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Abstract: Park green spaces (PGSs) are an important component of urban natural carbon sinks, while
their spatial morphological patterns can affect the carbon sequestration capacity themselves. This
study selected six typical urban parks in the central district of Shanghai and analyzed the correlation
between spatial morphological indices and CO2 concentration distribution of the PGSs based on
ENVI-met and BRT models. It further explored the interaction mechanisms in the carbon cycling
process of urban PGSs under the influence of different spatial morphology. The results shows that
urban PGSs play the role of carbon sink in diurnal period, and the difference of CO2 concentration
distribution in green space is the largest at 11 a.m. The green biomass (Gb) and arboreal area ratio (Ar)
are the most important indices affecting the distribution of carbon concentration. The two indices
describing spatial patterns, namely, Cohesion (Co) and canopy density (CanopyD) also significantly
impact CO2 concentration. These indices have a positive impact on carbon sinks. The parkway area
ratio (Pr) is a disturbing index that also has an obvious negative impact on the distribution of CO2

concentration. The moderate herbs area ratio (Hr) and open land area ratio (Or) are conducive to
regulating the microclimate environment and enhancing carbon sink capacity. There is an interactive
relationship between spatial indices and microclimate environment indices, as well as physical and
physiological indices in the carbon sink process of green areas. The study suggested that in green
space management aiming at carbon reduction, combined with the influence threshold of Gb on
carbon reduction and paying attention to the importance of green amount on carbon sequestration,
the vegetation density and allocation ratio should be rationally distributed to form a park green space
landscape with efficient carbon fixation.

Keywords: urban heat island (UHI); blue-green space; riverfront area; spatial morphology; urban
cooling effect (UCI); boosted regression trees (BRT); marginal effect (ME); Shanghai

1. Introduction

Climate change is a constant threat to the world’s environment due to anthropogenic
greenhouse gas emissions [1]. In order to confront global warming, fast urbanization, and
serious environmental problems, the global community has recognized the raising of green
carbon sinks at the urban level as a successful way to mitigate the raise of atmospheric
CO2 concentration [2]. Park green spaces (PGSs) are a necessary part of the natural carbon
sink in metropolitan areas and a vital way to deal with climate change as a natural-based
solution [3,4]. In urban centers, PGSs are the main green space type in highly built-up
environments [5]. Analyzing the carbon sink effect of this type and its internal spatial
carbon cycle process is crucial for reducing carbon and enhancing the carbon sink capacity
in urban areas.

Studies determining the carbon sink capacity of green spaces in urban areas are
mainly conducted through remote sensing modeling methods, sample plot inventories,
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and microclimate observation and dynamic simulation methods (Table 1). The remote
sensing modeling methods employ a transfer function for calculating the carbon density
of urban green vegetation areas by correlating in situ measured plot carbon estimates and
remotely sensed datasets [6,7]. For example, InVEST, which conducts spatial simulations
of ecosystem services, and I-Tree Landscape, which studies the performance of urban
carbon sinks, are two basic tools for estimating the carbon sink capacity of urban areas
based on remote sensing modeling methods. The carbon storage and sequestration module
in InVEST uses a land use/land cover (LULC)-based transfer function for carbon stock
estimation. In addition, i-Tree Landscape uses a tree canopy cover (TCC)-based transfer
function for carbon stock estimation [8]. As a static method for estimating carbon stock
statistics with monthly and annual temporal resolution, the sample plot inventory method
is most used in forest carbon accounting and plant ecology research [9]. Due to the lack of
tree biomass equations for urban area development, there may be significant discrepancies
between estimates of carbon stocks derived by sample plot inventories versus actual carbon
sink effectiveness. The microclimate observation method studies the carbon sink capacity
at the urban slice and community scale by obtaining CO2 concentrations or gas fluxes.
Site-based measurements capture the dynamic patterns of carbon concentration at the
observed sites through long-term observations, research facilities or portable instruments
with high accuracy. The data from site measurements can be accurate to the hour or even
minute in time resolution [10]. ENVI-met uses empirical and process-based simulations of
vegetation biomass and microclimate interactions to analyze changes in the distribution
patterns of carbon concentrations in cities at small and medium scales [11].

Table 1. Methods estimating urban carbon sinks in previous studies.

Method Data and Model Used Empirical Study Study Scale

Remote
sensing

modeling

By making correlations between the
remote sensing datasets and the in situ
measured plots. Transfer functions were
used to calculate the carbon density of
urban green vegetation areas. Models
such as i-Tree Landscape, InVEST, etc.
were used to estimate carbon sink indices
in sample plots.

[8,12] Cities and urban
neighborhoods

Sample plot
inventory

By using forest inventory data, biomass
conversion indices and other parameters. [13] City clusters

By using tree species-specific allometric
equations or standard wood method to
estimate the average biomass in the
sample plots.

[14] Urban areas

Microclimate
observation and

dynamic simulation

By using eddy covariance method,
mobile measurements or ENVI-met
dynamic simulation.

[11,15] Urban areas or urban
neighborhoods

The summary of carbon sink estimation processes applicable to urban areas implies
that microclimate observation and dynamic simulation are the most relevant methods
for studying the carbon sink effect of green spaces in urban microscale settings. Among
them, the in situ observation method currently has some application limitations. Since
the density of fixed monitoring stations is sparse, it is difficult to describe the spatial
distribution of CO2 concentration within the green space accurately [15]. Using portable
sensors to conduct mobile measurements usually causes certain data deviations [16] and
costs workforce and material resources. In addition, monitoring results are often inevitably
influenced by human activities during field monitoring of CO2 concentrations [15,17,18].
For example, in the season of high traffic flow, the main driving factor of CO2 concentration
change is traffic emission. However, when the commuting rate decreases, the CO2 absorbed
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by urban vegetation can offset anthropogenic CO2 emissions such as traffic and human
respiration [19–23].

PGSs reduce CO2 concentration mainly by vegetation fixing carbon and releasing oxy-
gen through photosynthesis. Photosynthesis uses light, water, and CO2 as raw materials,
and enzymes catalyze the process at the appropriate temperature [24,25]. Trees mitigate the
temperature and humidity of the local microclimate through transpiration and heat dissipa-
tion and can alter or block air currents [26]. Temperature changes in the underlying surface
trigger the change in air convection, wind speed, and wind direction. These processes
result in differences in the distribution of CO2 concentrations [15,16,27]. Therefore, a series
of physiological indices such as photosynthetically active radiation (PAR), Transpiration
flux, and stomatal conductivity of plants affect photosynthetic efficiency [28,29]. Photo-
synthesis also has certain climate environment dependencies [15,30]. There is a certain
balance between photosynthesis and transpiration in plants [31]. When water is scarce,
plants reduce transpiration and CO2 uptake [32]. Stomatal conductivity is a key parameter
that determines the transfer of hydrothermal and kinetic fluxes between plants and the
atmosphere. Biological aspects such as stomatal conductance and leaf surface temperature
had an influence on the photosynthetic capacity per unit area of leaf for a variety of plants
and varied in different stages of the life cycle [33]. These differential feedbacks go on to
regulate the process of vegetation-atmosphere interactions [34].

