithm for reparameterization and evaluating
their applicability. It was found that after introducing the site quality grade and TSCC, the average
stand height prediction model showed a better fitting result. The fit accuracy of the average DBH
prediction model and the stand volume prediction model were both improved with the help of the
TSCC, mainly because the tree species composition affects the growth rate of the average stand height
and average DBH and the maximum growth rate of the stand volume. The degree of the impact can
be sorted as Cunninghamia lanceolata > Pinus massoniana > hard broad-leaved tree species (group).
Overall, the established growth and harvest prediction models for mixed forests with the interval
period and TSCC as independent variables have high fit accuracy and applicability.

Keywords: stand growth model; mixed forest; dummy variable; interval period; composition
coefficient; particle swarm optimization

1. Introduction

The growth and harvest prediction model is a mathematical function that describes
the relationship between stand growth, stand status, and stand condition variables. Based
on this model, the stand growth, harvest, and dieback can be predicted using the ratio
and derivation methods [1,2]. There are two main types of growth and harvest prediction
models. One is the single tree model, established based on traditional linear regression
or nonlinear mixed effects. This type of model can accurately predict the growth pattern
of a single tree, but it cannot directly estimate the growth and harvest at the forest level
due to the lack of density indicators. The forest yield can only be determined through
accumulation calculation, with low model estimation accuracy. This is mainly because the
impact of differences in site conditions and other factors on forest growth is not considered.
The other is the artificial forest or ancient woodland model, established with site quality,
age, and density as independent variables. This kind of stand growth model can directly
predict the growth and harvest at the stand level and reduce the error accumulation of
individual trees.
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Since the 1970s, growth and harvest prediction models have become an internationally
recognized independent research direction. The research mainly focuses on the construc-
tion of theoretical frameworks for forest multi-scale random growth simulation, spatial
evaluation models of site quality growth, harvest and management models for natural
mixed forests [3,4], etc. However, the existing research on growth and harvest prediction
models is mainly conducted on artificial forests or natural pure forests.

Natural mixed, uneven-aged forests have diverse tree species compositions, varying
ages, and complex site environments. It is necessary to take into account these issues
when constructing a growth and harvest prediction model for natural, mixed, uneven-aged
forests [4,5]. However, previous studies have not proposed a model that involves or ad-
dresses all three issues simultaneously. Therefore, it is of great valuableness and practicality
to construct a growth and harvest prediction model for natural mixed, uneven-aged forests,
with the consideration of stand age, site quality, and tree species composition [6,7].

Natural mixed, uneven-aged forests are one of the most important forest stand types.
The importance of natural mixed forests in terms of biodiversity conservation, productivity,
and carbon sequestration capacity has been recognized worldwide. Many related studies
have shown that natural mixed forests have higher ecological resilience than pure forests,
especially mixed coniferous and broad-leaved forests, which show more resilience after
disturbance [8–11]. According to the results of the Ninth Continuous Forest Inventory
in Fujian, the area of mixed coniferous and broad-leaved forests accounts for 8% of total
forests, with a storage volume of 1.24 × 107 m3. How to operate and manage mixed
coniferous and broad-leaved forests well is an important question to guide the practice
of forestry production. Basic research on mixed coniferous and broad-leaved forests such
as growth and harvest prediction models and mixing effects can provide references for
the formulation of scientific and reasonable forest management guidelines. However, a
large number of research methods on growth and harvest prediction models for mixed
coniferous and broad-leaved heterogeneous forests are mainly for pure plantations [12–15],
focusing on the improvement in model parameter estimation methods, such as mixed
effects models and intelligent optimization algorithms [16].