Photosynthesis is a complex biological process in which plant species, the structure of
green space, and the urban environment can influence its output [22,23]. The photosyn-
thetic efficiency of individual plants relates to tree species, tree age, and green biomass
per plant [35,36]. The tree species with good carbon sequestration capacity in China in-
clude broad-leaved species such as balsam fir and acacia [37,38]. The differences in the
carbon sequestration and oxygen release capacity of vegetation communities arise from
differences in community species composition, density, and green biomass [18,39]. Carbon
sequestration efficiency is higher in evergreen, mixed evergreen–deciduous, and mixed
broad-leaved–conifer green spaces, as well as in plant communities with a combination of
trees and shrubs [5,36,40]. When looking at the impact of different land types on carbon
sink capacity at the urban and street level, studies found that more vegetation led to lower
CO2 concentration [41]. Lawns, soils, and water bodies also play a certain role in green
space carbon sink [42]. Spatial pattern indices such as patch edge density, sprawl index,
Shannon diversity index, and patch cohesion index also had significant effects on forest
carbon storage [40]. Three-dimensional green biomass and green coverage are important
spatial indices affecting carbon sinks at the scale of urban areas, which are positively
correlated with carbon sequestration effects [22,43,44]. Canopy density and community
density are also important indices affecting the efficiency of carbon sequestration in plant
communities [45]. There are large spatial differences in the carbon storage capacity of
urban trees across regional contexts (e.g., climate and soils), impervious surfaces, and other
indices in studies of urban regional environments impact. [40]. Moreover, the CO2 concen-
tration in the suburban areas is lower than in the urban centers [46]. The large amount of
carbon stored in urban trees varies greatly across the landscape. As the impervious surface
increases, the density of carbon stored in trees will decrease significantly [8,40,47].

Through the previous studies, the ecological space composed of specific vegetation
has different carbon sequestration capabilities. However, most studies lacked discussion
on the carbon cycle process inside green space. The carbon sequestration process of green
space is a dynamic process in which vegetation, spatial pattern factors, microclimate factors,
and physiological and biological factors interact to affect the carbon cycle. By synthesizing
various indicators, we hypothesized that there is an intrinsic relationship between these
three factors, which works together on the carbon absorption process of green space.

This study selected six typical PGSs located in the urban center of Shanghai. By
using simulation software based on the interaction of climate dynamics between soil,
vegetation, and atmosphere, as well as a machine learning model, we attempted to explore
the influence and interaction mechanism of different spatial patterns inside the green parks
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on atmospheric CO2 concentration distribution. The main contents of the study include:
(1) We simulated the spatial and temporal distribution of carbon concentration in green
space through the Envi-met software based on climate dynamics and physiological and
ecological processes. We mainly focused on the ability of PGSs to reduce CO2 concentration
and the patterns of carbon concentration differentiation within PGSs. (2) We explored
the influential importance and the nonlinear correlation that spatial indices and other
related indices have on CO2 concentration by using the BRT machine learning model.
(3) The internal process mechanism of spatial differentiation of carbon concentration in PGSs
was found through the analysis of the interaction between spatial indices, microclimate
indices, and physical and physiological indices. This study provided some explanation and
reference for cities to improve the ecological carbon sink of urban green space reasonably
and accurately.

2. Study Area and Methods
2.1. Study Area

Shanghai is located between 120◦52′ and 122◦12′ east longitude and 30◦40′ and 31◦53′

north latitude. It has a subtropical monsoon climate with four distinct seasons, full sunshine,
and abundant rainfall. Spring and autumn are shorter, while winter and summer are longer.
Shanghai is the most urbanized city in China, according to the country’s seventh national
census. By 2020, there were 406 parks in Shanghai, and the per capita green area of parks
has increased to 8.5 square meters.

The study selected six typical urban PGSs in the central district of Shanghai to explore
the CO2 concentration within (Figure 1). Block 1 is Shanghai Fuxing Park, which covers
an area of 4.47 hectares. It integrates Chinese and Western garden culture and is the only
urban park in Shanghai that retains French classical style. Blocks 2, 3, and 4 are the central
components of Yanzhong Greenbelt in Shanghai, occupying 3.14 ha, 9.96 ha, and 4.47 ha,
respectively. Yanzhong Greenbelt is a large public green space designed and constructed
to improve the ecological environment of Shanghai. Block 5 is Shanghai People’s Park,
covering an area of 11.26 ha. It is a recognized central park in Shanghai and is located in the
most prosperous area in the center of Shanghai. Block 6 is Jing’an Sculpture Park, covering
an area of 8.81 ha, which is a model of the combination of PGSs and cultural facilities. The
six study areas are located in Huangpu District and Jing’an District in the central city area
of Shanghai. The greening ratio is between 66.98% and 69.51%, and the waterbody ratio is
between 2.07% and 4.82% (Table 2).

Table 2. Study area profile.

Number Park Name Location Area Greenery Area
Ratio

Waterbody Area
Ratio

Block 1 Fuxing Park Huangpu District 8.23 ha 68.53% 3.14%
Block 2 Ganjue Park Yanzhong

Greenbelt,
Huangpu District

3.14 ha 69.51% 2.13%
Block 3 Ziran Park 9.96 ha 69.60% 4.82%
Block 4 Dizhi Park 4.47 ha 68.65% 2.07%
Block 5 Shanghai People’s Park Huangpu District 11.26 ha 66.98% 2.38%
Block 6 Jing’an Sculpture Park Jing’an District 8.81 ha 67.41% 3.63%

2.2. Quantitative Index System Affecting Carbon Concentration Distribution
2.2.1. Selection and Quantification of Spatial Pattern Indices

A total of nine spatial pattern indices were selected to construct the index system.
Among them, three-dimensional green biomass density, canopy density, and cohesion are
the spatial structural indices of green spaces. In addition, arbors, shrubs, herbs, parkways,
open land, and waterbody area ratio are the spatial composition indices of green spaces.
The reasons for the selection of indices are as follows.
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Figure 1. Map of geographical location of study area. The numbers 1-6 in the figure represent the
names of the sample blocks of urban PGSs in the study area. The names and composition profile of
the blocks are listed in Table 2.