Fujian Province, which has the highest forest coverage rate in China, was selected
as the study area, and mixed coniferous and broad-leaved forests of different ages were
chosen as the study objects. With such a study area as the basis, the issues of stand age, site
quality, and tree species composition in mixed coniferous and broad-leaved forests could
be simultaneously addressed [6]. Two theoretical growth equations, i.e., Korf and Richards,
were used to build the growth and harvest prediction models for the mixed coniferous
and broad-leaved forests. The interval period (referred to as interval, ∆t = t2 − t1,) rather
than the stand age was considered as an independent variable [9]. Site quality grade and
the tree species composition coefficient (TSCC) were introduced to optimize the models.
Using these models, the growth and dynamic changes in the mixed coniferous and broad-
leaved forests at different ages were revealed, which solved the problems of diverse species
composition, varying ages of uneven-aged forests, and complex site environments. The
models are conducive to improving the modern management of forest resources, and the
specific technical route of the models is shown in Figure 1.
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2. Materials and Methods
2.1. Study Area and Survey Data

The study area is located in southeastern China (23◦33′–28◦20′ N, 115◦50′–120◦40′ E).
This area has a subtropical monsoon climate and is warm and humid, with an average
annual rainfall of 1400–2000 mm, which makes it one of the most rainfall-rich provinces
in China. It is rich in forest resources, and the forest coverage is 66.80%. The forest area is
divided into the subtropical broad-leaved evergreen forest area in the central and western
regions and the subtropical monsoonal forest area in the eastern region. It is a research
hotspot for scholars specializing in forestry and ecology and an important place for forestry
production practices (Figure 2).

The data of multi-period samples in this study came from the national forest resources
continuous inventory (abbreviated as Class I) and the second category survey of forest
resources (abbreviated as Class II) in Fujian Province. The data in Class I survey include
5 periods, i.e., 1998, 2003, 2008, 2013, and 2018, and the data in Class II survey include
2 periods, i.e., 2007 and 2017. The distribution of samples is shown in Figure 2, and the
main factors of forest stands are shown in Tables 1 and A1. After excluding abnormal data
via the triple standard deviation method, a total of 3563 sample data were collected, of
which 30% were reserved for the model test. The test samples were sorted based on the
stand quality grades in terms of average DBH, average stand height, and stand volume,
respectively. The data were repeatedly marked 1, 2, and 3, and those marked as 3 were
used as test samples.
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Table 1. Investigation factor statistics of mixed coniferous and broad-leaved forests.

Site
Quality
Grade

Tree Species Composition Advantageous
Tree Species Origins

Class
I

Class
II Number

of
Samples

Average
Age

Average
DBH

Average
Stand

Height

Average
Stand

Volume

Survey
Year

Survey
Year (Year) (cm) (m) (m3/ha)

I Cunninghamia
lanceolata

Pinus
massoniana

Hard
broad-

leaved tree
species
(group)

Hard
broad-leaved
tree species

(groups)

Natural

1998

646 26 14.7 11.9 150.0
2003 2007
2008
2013 2017
2018

II Cunninghamia
lanceolata

Pinus
massoniana

Hard
broad-

leaved tree
species
(group)

Hard
broad-leaved
tree species

(groups)

Natural

1998

1143 24 13.6 10.3 134.0
2003 2007
2008
2013 2017
2018

III Cunninghamia
lanceolata

Pinus
massoniana

Hard
broad-

leaved tree
species
(group)

Hard
broad-leaved
tree species

(groups)

Natural

1998

1254 27 12.8 9.6 116.0
2003 2007
2008
2013 2017
2018

IV Cunninghamia
lanceolata

Pinus
massoniana

Hard
broad-

leaved tree
species
(group)

Hard
broad-leaved
tree species

(groups)

Natural

1998

520 23 12.5 8.7 83.0
2003 2007
2008
2013 2017
2018

Note: The hard broad-leaved tree species (groups) are mainly Schima superba, Castanopsis fargesii, Alniphyllum fortune,
Quercus glauca, Cas-tanopsis sclerophylla, Liquidambar formosana, Castanopsissclerophylla (Lindl.) Schott., Quercus L.,
Cinnamomum camphora, Phoebe bourne, Lithocarpus glaber, Castanopsis fissa, Cinnamomum camphora, Elaeocarpus sylvestris,
Castanopsis eyrie, Phoebe bourne, Liquidambar for-mosana, Castanopsis fissa, Loropetalum chinense, Castanopsis kawakamii,
and other natural hard broad-leaved tree species.
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From Figure 2, it can be seen that a large number of samples are distributed in Nanping,
Sanming, Longyan, and other mountainous areas and some coastal areas. Each of the
samples has an area of 0.067 ha, with a length × width of 25.82 m × 25.82 m. The average
DBH of each tree was measured and determined using a girth ruler. The average stand
height was determined by estimating the standard tree height. The TSCC was determined
using the stand volume, in which the stand volume can be calculated via the binary volume
formula. The stand age was determined by drilling cores of standard trees at 0.3 m from
the ground with a growth cone, and the sampled stand data are shown in Table 2.