1. Three-dimensional Green Biomass Density

Three-dimensional green biomass density (Gb) is the volume occupied by all green
stems and leaves of plants in the space per square meter. Compared with the two-
dimensional indices, it can show the level of ecological benefits of green space from a
multi-level perspective [48]. According to the three-dimensional green volume model of
Zhou, the three-dimensional green biomass density of trees was calculated on a plant-by-
plant basis using the relationship equation between standing crown height and crown
diameter [49]. Shrubs and herbs are ground cover plants. Their green biomass density is the
product of the area occupied during scenario simulation modeling and their set height [50].
The sum of the green density of trees, shrubs, and grasses is the total Gb, and was calculated
and counted in Excel2021 (Microsoft office, Redmon, WA, USA) and ArcGIS10.4 software
(Esri, Redlands, CA, USA).

2. Canopy Density

Canopy density (CanopyD) is an important index reflecting the structure and density
of the stand. It is often determined by the ratio of canopy projection area to woodland
area [51]. Canopy densities mentioned in this study are all vertical canopy density. The
canopy area of a single tree was calculated by using the canopy radius formula in ArcGIS
to obtain the estimated canopy density [52].

3. Cohesion

The degree of patch agglomeration is an effective index to evaluate the connectivity
of the spatial structure characteristics of the landscape [53]. The study chose the patch
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cohesion index (Co) to evaluate the connectivity of green landscape in the park. As the most
dominant green landscape, trees and shrub patches were chosen to calculate the cohesion
index in the whole, which was used to measure the natural state connectivity of the green
space. As the distribution of each tree patch becomes more and more concentrated, the
natural connectivity increases, and the patch cohesion index increases. Cohesion was
calculated in Fragstats4.2 and its formula is [54]:

Cohesion =

[
1−

∑m
i=1 ∑n

j=1 Pij

∑m
i=1 ∑n

j=1 Pij
√aij

] [
1− 1√

A

]−1
× 100, (1)

where i is the landscape type, j is the number of patches, n is the sum of patches in landscape
type i, m is the sum of landscape types, aij is the area of the patches, pij is the perimeter of
the patches, and A is the entire landscape area. 0 ≤ Cohesion ≤ 100.

4. Green space composition index

Discussing the correlation between green space compositions and CO2 concentration
differentiation from the perspective of land use type may provide insight for later park
green space planning. According to the research modeling, this study abstracted the internal
space of the park into six types at the two-dimensional level: arboreal area, shrub area,
herbs area, parkways, open land, and waterbody. The composition indices were expressed
as the percentage of the area of each type in the total area, which were calculated statistically
in ArcGIS software. All land use types are mutually exclusive, so the percentages of the six
types add up to 100%.

2.2.2. Calculation and Analysis of Spatial Indices by Means of Unit Raster Statistics

This research examined the correlation between spatial morphological indices, mi-
croclimatic and biological indices at various scales to identify the spatial variation of CO2.
Hence, ArcGIS software was employed to establish fishing nets to partition the study
area of every park into several 20 m × 20 m grids. Regarding the setting of raster size,
when exploring the landscape pattern indices, it is generally considered that 5–35 m is a
suitable range of granularity for analysis, and the change of landscape aggregation with
granularity is highly predictive [55–57]. In the studies of community-scale analysis of CO2
concentration distribution [30], three-dimensional green volume in urban parks [50], and
plant canopy space and microclimate effects in residential green areas [58], the unit space
was divided according to the size of 20 m × 20 m. In summary, this study extracted the
coordinate range information of the study area from ArcGIS software to generate a matrix
of points with the same spatial interval to form a unit space of 20 m × 20 m for calculating
the indices. Through the above pre-processing method, the specific interpretation of each
index is shown in Table 3.

Table 3. Implications of spatial pattern indices.

First Level
Variables Second Level Variables Definition and Description

Spatial structural variables

Green biomass (Gb) The volume of space occupied by the stems and leaves of all
growing plants per square meter

Canopy density (CanopyD) The ratio of the total projected area of the canopy of the tree to the
total area of the ground in direct sunlight within a single grid

Cohesion (Co) Reflect the aggregation and dispersion of patches in landscape

Spatial compositional
variables

Arboreal area ratio (Ar) The percentage of arbor tree area per unit of space
Shrub area ratio (Sr) The percentage of shrub area per unit of space
Herbs area ratio (Hr) The percentage of grassland area per unit of space
Parkway area ratio (Pr) The percentage of roads or trails area per unit of space

Open land area ratio (Or) The percentage of entrance space, open space or building area per
unit of space

Waterbody area ration (Wr) The percentage of waterbody area per unit of space
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2.2.3. Microclimate and Physical and Physiological Indices Influencing Carbon
Cycle Interaction

CO2 concentration data in the Atmosphere module of ENVI-met5.2 was used to repre-
sent the distribution of CO2 concentration in PGSs. Since the most obvious differentiation
of CO2 concentration occurs at 11 a.m. in the daytime, each unit space was taken as the
statistical sample unit for standardization processing. The mean value of atmospheric CO2
concentration difference in unit space at 11 a.m. was calculated—namely, Cstd. Cstd—as the
normalized CO2 concentration data, which represents the level of air CO2 concentration in
this unit space.

The specific calculation method for Cstd is as follows:

Cstd =
1
n
·∑n

i=1

(
∑5

j=1 Ch

5
− ∑m

k=1 Ch

m

)
(2)

where Ch is the original CO2 concentration of each grid at a certain height (h) obtained
from simulation, h is the height of grids (h1 = 0.3 m, h2 = 1.5 m, h3 = 4.5 m, h4 = 7.5 m,
h5 = 10.5 m), j is the serial number of the selected height and its maximum is 5, n is the
amount of grids in each 20 × 20 unit space, and m is the amount of grids in each block.

According to the formula, the smaller Cstd is, the lower the CO2 concentration in the
unit space is. Cstd < 0 indicates that the CO2 concentration in the unit space is lower than
the average concentration in the block, and vice versa.