Table 2. Statistics of sampled stand data for determining stand age.

Site Quality
Grade

Number of
Samples

Age (Year) DBH (cm) Tree Height (m)

Average Max Min STD Average Max Min STD Average Max Min STD

I 137 24 51 9 3.3 15.2 45.9 13.6 2.5 12.3 25.7 11.2 3.8
II 145 25 48 7 3.2 14.9 40.1 12.1 2.6 11.4 24.8 10.7 3.2
III 109 26 46 6 3.4 13.1 35.7 10.8 2.9 9.6 22.5 8.6 2.9
IV 103 22 51 8 2.7 12.9 36.8 11.2 2.2 8.9 23.2 9.4 2.7

2.2. Construction of an Interval-Based Growth and Harvest Prediction Model for
Different-Aged Forests

For certain types of stands in the same stand environment, a basic model for av-
erage DBH (D), average stand height (H), and stand volume (M) can be established as
y = f (t, β̂, δ) [17], where y is the dependent variable, t is the mean age of stand, β̂ is the
model prediction parameter, δ is the error term, and f is the growth and harvest prediction
model. In the asset evaluation of natural uneven-aged forests, it is necessary to determine
the cutting cycle. However, in reality, the commonly used method for evaluation is the
present value method of selection income, and the corresponding cutting cycle is not con-
sidered in the growth of and changes in the forest. A fixed cutting cycle is often used, which
affects the correctness and fairness of the evaluation conclusions of natural uneven-aged
forests. At the same time, the growth of natural uneven-aged forests is a complex process
with changes, and the age structure is also complex. Therefore, the mean age of stand (t)
in this study was changed to the stand growth interval (∆t, referred to as interval period),
i.e., ∆t = t2 − t1, to solve the problem that the mean age of a stand is not easy to determine.
By choosing two common theoretical growth equations, i.e., Korf and Richards, as the base
models [18], the interval-based growth and harvest prediction model can be derived by
∆t = t2 − t1 as follows:

y2 = a
[
1−

(
1− y1

a

)
× e−c×∆t

]
+ δ (1)

y2 = a

{
1−

[
1−

(y1

a

) 1
b

]
× e−c×∆t

}b

+ δ (2)

In the formulas, y1 and y2 are the stand factors at the beginning and end of the period,
respectively, and a, b, and c are the estimated parameters of the model.

All data were used as the basic modeling data of D, H, and M regardless of TSCC, and
the model parameters were solved using the particle swarm optimization algorithm. The
model was then optimized according to the coefficient of determination (R2). It was found
that the model based on the Richards equation can better describe the growth patterns of
stand average DBH and stand volume, while the model based on the Korf equation can
better describe the growth patterns of stand average height.
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2.3. Construction of the Average Stand Height Growth and Harvest Prediction Model Related to
Site Quality Grade

The three base models are not as effective as D and M in describing the growth
regularity of coniferous and broad-leaved trees, and related studies have shown that the
average stand height is significantly correlated with the site quality of stand. Therefore,
the site quality grade, which is commonly used to evaluate site quality in Chinese forestry
production practices, was introduced as a dummy variable into model (1) to construct the
average stand height growth and harvest prediction model, in which the site quality grade
was used as a dummy variable and the interval period was used as an independent variable.

H2 = f1(Si, ai)

{
1− [1− H1

f1(Si, ai)
]

}
× e− f2(Si ,ci)×∆t + δ (3)

where f 1 (Si, ai) = a1 S1 +a2 S2 +a3 S3 +a4 S4, f 2 (Si, ci) = c1 S1 +c2 S2 +c3 S3 +c4 S4, ai and
ci are model prediction parameters, i = 1, 2, 3, 4. Si is the dummy variable, which can be
0 or 1. When S1 = 1, S2, S3, and S4 are 0, and so on. S1 indicates a medium fertile site quality
grade, and S4 indicates a barren site quality grade.

2.4. Construction of the Growth and Harvest Prediction Model Related to TSCC

The TSCC is in the range of [0, 10]. In forestry production practice, the mixed conifer-
ous and broad-leaved forests are represented by a number from 1 to 10+ tree species, such as
6 hard broad-leaved tree species (group), 2 Cunninghamia lanceolata, 2 Pinus massoniana, etc.,
to describe the tree species composition. In order to improve the prediction accuracy of
the growth and harvest model for mixed forests, the TSCC was introduced to optimize the
growth and harvest prediction models with regard to D, H, and M, and each model was
re-parameterized. The re-parameterized form of the growth and harvest prediction model
for H is:

H2 = f11(Si, Li, ai, kaij)

{
1− [1− H1

f11(Si, Li, ai, kaij)
]

}
× e− f2(Si ,ci)×∆t + δ (4)

H2 = f1(Si, Li)

{
1− [1− H1

f1(Si, Li)
]× e− f21(Si ,Li ,ci ,kaij)×∆t

}
+ δ (5)

H2 = f11(Si, Li, ai, kaij)

{
1− [1− H1

f11(Si, Li, ai, kaij)
]

}
× e− f21(Si ,Li ,ci ,kcij)×∆t + δ (6)

where f11(Si, Li, ai, kaij) =
4
∑

i=1
aiSi

3
∑

j=1
kaijLj, f21(Si, Li, ci, kcij) =

4
∑

i=1
ciSi

3
∑

j=1
kcijLj, kaij is the

estimated parameter of the model; Li is the tree species composition coefficient (TSCC).
i = 1, 2, and 3, representing Cunninghamia lanceolata, Pinus massoniana, and hard broad-
leaved tree species (group), respectively. In this study, the TSCC is divided by 10, so that
Li is in the range of [0, 1] and is more in line with the meaning of the TSCC in forestry
production, i.e., the stand volume (cross-sectional area) of the target tree species/the total
stand volume or cross-sectional area of the stand.

The re-parameterized form of the growth and harvest prediction model with regard to
D and M is:

y2 = f12(Li, ai)

{
1−

[
1−

(
y1

f12(Li, ai)

) 1
b
]
× e−c×∆t

}b

+ δ (7)

y2 = f12(Li, ai)

{
1−

[
1−

(
y1

f12(Li, ai)

) 1
f3(Li ,bi)

]
× e−c×∆t

} f3(Li ,bi)

+ δ (8)
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y2 = f12(Li, ai)

{
1−

[
1−

(
y1

f12(Li, ai)

) 1
f3(Li ,bi)

]
× e− f22(Li ,ci)×∆t)

} f3(Li ,bi)

+ δ (9)

y2 = a

{
1−

[
1−

(y1

a

) 1
f3(Li ,bi)

]
× e−c×∆t)

} f3(Li ,bi)

+ δ (10)

y2 = a

{
1−

[
1−

(y1

a

) 1
f3(Li ,bi)

]
× e− f22(Li ,ci)×∆t)

} f3(Li ,bi)

+ δ (11)

y2 = a

{
1−

[
1−

(y1

a

) 1
b

]
× e− f22(Li ,ci)×∆t)

}b

+ δ (12)

where f12(Li, ai) = a1L1 + a2L2 + a3L3, f22(Li, ci) = c1L1 + c2L2 + c3L3, and f3(Li, bi) = b1L1 + b2L2 + b3L3.