The mean values of other impact indices simulated by ENVI-met in each unit space
were normalized. A total of eight indices simulated by ENVI-met software were selected to
be added to the discussion of the interaction mechanism of spatial patterns affecting CO2
concentration. Microclimate indices affecting surface–air interaction, such as air tempera-
ture (AT), relative humidity (RH), wind speed (WS) and surface albedo (SA), were selected.
Photosynthetically active radiation (PAR), turbulent kinetic energy (TKE), transpiration
flux (VF), and stomatal resistance (SR) were the physical or biological indices associated
with the photosynthetic response of vegetation. AT, RH, WS, and CO2 concentration were
calculated in the same way. After calculating the difference of simulated points, the average
value in the unit space was taken. SA does not need to consider the height, and the index
was directly taken as the mean value in the unit space. PAR, TKE, VF, and SR are indices
within the organism, so the mean values of the biological indices in the unit space were
calculated after the data of five heights of each simulated point were added. The specific
explanation of each index is shown in Table 4.

Table 4. Implications of carbon cycle interaction mechanism influencing indices.

First Level
Variables Second Level Variable Definition and Description

Microclimate and
environmental
variables

Air temperature (AT) Physical quantity that shows the heat in the air comes mainly from
solar radiation

Relative humidity (RH) Vapor pressure in the air as a percentage of saturated vapor pressure
Wind speed (WS) The speed at which air moves with respect to a fixed point

Surface albedo (SA) The ratio of the surface reflection flux to the incident solar radiation
flux on the surface of the green space

Physical and physiological
variables

Photosynthetically
active radiation (PAR)

The spectral component of solar radiation that is effective for
plant photosynthesis

Turbulent kinetic
energy (TKE)

Turbulent kinetic energy is a variable in micrometeorology that
signifies the strength of turbulence and relates to the transport of
properties such as atmospheric momentum, heat, and temperature.

Vapor flux (VF) The amount of water vapor emitted to the air per unit of plant surface
area per unit of time

Stomatal resistance (SR) The force that prevents the diffusion of water vapor from mesophyll
cells into the atmosphere
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2.3. Study Methods
2.3.1. ENVI-Met Dynamic Simulation

ENVI-met5.0.2 software (developed by Michael Bruse, at the Bochum, German) was
used to simulate the microclimate of PGSs. ENVI-met is a climate simulation software
developed by the team of Bruse and Fleer in Germany, which creates a three-dimensional
model of the study area to simulate its microclimate. In this study, the database in ENVI-
met software can configure the composite structure of trees, shrubs, and herbs and modify
the parameters of soil layer and water body according to the actual situation of urban park.
The tree database is abundant, can be selected according to the tree species and growth
rules. Canopy width, height, and other data of each tree species support users to modify
the suitability according to local conditions.

The simulation date of this study was 21 June 2022, and the meteorological data
were obtained from the meteorological station of Shanghai Hongqiao Airport on the
Weather Underground website [59]. The initial input meteorological parameters and
three-dimensional modeling parameters of the plot are shown in Table 5. With reference to
the research on the photosynthetic characteristics and configuration of various dominant
tree species in Shanghai [35,60], and combined with the distribution of each tree species,
Platanus, Robinia, Cinnamomum, Privet, and Metasequoia were selected, respectively, and
were constructed according to the actual landscape composition.

Table 5. ENVI-met setting of basic environment values for scenario simulation.

Input Category and Parameter Parameter Value

Modelling parameter Roughness 0.01
Grid settings (dx, dy, dz) 2 × 2 × 3 m

Configuration file setting

Temperature range 17–28 ◦C
Humidity range 45%–75%
Wind speed 2.5 m/s
Wind direction 135◦ (from the west)

Grass 0.05 m
Shrub 0.5 m
Soil Sandy loam

Silty clay loam
Sandy clay
Clay loam

Tree species Platanus
Robinia
Cinnamomum
Privet
Metasequoia

Many scholars have used ENVI-met to conduct microclimate studies and verified the
validity of the simulation results [61–64]. In this study, the simulation results of ENVI-met
were compared with the observed values to verify the validation of the software on CO2
concentration. Fuxing Park, one of the research objects, was selected as the measured site,
and 10 monitoring points were arranged (Figure 2). A CO2 real-time measuring instrument
and a hand-held meteorological instrument were used to measure the meteorological
indices and CO2 concentration at 1.5 m above the ground seven times at ten sites between
8 a.m. and 18 p.m. on 18 September 2022. Finally, the average value of seven measurements
at each point was taken as the measured value of CO2 concentration at that point to verify
the simulated data.
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Figure 2. Distribution of measuring points and measured values: (a) distribution map of field
measuring points; (b) comparison of observed and simulated mean values at each point. The
numbers 1–10 in the figure represent the selected on-site monitoring points.

Two verification methods, root mean square error (RMSE) and mean absolute percent-
age error (MAPE), were used to evaluate the deviation between simulated and measured
values. Among them, RMSE measures the absolute deviation between simulated value
and measured value. The lower the RMSE value is, the better the simulation accuracy
is; otherwise, the worse it is. The relative size of deviation between simulated value and
measured value measured by MAPE is generally believed to be less than 10%, indicating
high accuracy of simulation prediction [65].

The RMSE value of CO2 concentration was 1.67 ppm and the MAPE was 8.4%. The
RMSE of AT was 0.168 ◦C, and the MAPE was 7.01%. The RMSE value of RH was 0.699%,
and the MAPE was 1.58%. Concerning the error value of the two verification methods of
model in this study, it can be considered that ENVI-met simulation is able to predict CO2
concentration accurately.

2.3.2. BRT Machine Learning Model

The BRT model is a self-learning method based on categorical regression trees, devel-
oped by Elith et al. in 2008. It uses boosting techniques to fit multiple decision trees to
determine the optimal model [66]. Compared with traditional regression models, the BRT
model has strong adaptability to datasets and can process continuous data and classified
data. In addition, the BRT model is not sensitive to multiple linearity and does not need to
consider the multicollinearity problems faced by multiple linear regression analysis and
can reflect the interaction between variables.
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The BRT model in this study was executed using the dismo package of RStudio
(Posit, Boston, Massachusetts, USA). The dependent variable was the atmospheric CO2
concentration after unit space standardization treatment (Cstd). The independent variables
were the spatial indices of PGSs, microclimate, and physical and physiological indices
after unit space standardization. The model parameters were set to tree complexity = 3,
learning rate = 0.001, bag fraction = 0.5, and the data type was Gaussian distribution. The
model extracted 50% of the data for analysis and 50% for training, and cross-validation was
performed 10 times to estimate the number of optimal trees.

2.3.3. ME Curve and Fitted Scatter of the BRT Model

The output result of the BRT model scales the sum of relative influences of each
variable to 100. The contribution ratio of each index can determine the importance of
each independent variable indices to Cstd in unit space. The greater the value of the
index contribution ratio, the greater the correlation with the dependent variable. The BRT
model can also simulate the marginal effect (ME) of the independent variable, reflecting its
contribution to the dependent variable in different intervals. It is necessary to determine
the meaning represented by the ME curve in this study:

1. The fitted function of the Y-axis in the ME curve is the slope value of the total effect
curve corresponding to the index and the dependent variable. When the ME curve showed
a downward trend, the larger the index, the better the effect of reducing CO2 concentration;
on the contrary, when the ME curve showed an upward trend, the greater the index, the
worse the effect of reducing CO2 concentration.

2. The slope of the ME curve represents the degree of marginal utility change. When
the absolute value of the slope of the ME curve is large, the marginal utility increases greatly.
When the slope degree of ME curve changes greatly, such as from a sharp downward trend
to a gentle one, the value of this inflection point may be a critical value for the index to play
a role in reducing CO2 concentration.

When analyzing the ME curves of spatial indices and CO2 concentration, it will be of
more help to combine with the fitted scatter plots. The meaning of the coordinate axes of the
fitted scatter plot is the same as that of the ME curve. The Y-axis is the fitted function, and
the X-axis is the value of the spatial indices. The meaning of the fitted scatter is as below.

1. When a certain spatial index in the fitted scatter plot is relatively evenly distributed
on the X-axis and has a similar upward or downward trend to the ME curve, it can be
confirmed that the nonlinear relationship of this ME curve is representative.

2. If a specific spatial index has only a few scattered points in a certain value interval of
the X-axis, it implies that only a small number of samples have such spatial characteristics.
If the ME curve of this spatial index fluctuates at this time, it is more likely to be caused by
other indices.

3. Similarly, if the scattered points of a specific spatial index are too dense in a certain
value interval of the X-axis, it may cause more fluctuation of the ME curve by excessive
data volume. In this case, we will pay more attention to the trend of its overall change.

Through the combined analysis of these two types of figures, the statistical data
characteristics of the spatial pattern of PGSs can be better understood so as to have a
better investigation of the nonlinear relationship between spatial pattern indices and
CO2 concentration.

2.3.4. Scatter Analysis of Spatial Pattern Indices and Carbon Cycle Interaction Indices

In the discussion, the relationships between spatial indices, microclimate indices, and
physical and physiological indices were further discussed. When discussing the carbon
cycle interaction process, we try to explore whether the difference of spatial indices is the
driving force of the change in the carbon cycle interaction indices of PGSs. At the same
time, the regularity of some plots with good carbon sink effect is obtained. Therefore, we
selected some data with significant carbon sink effect and showed the potential relationship
between the carbon cycle data through the scatter plot.
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3. Results
3.1. Spatial and Temporal Distribution of CO2 Concentration
3.1.1. Variation of CO2 Concentration in Green Space

The difference between the carbon concentration of CO2 at 1.5 m at 6 a.m. and 11 a.m.
for each simulation point was calculated and is presented in Figure 3. From the value of
the legend, a negative value indicates that the CO2 concentration of the grid at 11 a.m. is
lower than that at 6 a.m. A positive value means that the CO2 concentration on the grid at
11 a.m. is higher than that at 6 a.m. According to the comparison of aerial map and heat
map in Figure 3 and Appendix A Figures A1–A5, the absolute difference in CO2 between
the two time passes within the park area is negative, showing that the CO2 concentration
at 11 a.m. is lower than that at 6 a.m. in the morning. During this period, photosynthesis of
green vegetation absorbs the CO2 in the atmosphere near the vegetation in PGSs, and the
amount of photosynthetic absorption is greater than that released by respiration.
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The regulations between green space and CO2 concentration can be indicated by
the differentiation value of heat map. The photosynthetic rate in the area covered by
trees is the highest during the five hours, and the absolute difference CO2 concentration
reaches −5 ppm or even lower. The absolute difference CO2 concentration in the highly
clustered tree communities is below −10 ppm. Large areas of grassland also reduce carbon
concentrations during this period, with an absolute difference of −5 to 0 ppm. In the outer
buffer zone, absolute difference CO2 concentrations increases by around 4 ppm between
6 a.m. and 11 p.m. Although the absolute difference of CO2 in some open fields in the
study area is greater than 0, it also inhibits the increase in CO2 concentration compared
with the increase in CO2 concentration in the peripheral buffer zone, which may be related
to the CO2 absorption ability by bare soil.

To summarize, the area with high vegetation coverage has obvious spatial differentia-
tion characteristics and becomes the low value interval of CO2 concentration distribution
diurnally. To be more precise, PGSs function as a carbon sink in the diurnal period, trans-
forming green patches with high CO2 concentration in the entire plot to low-carbon zones
before the day starts.
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3.1.2. The Hourly Change of PGSs Carbon Sequestration Capacity

In the simulation results of each block, a point with dense greening (G) coverage was
selected, and a simulation point with bare (B) soil without any greening was selected. The
difference of CO2 concentration between the two sites (CG−B) was calculated. CG−B per
hour represents the carbon sequestration effect of green space vegetation. The smaller the
CG−B is, the greater the differentiation of CO2 concentration in PGSs, and the better the
carbon sequestration effect of PGSs.

In terms of the overall changes of the six plots from 6 a.m. to 18 a.m., the CG−B of
the greenery shows an overall trend of first decreasing and then increasing (Figure 4).
According to the principle of photosynthesis, after receiving sunlight in the daytime,
vegetation begins to carry out photosynthesis, and its ability to absorb CO2 is continuously
strengthened. In this case, respiration gradually intensifies and produces more CO2 as
raw material for photosynthesis, forming a positive feedback loop between photosynthesis
and respiration that constantly promotes each other. As a result, the photosynthetic rate of
green space increases gradually after the day begins. The photosynthesis effect of green
space is the best between 10 a.m. and 12 a.m., and the difference of CO2 concentration is
the greatest at 11 a.m. After 11 a.m., the positive feedback cycle between photosynthesis
and respiration gradually weakens with the tilt of the solar altitude angle. Although the
CO2 concentration in the greenery is still lower than that in the bare soil area, the carbon
sink effect is gradually weakened.