2.5. Solution and Applicability Evaluation of Model Parameters

The model parameters were solved using the particle swarm optimization algorithm,
which is a stochastic evolutionary method based on swarm intelligence [19]. It has a
simple operation, good scalability, and certain robustness. Its basic principle is that each
particle is assumed to know the best position it experiences in the current space and is
denoted as gbest(T). When looking for the minimization optimization problem, there is
gbest(T) = min{kbest1(T), kbest2(T), . . . kbestn(T)}. When the algorithm goes to the next
generation, the particles in the space will update the speed and position according to the
information of the previous generation and the current information. The updated formula is:

xT+1
a = xT

a + zT+1
a (13)

zT+1
a = zT

a + c1 × r1 × kbestT
a − xT

a + c2 × r2 × (kbestT
a − xT

a ) (14)

Substituting the updated velocity into Equations (13) and (14) to obtain a new position,
the particles will update their positions by continuously iterating until the optimal position
is found.

The fit accuracy of the model was evaluated using the root mean square error (RMSE).
The applicability was assessed based on the model accuracy evaluation indicators, including
the total relative error (TRE), mean systematic error (MSE), mean absolute percentage
systematic error (MPSE), and mean prediction error (MPE). The respective calculation
formulas are as follows:

RMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2

(15)

TRE =

n
∑

i=1
yi −

n
∑

i=1
ŷi

n
∑

i=1
ŷi

× 100% (16)

MSE =
1
n

n

∑
i=1

yi − ŷi
ŷi

× 100% (17)

MPSE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣× 100% (18)
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MPE =

1−
tα

√
n
∑

i=1
(yi − ŷi)2

ŷ
√

n(n−m)

× 100% (19)

where yi is the measured value, ŷi is the estimated value, n is the sample size, ta is the
t-distribution value at the confidence level of a = 0.05, ŷ is the mean estimated value and
ŷ = 1

n ∑ ŷi, and i = 1, 2, 3,..., n.

3. Results
3.1. Modeling the Average Stand Height Growth and Harvest Prediction

The TSCC were parametrized differently in model (2) to obtain the results of fit accu-
racy for different forms of parametrized models, as shown in Table 3. The re-parameterized
model (4) fitted best and outperformed the models before parameterization. Thus, the
re-parameterized model (4) was chosen to describe the average stand height growth pattern
of the mixed coniferous and broad-leaved forests, and the model parameters are shown in
Table 4.

Table 3. Goodness-of-fit value of the average stand height prediction model.

Number of Models Root Mean Square Error
(RMSE)/m

Coefficient of
Determination (R2)

(5) 1.252 0.729
(6) 2.049 0.452
(7) 11.894 0.251

Table 4. Parameter values of model (4) calculated using particle swarm optimization algorithm.

Parameters Fitted Value Parameters Fitted Value

a1 6.1150 ka13 3.4420
a2 5.5006 ka21 5.2570
a3 3.9131 ka22 4.8320
a4 3.3187 ka23 3.0180
c1 0.0889 ka31 5.3810
c2 0.0615 ka32 4.2990
c3 0.0454 ka33 4.5980
c4 0.0344 ka41 5.0210

ka11 5.0390 ka42 4.2940
ka12 4.0200 ka43 3.4580

Root mean square
error (RMSE)/m 2.049

Coefficient of
determination (R2) 0.452

ai and ci are the original parameters of the model and have certain biological signifi-
cances. ai and ci are larger than ai + 1 and ci + 1; that is, the average stand height and growth
rate of stands in mixed coniferous forests with good site quality are higher. a1 is closer to a2,
a3 is closer to a4, c1 has the highest value, and c3 is closer to c4, indicating that the average
stand height maxima of site quality grades S1 and S2 are closer, but the average stand height
growth rate of site quality grade S1 is the highest. The average stand height of S3 and S4 are
close to each other, and so is the growth rate. kaij is the TSCC parameter, and different site
quality grades have different kaij values. However, kaij is greater than kai(j+1) at the same
site quality grade, showing a pattern of Cunninghamia lanceolata > Pinus massoniana > hard
broad-leaved tree species (group). The average stand height shows a general pattern of
stand height growth under different site quality grades (Figure 3), with an initial average
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stand height of 2 m and a tree species composition of 2 fir, 2 horsetail pine, and 6 hard
broad-leaved tree species (group).
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The applicability test was conducted on 30% of the sample data that do not participate
in the modeling, a residual plot was drawn, as shown in Figure 4, and residuals were
compared against predicted values of the average stand height growth, as shown in
Figure A1. After calculation, the TRE was 4.26, MSE was 5.18, MPE was 2.24, and MARE
was 4.97, and each index value was within ±10%. It can be seen from the residual plot that
the residual points are randomly distributed and there is no tendency in the direction of the
abscissa, and the distribution of each residual point is not heterogeneous. That is to say, the
average stand height growth and harvest prediction model not only fits the average stand
height of mixed coniferous and broad-leaved uneven-aged forests well, but also eliminates
the homoscedasticity and heteroscedasticity of the model. Therefore, the average stand
height growth and harvest prediction models established in this study can be used for the
average stand height prediction of mixed coniferous and broad-leaved forests in forest
production practice.
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3.2. Establishment of Growth and Harvest Prediction Models for Average DBH and Stand Volume