Forests 2023, 14, 1396 12 of 26 
 

 

The regulations between green space and CO2 concentration can be indicated by the 

differentiation value of heat map. The photosynthetic rate in the area covered by trees is 

the highest during the five hours, and the absolute difference CO2 concentration reaches 

−5 ppm or even lower. The absolute difference CO2 concentration in the highly clustered 

tree communities is below −10 ppm. Large areas of grassland also reduce carbon concen-

trations during this period, with an absolute difference of −5 to 0 ppm. In the outer buffer 

zone, absolute difference CO2 concentrations increases by around 4 ppm between 6 a.m. 

and 11 p.m. Although the absolute difference of CO2 in some open fields in the study area 

is greater than 0, it also inhibits the increase in CO2 concentration compared with the in-

crease in CO2 concentration in the peripheral buffer zone, which may be related to the CO2 

absorption ability by bare soil. 

To summarize, the area with high vegetation coverage has obvious spatial differen-

tiation characteristics and becomes the low value interval of CO2 concentration distribu-

tion diurnally. To be more precise, PGSs function as a carbon sink in the diurnal period, 

transforming green patches with high CO2 concentration in the entire plot to low-carbon 

zones before the day starts. 

3.1.2. The Hourly Change of PGSs Carbon Sequestration Capacity 

In the simulation results of each block, a point with dense greening (G) coverage was 

selected, and a simulation point with bare (B) soil without any greening was selected. The 

difference of CO2 concentration between the two sites (𝐶𝐺−𝐵 ) was calculated. 𝐶𝐺−𝐵  per 

hour represents the carbon sequestration effect of green space vegetation. The smaller the 

𝐶𝐺−𝐵 is, the greater the differentiation of CO2 concentration in PGSs, and the better the 

carbon sequestration effect of PGSs. 

In terms of the overall changes of the six plots from 6 a.m. to 18 a.m., the 𝐶𝐺−𝐵 of the 

greenery shows an overall trend of first decreasing and then increasing (Figure 4). Accord-

ing to the principle of photosynthesis, after receiving sunlight in the daytime, vegetation 

begins to carry out photosynthesis, and its ability to absorb CO2 is continuously strength-

ened. In this case, respiration gradually intensifies and produces more CO2 as raw mate-

rial for photosynthesis, forming a positive feedback loop between photosynthesis and res-

piration that constantly promotes each other. As a result, the photosynthetic rate of green 

space increases gradually after the day begins. The photosynthesis effect of green space is 

the best between 10 a.m. and 12 a.m., and the difference of CO2 concentration is the great-

est at 11 a.m. After 11 a.m., the positive feedback cycle between photosynthesis and respi-

ration gradually weakens with the tilt of the solar altitude angle. Although the CO2 con-

centration in the greenery is still lower than that in the bare soil area, the carbon sink effect 

is gradually weakened. 

 

Figure 4. Hourly change of 𝐶𝐺−𝐵 in six blocks. 

  

Figure 4. Hourly change of CG−B in six blocks.

3.2. Analysis of Spatial Pattern Indices on the Reduction of Air CO2 Concentration
3.2.1. Contribution Ratio of Spatial Pattern Indices

BRT analysis results of atmospheric CO2 concentration (Cstd) and spatial patterns
indices after unit space standardization are shown in Table 6. For green space structural
variables, Gb plays the most important role (19.44%). In the green space structural variables,
Co (11.60%) and CanopyD (11.36%) both have a higher contribution ratio. In the green
space composition variables, the contribution ratio of Ar is 18.90%, ranking first among
green space composition indices. The contribution ratios of Hr and Pr ratio are 12.14% and
13.13%, respectively. After that, the ratios of Or (10.03%), Sr (2.86%), and Wr (0.53%) are
successively followed.
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Table 6. Contribution ratios of spatial pattern indices.

Variables Relative Importance

Gb 19.43845
Ar 18.90343
Pr 13.13074
Hr 12.14075
Co 11.60479

CanopyD 11.35517
Or 10.03387
Sr 2.860833
Wr 0.53196

3.2.2. Marginal Effect of Spatial Structural Indices

According to the results of BRT analysis, Gb contributes the most among all spatial
pattern indices. Moreover, the ME curve largely illustrates the effect of PGSs on reducing
CO2 concentration (Figure 5a). According to the ME curve, in the initial interval from
zero to 0.1 m3/m2, the ME curve of Gb has an obvious downward trend, which is almost
vertical, and rapidly approaches 0. When the Gb is between 0.1–0.25 m3/m2, the ME curve
still has an obvious downward trend. After that, the ME curve shows a rising and then
falling trend between 0.25–1 m3/m2. After 1 m3/m2, it is relatively smooth. In the range of
1.8–2.5 m3/m2, there is a small fluctuation that first drops and then rises. In general, Gb
is always negatively correlated with Cstd, and the effect of reducing CO2 concentration is
slowly enhanced with the increase in Gb.
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The regularity of Cohesion’s ME curve shows great fluctuation. Until Co is less than
65, greater Co is associated with greater CO2 concentration. Co is positively correlated
with the carbon concentration distribution for grids containing less greenery that often
have lower cohesion; that is, although the ecological agglomeration of patches increases,
the CO2 concentration does not decrease significantly. Co and Cstd show a strong negative
correlation between 65 and 75, and then the ME curve becomes flat. After Co to 83, the ME
curve fluctuates greatly. Due to the influence of green biomass and other indices on CO2
concentration distribution, there is no significant correlation between the data changes. Co
and CO2 concentration show a clear negative correlation overall in combination with the
scatter distribution relationship (Figure 5d).

The ME curve of CanopyD shows two negative correlations between canopy density
and CO2 concentration. Overall, the greater the canopy density, the better the effect of
reducing CO2 concentration. When CanopyD is between 0 and 0.15, there is an obvious
negative correlation between CanopyD and Cstd, which indicates that when trees are sparse,
the increase in canopy shade area can reduce the CO2 concentration. When CanopyD
is greater than 0.2 and less than 0.45, the ME curve changes gently and approaches the
negative value of 0. When CanopyD increases from 0.2 to 0.4, the marginal benefit of
reducing CO2 concentration is low. When CanopyD is about 0.45, the marginal effect
rapidly increased to the maximum, and then the two show a negative correlation again.
The marginal effect decreases to 0 when CanopyD is about 0.7, and the total effect on CO2
concentration is the maximum.