After fitting and calculation, the fit accuracy results of six growth and harvest predic-
tion models for average DBH and stand volume were obtained, as shown in Table 5. The fit
accuracy of the growth and harvest prediction model for the average DBH was higher than
that for the stand volume, mainly because the DBH was measured by each wood check,
while the stand volume was derived from the binary wood volume model. The fitted RMSE
and R2 values of the six growth and harvest prediction models for the average DBH and
stand volume did not show a significant difference. The R2 value for the average DBH
was greater than 0.839, and the RMSE value was less than 1.615, whereas the R2 value for
the stand volume was greater than 0.658, and the RMSE value was less than 57.000. This
result indicated that the growth and harvest prediction models for the average DBH and
stand volume performed better. The best prediction model of the average DBH for mixed
coniferous and broad-leaved forests with the tree species composition and interval period
as independent variables is model (11), and the model prediction parameters a, b1, b2, b3,
c1, c2, and c3 are 26.071, 0.405, 0.451, 0.758, 0.017, 0.012, and 0.011, respectively. Model (8)
is the best prediction model of the stand volume for mixed coniferous and broad-leaved
trees with different ages, which is related to the tree species composition, whose interval
period is an independent variable. However, its parameter values were not satisfactory
and appeared negative. Therefore, model (7) was chosen in this study, and the model
parameters a1, a2, a3, b, and c are 401.099, 350.913, 304.586, 0.815, and 0.009, respectively.

Table 5. Goodness-of-fit values of the average DBH and stand volume prediction models calculated
using particle swarm optimization algorithm.

Number of
Re-Parameterized

Models

Average DBH Stand Volume

Root Mean Square
Error (RMSE)/cm

Coefficient of
Determination (R2)

Root Mean Square
Error (RMSE)/m3

Coefficient of
Determination (R2)

(8) 1.611 0.839 49.29 0.719
(9) 1.607 0.841 48.592 0.728

(10) 1.612 0.839 56.218 0.658
(11) 1.601 0.841 49.274 0.717
(12) 1.600 0.841 52.813 0.674
(13) 1.602 0.841 49.456 0.714

According to the optimized model and parameter values, as shown in Table 6, the average
DBH and stand volume both showed significant Richards model growth patterns, in which the
average DBH parameters bi and ci varied as Cunninghamia lanceolata < Pinus massoniana < hard
broad-leaved tree species (group), Cunninghamia lanceolata > Pinus massoniana > hard
broad-leaved tree species (group), respectively. The results indicated that the growth rate
in the mixed coniferous forests was Cunninghamia lanceolata > Pinus massoniana > hard
broad-leaved tree species (group), the maximum stand DBH can be replaced by the mean
value, and there is no need to introduce TSCC for description. The effect of tree species
composition on stand volume was mainly on the maximum stand growth, and the effect
was in the order of Cunninghamia lanceolata > Pinus massoniana > hard broad-leaved tree
species (group).

The applicability test was conducted on 30% of the sample data that did not participate
in the modeling, a residual plot was drawn, as shown in Figures 5 and 6, and residuals
were compared against predicted values of the average stand height growth and stand
volume, as shown in Figures A2 and A3. After calculation, the applicability evaluation
value of the average DBH growth and harvest prediction model was 3.14 of TRE, 4.01 of
MSE, 0.99 of MPE, and 3.82 of MARE. Each value was within the range of ±5%. The
applicability value of the stand volume growth and harvest prediction model was −6.24 of
TRE, 5.97 of MSE, 3.26 of MPE, and 7.19 for MARE, all within the range of ±10%. It can
been seen from Figures 5 and 6 that the residual points are randomly distributed and show
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no tendency in the direction of the abscissa, and the distribution of residual points exhibits
no heterogeneity. That is to say, the average DBH and the stand volume growth and harvest
prediction models not only fit the average DBH and the stand volume of mixed coniferous
and broad-leaved forests at different ages well, but also eliminate the homoscedasticity and
heteroscedasticity of the models. Therefore, the average DBH and stand volume growth
and harvest prediction models developed in this study can be used for forecasting the
average DBH and stand volume in mixed coniferous and broad-leaved forests in forestry
production practice.
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Table 6. Optimized model parameters and accuracy evaluation value of the average DBH and stand
volume prediction models.

Parameters a b1 b2 b3 c1 c2 c3

Root Mean
Square Error
(RMSE)/cm

Coefficient of
Determination

(R2)

Average DBH 26.071 0.405 0.451 0.758 0.017 0.012 0.011 1.600 0.841

Parameters a1 a2 a3 b c Root mean square
error (RMSE)/m

Coefficient of
determination (R2)

Stand volume 401.099 350.913 304.586 0.815 0.009 49.29 0.719

4. Discussion

Generally, the average age of a stand is usually considered as the forest age, no matter
whether it is a same-aged forest or a different-aged forest. There are three main ways to
determine the average age: 1© Use a growth cone to drill the core at a standard wood
0.3 m from the ground. 2© Cut the forest points of the standard wood; the disk at the
root neck of the sawn tree is No. 0, and the number of annual rings is counted as the
age of the tree. 3© Establish the mathematical relationship between stand age (dependent
variable) and average DBH (or crown width, independent variable) [20]. However, the
age structure of different-aged forests is complex and has a large distribution range. For
example, Meng Xianyu [21] studied the age structure of natural Xing’an larch forests and
found that the age structure of stands presents a single-peak mountain curve, which is
more complex than that of plantations. Hua Weiping [22] built a dynamic prediction
model of the volume of natural stands of Pinus taiwanensis by replacing the age of stands
with intervals, with a correlation coefficient of 0.970. The fitting effect is higher than the
goodness-of-fit value of the stand volume prediction model established in this study. The
main reason is that there are differences between the modeling objects and the number of
samples, but the fitting has passed the applicability test. Therefore, this study uses two
biologically significant theoretical growth equations, i.e., Korf and Richards, as the base
models to derive a stand growth and harvest prediction model with the interval period as
an independent variable. This model can predict the future yield only through the initial
yield and interval, solving the problem that the age is not easy to determine in the growth
and harvest process of heterogeneous forests.

The site quality is the productive potential of a given forest or other vegetation type
on a site. The site quality of a plantation is generally evaluated using the site grade index or
site index. For an uneven-aged forest, the dominant height or average stand height growth
model [23–26] with the site quality grade as a dummy variable has been constructed. The
experimental results are similar to the fitting results of the average stand height growth and
harvest prediction model established in this study, with high fitting accuracy and better
expression of the dynamic growth pattern. It solves the problem that the site environment
of different-aged forests is complex and difficult to evaluate.