3.2.3. Marginal Effect of Spatial Compositional Indices

1. The indices describing greenery areas

Among the green space composition indices, Ar, Hr, and Sr are negatively correlated
with CO2 concentration (Figure 6). Ar is the index with the largest contribution ratio to
the reduction of CO2 concentration among the spatial composition indices. There is a
significant negative correlation between Ar and Cstd. The larger the arboreal area, the better
the effect of reducing CO2 concentration. Ar reaches the maximum marginal effect at 52%,
and then the marginal utility decreases significantly. Hr is also negatively correlated with
Cstd. The larger the grassland area, the better the effect of reducing CO2 concentration. Its
marginal benefit threshold is about 20%. Sr and CO2 concentration show an interactive
relationship of first increasing and then decreasing. Its marginal effect threshold is about
10% and then presents a significant negative correlation.

2. The indices describing non-greenery areas

Among the space compositional indices, Pr has the largest contribution among non-
greenery indices. Pr has always shown a significant positive correlation with Cstd. The rise
trend of the ME curve of Pr is the most obvious after 30%, and it also reaches 0 value during
this rising trend. Pr with the best marginal benefit is 30%, and it is better to control the road
area ratio below 30% in park planning aiming at reducing CO2 concentration. Open areas
are generally located at entrances or large squares with good ventilation. Therefore, Or is
negatively correlated with Cstd at the beginning. When Or is more than 65%, there is less
greenery area. Currently, Or shows a positive correlation with Cstd, and the upward trend
of the curve is steeper than the downward trend. The contribution of Wr to the reduction
of CO2 concentration is the least. The total area ratio of waterbody is less than 5% in the six
blocks, and over 92% of grids contain a water ratio of less than 5%. The contribution of Wr
is only 0.5%, which has little effect on reducing CO2 concentration in the PGSs (Figure 7).

3.3. The Influence of Indices Based on Carbon Cycle Interaction Mechanism
3.3.1. Contribution Ratio of Carbon Cycle Interaction Indices

Cstd, microclimate, and physical and physiological indices were analyzed by BRT.
Results are shown in Table 7. Three microclimatic indices have the greatest influence on
Cstd, which are WS (33.71%), AT (13.57%), and RH (12.45%). SA has a smaller impact
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(7.40%). Physical and physiological indices are arranged, respectively, as PAR (12.15%), SR
(8.91%), VF (6.18%), and TKE (5.64%).
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3.3.2. Marginal Effect of Carbon Cycle Interaction Indices

The relationship between carbon cycle interaction indices and CO2 concentration can
be obtained through the ME curve. In terms of microclimate indices (Figure 8), WS, AT,
and RH have obvious associations to follow with CO2 concentration. The higher the WS
and the higher AT, the higher the CO2 concentration. On the contrary, the higher the RH,
the lower the CO2 concentration.
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Table 7. Contribution ratios of carbon cycle interaction indices.

Variables Relative Importance

WS 33.708489
AT 13.568514
RH 12.444912
PAR 12.151631
SR 8.907569
SA 7.399879
VF 6.179451

TKE 5.639555

In terms of biological indices, the contribution ratio of photosynthetic effective radia-
tion to CO2 concentration is the highest, indicating that the main reason for the lower CO2
concentration in PGSs in diurnal period is the photosynthesis of plants. The higher the
PAR before 2200 micro mol·m−2·m−1, the lower the CO2 concentration. At the same time,
the plants reach their light saturation point at 2200 PAR value. The greater the SR, the more
closed the stomata inside the plant. Gas exchange will not be able to take place well, and
the higher the concentration of CO2 in the air will be. SA before 0.15 and after 0.17 shows
a positive correlation with Cstd, and the ME curve of SA between 0.15 and 0.17 shows a
negative correlation that may be related to the SA of urban green space, which is generally
between 0.15 and 0.17 [67,68]. When the VF is above 0.06, the transpiration effect is small.
Due to the lack of water, the stomata conductance of plants is small, and they cannot fully
carry out photosynthesis. When the VF is greater than 0.11, there is too much water inside
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the plant, which may cause poor ventilation and hinder gas exchange. The TKE ME curve,
which reflects the characteristics of atmospheric turbulence, shows a state of fluctuation,
but the overall regularity has similarity with WS. The higher TKE is, the higher the CO2
concentration will be.
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4. Discussion
4.1. Spatial Indices Differences Result in the Distribution of Carbon Cycle Interaction Indices

The unit spatial data of Cstd < −1 ppm, Gb > 1 m3/m2, Ar > 52%, and Hr < 20%
were selected for further comparison. These data have a significant carbon sink effect.
Investigating the correlation between spatial indices and the carbon cycle interaction indices
within green areas demonstrates that the variance in spatial indices is the principal impetus
for the alteration of microclimate and physical and physiological indices inside PGSs.

In Figure 9, the Gb data is divided into GB > 2.5 m3/m2, 2.5–1.5 m3/m2, and <1.5 m3/m2.
Scatter plots visualize three grades of Gb, as well as the connections between the climatic
environment indices and the physical and physiological indices. As can be seen from
Figure 9a–d, Gb presents an obvious negative correlation with WS, AT, and SA. GB and RH
show a significant positive correlation. Different levels of Gb are also related to the typical
differentiation characteristics of microclimate indices and biological physiological indices.
The internal space PGSs with high Gb usually has the following characteristics: lower WS,
slightly lower AT, higher RH, and smaller SA of climate environmental indices. Similarly,
the spatial differentiation of physical and physiological indices corresponding to unit space
of high green density has the regularity of smaller PAR, larger SR, smaller VF, and smaller
TKE in internal space.
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(h) Gb and SR.

4.2. Variation of Spatial Indices on CO2 Concentration

With the data selected in Section 4.1, the influences of Gb, Ar, CanopyD, and Co on
CO2 concentration were further analyzed. In Figure 10, the four indices are negatively
correlated to Cstd. In other words, with the increase in the values of these four indices,
the overall trend is that CO2 concentration decreases, and the carbon sink effect is better.
Moreover, the data performance of the four indices was graded to find the corresponding
variation rules of CO2 concentration in different spatial levels. Gb takes 1.5 m3/m2 and
2.5 m3/m2 as the boundary value of data division. Ar grades of 70% and 90% are interval
data. CanopyD uses 0.6 and 0.7 as classification boundary data. The data of Co are 86% and
90% interval data. The distribution and differentiation of different grade intervals of spatial
indices and CO2 concentration are as follows: the higher the grades of spatial indices, the
lower the corresponding value of CO2 concentration.
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4.3. The Interaction of Microclimate and Environment Indices, Physical and Physiological Indices,
and CO2 Concentration