Different-aged forests generally exist in realistic stands in the form of mixed forests,
forming stands with higher ecological resilience. In forest resource management databases,
the tree species composition structure is often expressed by species composition coefficients,
and the species types are mainly divided into Cunninghamia lanceolata, Pinus massoniana,
and hard broad-leaved tree species (group). Previous studies have shown that the inten-
sities of intraspecific competition and interspecific competition among trees in different
mixed proportions are different, which may lead to differences in the growth rates of tree
species, such as the average DBH, average stand height, and stand volume in different
periods [27–30]. This study found that the TSCC (or mixing ratio) of mixed coniferous
and broad-leaved forests differed in the average stand height, average DBH, and stand
volume of the stand growth, and the tree species composition mainly affected the max-
imum growth and growth rate of the average stand height, the growth rate of the aver-
age DBH, and the maximum growth of the stand volume. The effect is in the order of
Cunninghamia lanceolata > Pinus massoniana > hard broad-leaved tree species (group). That
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is, increasing the mixing ratio of Cunninghamia lanceolata can obtain higher stand produc-
tivity, which is consistent with the results of most studies that showed the increase in the
mixing ratio of conifers or fir can improve the stand productivity [31,32]. Therefore, in
forestry production, increasing the mixing ratio of hard broad-leaved tree species (group)
not only can increase stand productivity but also improve the ecological resilience of forests.

As an important ecological asset, the asset evaluation business of mixed coniferous
and broad-leaved uneven-aged forests is increasing with the continuous improvement in
their property rights systems and the development of forest tree circulation and trading
systems. However, in the process of using the selective cutting income method to evaluate
the mixed coniferous and broad-leaved uneven-aged forests, asset evaluation practitioners
always ignore the changes in the growth of the forest and adopt a fixed selective cutting
intensity and cycle rather than the corresponding selective cutting intensity and cycle. This
unscientific approach will affect the correctness and fairness of the evaluation conclusions
of the mixed coniferous and broad-leaved uneven-aged forests. This study is based on a
dynamic growth model with the interval period as an independent variable. By analyzing
the cutting cycle and selection intensity, the selection income method can be improved to
determine the asset evaluation value of the mixed coniferous and broad-leaved uneven-
aged forests, providing technical support for scientifically determining the cutting cycle.

In this study, the site quality grade was introduced as a dummy variable into the
average stand height growth and harvest prediction model, which improved the fit accuracy
of the model. This indicates that the dummy variable can effectively integrate the mixed
coniferous and broad-leaved uneven-aged forests and enhance the compatibility of the
model. After re-parameterization by introducing the TSCC into the interval-based growth
and harvest prediction model, the issues in terms of stand age, site quality, tree species
composition, etc., in the mixed coniferous and broad-leaved uneven-aged forests were
solved. In addition, there are also limitations of the established models; for instance, the
TSCC should be in the range of 1~10. Due to the limitation of the sample plot, attention
should be paid to the applicable area of the model. At present, the model is only applicable
to Fujian, China, where the dominant tree species are hard broad-leaved tree species (group).
In future research, the applicability of the model can be increased by increasing the number
of samples from different regions.

5. Conclusions

In this study, an average stand height growth and harvest prediction model of mixed
coniferous and broad-leaved stands was established, with site quality grade as a dummy
variable and interval period and tree species composition coefficient (TSCC) as independent
variables. With interval period and TSCC as independent variables, the growth and harvest
prediction model for the average DBH of mixed coniferous and broad-leaved forests
had a fit accuracy of the root mean square error (RMSE) of 1.600 and the coefficient of
determination (R2) of 0.841. The applicability evaluation indicators, i.e., total relative error
(TRE), mean systematic error (MSE), mean prediction error (MPE), and mean absolute
percentage systematic error (MARE), were within the range of [−4.01%, 3.82%], indicating
that the model is suitable. With interval period and TSCC as independent variables,
the fit accuracy of the growth and harvest prediction model for the stand volume of
mixed coniferous and broad-leaved forests were 49.290 of RMSE and 0.719 of R2. The
applicability evaluation indicators, i.e., TRE, MSE, MPA, and MARE, were within the range
of [−6.24%, 7.19%], indicating that the model is suitable.

Using these models, the interval period instead of stand age can be used to determine
the age in the growth and harvest process. After re-parameterization by introducing TSCC,
the fit accuracy became higher than before. Overall, the established growth and harvest
prediction models related to the TSCC of mixed coniferous and broad-leaved heterogeneous
forests can better describe the forest growth patterns and provide a basis for further research
on the forest growth succession and growth simulation.
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