The study continued to explore the internal atmospheric cycling process of CO2
concentration change between PGSs with high carbon sink capacity and PGSs with low
carbon sink capacity. Two groups of data, Cstd < −1 ppm and Cstd > 1 ppm, with typical
differences were selected to analyze the correlation between microclimate indices and
physical and physiological indices. In terms of the overall characteristics, the PAR, SR,
VF, and TKE are larger when the WS is smaller. Meanwhile, compared with the low
carbon sink space, the WS, AT, and SA corresponding to Cstd < −1 ppm are smaller, and
RH is relatively small. The series comparison of WS relatively affects the physical and
biological indices PAR, SR, TKE, and VF, and there is a significant difference in the value
range. In Figure 11a–d, when WS ranges from −0.25 to 0 m/s, PAR, VF, and TKE reach
their maximum values; when WS is less than −0.25 m/s, the activity of biological indices
decreases slightly. In Figure 11e–g, under the condition of high carbon concentration, the
biological activity of some extremely high temperature and extremely low humidity spaces
do not reach the peak. The SA between 0.17 and 0.25 and VF and other biological indices
also show that the larger the SA, the smaller the biological indices. Because SA of the space
with higher greenery coverage is between 0.17 and 0.2, the material exchange activity of
the vegetated area is greater (Figure 11h).

4.4. Strategies to Improve the Carbon Sink of Urban Park

Through the analysis of the marginal effect threshold between the spatial form descrip-
tion indices and carbon concentration of park green space, the research can provide the
quantitative control requirements for policymaking in terms of the spatial pattern indices of
PGSs. In green space management aiming for carbon reduction, the green biomass density
is more appropriate at 1–2.5 m3/m2. The canopy density of low-carbon green open space is
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best at about 0.7, the arboreal area ratio should be around 52%, and the grassland area ratio
is about 20%, and would benefit if the area ratio of parkways was controlled below 30%.
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The effects of the internal composition and structural indices of PGSs on carbon
storage are non-linear. Therefore, there are interactive effects and constraints on the spatial
indices affecting carbon absorption capacity. For example, the green amount is a three-
dimensional pattern index reflecting the amount of green biomass. In addition, most studies
have shown that increasing the amount of green biomass is crucial for the overall carbon
sequestration capacity of the city [11,14,43]. This study found that there is a restrictive
relationship between PAR and Gb. According to Figure 8d, before reaching the light
saturation point, the higher the value of PAR, the more promoting the energy of carbon
absorption. Figure 12a shows that when Gb is less than 1.5 m3/m2, the Gb increases, and
the PAR increases further. The increase in PAR represents the enhancement of light energy
utilization efficiency. When Gb is greater than 1.5 m3/m2, PAR reduces when Gb is further
increased, and the light energy utilization efficiency is also reduced. The efficient usage
of PAR is the key to increasing carbon sequestration capacity. The correlation between
Gb and CanopyD also shows a quadratic curve variation trend. When Gb increases and
vegetation is dense, CanopyD tends to slow down with the increase in green amount
(Figure 12b). Their associated characteristics will affect the effective light utilization of
the PAR. After the green biomass reaches a certain value, the vegetation is too dense,
the PAR will decrease, and the vegetation cannot be fully illuminated, thus affecting the
reduction of its carbon sink efficiency. Therefore, in the process of improving the green
amount of PGSs, it is necessary to consciously control other spatial indices within the
appropriate interval and to ensure that the greening receives sufficient light and creates
the appropriate conditions for the occurrence of physical and biological processes. For the
design and management of PGSs, controlling the appropriate dense planting interval of
arbor patches to ensure sufficient light and rationally matching the relationship between
trees and grassland landscape configuration can lead to a better carbon sequestration effect
than only pursuing the increase in green amount.
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4.5. Characteristics and Limitations of the Study

The Envi-met software was used to simulate the CO2 concentration distribution data,
considering the biological complex diversity inside the actual site. BRT machine learning
method was adopted to quantify the influence degree and trend characteristics of each
index on CO2 concentration. In particular, the interactive effects of the carbon cycle in
PGSs within the site were discussed innovatively. However, the study was abstract in its
modeling. For example, only five species of typical Shanghai countryside tree species are
selected. No further subdivision of herbs and shrub types was conducted, and the same
height attribute was uniformly set. Although different types of soil were set according
to the actual site in the scenario simulation, the main object of the study was the spatial
patterns of PGSs, so the possible influence of soil respiration was not discussed.

Future studies can be explored on a larger spatiotemporal scale. This study only
discussed the contribution degree and interaction mechanism of spatial morphology to
CO2 concentration from a time cross-section. The sun’s altitude varies throughout the day;
the same location and the same spatial form will receive different intensities of light at
different times, thus affecting the photosynthetic efficiency of PGSs. On the other hand,
deciduous trees alter their biomass during the year, especially some common tree species
in Shanghai such as sycamores and acacia. In terms of space, this study simulated PGSs as
an isolated green space patch. Although this reduces the influence of variables of human
traffic activities, it can be considered to embed PGSs into the street scale in subsequent
studies to explore the carbon sink effect of PGSs in different urbanization backgrounds.

5. Conclusions

In this paper, Envi-met software was used to simulate the distribution of CO2 concen-
tration in typical PGSs. Through quantitative and qualitative methods, this study analyzed
the interactive influence and carbon reduction mechanism between the spatial morphol-
ogy and structure characteristics of PGSs and CO2 concentration to provide a reasonable
planning path for the low-carbon patterns of PGSs.

PGSs act as carbon sinks in the diurnal period. During the morning hours of
10 a.m.−12 a.m. on a typical summer day, green space has a substantial capacity to take
in CO2. The study observed the greatest disparity in CO2 concentration within the PGSs
at 11 a.m. through simulation. Gb, Ar, Hr, Pr, CanopyD, and other spatial indices have
the greatest effect on the variation of CO2 concentration distribution, respectively. The
proportion of greenery, such as Gb and CanopyD, has a negative correlation with CO2
concentration, while the Pr and Or have a positive correlation with CO2 concentration.
The waterbody in PGSs has little effect on CO2 concentration. The WS has the greatest
influence on the carbon cycle, thus affecting the changes in CO2 concentration, and the role
of microclimate is more significant than that of physical and physiological indices.

Furthermore, the greenery in parks adjusts air CO2 concentration through photosyn-
thesis and forms an area with decreased WS and appropriate AT and RH due to its spatial
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arrangements. This is a vital component in the process of the microclimate influencing the
spread of CO2 concentration. A suitable microclimate environment enables the plant to
accelerate photosynthesis and other biological physiological reactions.
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