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Abstract: Recurring wildfires pose a critical global issue as they undermine social and economic sta-
bility and jeopardize human lives. To effectively manage disasters and bolster community resilience,
the development of wildfire susceptibility maps (WFSMs) has emerged as a crucial undertaking in
recent years. In this research endeavor, two deep learning algorithms were leveraged to generate
WFSMs using two distinct remote sensing datasets. Specifically, the Moderate-Resolution Imaging
Spectroradiometer (MODIS) and Landsat-8 images were utilized to monitor wildfires that transpired
during the year 2021. To develop an effective WFSM, two datasets were created by incorporating
599 wildfire locations with Landsat-8 images and 232 sites with MODIS images, as well as twelve
factors influencing wildfires. Deep learning algorithms, namely the long short-term memory (LSTM)
and recurrent neural network (RNN), were utilized to model wildfire susceptibility using the two
datasets. Subsequently, four WFSMs were generated using the LSTM (MODIS), LSTM (Landsat-8),
RNN (MODIS), and RNN (Landsat-8) algorithms. The evaluation of the WFSMs was performed
using the area under the receiver operating characteristic (ROC) curve (AUC) index. The results
revealed that the RNN (MODIS) (AUC = 0.971), RNN (Landsat-8) (AUC = 0.966), LSTM (MODIS)
(AUC = 0.964), and LSTM (Landsat-8) (AUC = 0.941) algorithms demonstrated the highest modeling
accuracy, respectively. Moreover, the Gini index was employed to assess the impact of the twelve
factors on wildfires in the study area. The results of the random forest (RF) algorithm indicated that
temperature, wind speed, slope, and topographic wetness index (TWI) parameters had a significant
effect on wildfires in the study region. These findings are instrumental in facilitating efficient wildfire
management and enhancing community resilience against the detrimental effects of wildfires.

Keywords: wildfire; satellite imagery; spatial modeling; deep learning algorithms

1. Introduction

Forests support diverse ecosystems and significantly affect human and animal popula-
tions. Forests cover nearly 29% of the Earth’s surface and are integral to various aspects of
our lives and the environment [1]. However, wildfires present a substantial challenge, as
approximately 3% of forests experience these events each year [1]. The consequences of
wildfires extend beyond immediate damage, leading to long-term environmental impacts
and posing threats to both human and animal well-being.
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Wildfires bring about ecological disturbances, such as soil erosion, alterations in water
hydrology, increased greenhouse gas emissions, and global warming [2–5]. These effects
can undermine the stability of ecosystems and hinder the provision of vital resources that
contribute to human welfare [2–5].

Iran falls within a subtropical zone of high atmospheric pressure in the earth’s arid
belt, rendering it prone to wildfires due to warm winds, lightning, and inadequate precipi-
tation [6]. According to the Natural Resources and Watershed Management Organization
of Iran, the Zagros Mountain range is the country’s largest forest, covering five million
hectares, with oak as the dominant species, accounting for 40% of all forests in Iran [7,8].
The Zagros forests are also susceptible to fires caused by wood smuggling, tribal conflicts,
and uncontrolled fires by tourists.

Additionally, it is worth noting that due to these factors, Zagros forests are particularly
prone to fire outbreaks, with several instances of severe fires having occurred in recent
years, causing significant ecological and economic damage. Controlling wildfires requires
pinpointing their causes and identifying the areas most susceptible to them [9]. Topography
and climate play a significant role in the growth and spread of wildfires [10], and timely
intervention is critical when regional conditions favor their spread [11]. However, achieving
such control using on-ground methods and human resources over large forest areas is not
economical. Initially, sensor-based detection systems were used to identify wildfires [12–14].
However, installing these systems in open spaces is expensive and can be hampered by
environmental factors such as infrared or ultraviolet interference and short-range detection
distance [15,16].

In recent years, remote sensing (RS) technology has been widely used for monitoring
wildfires due to the accessibility, high temporal-spatial resolution, and multispectral nature
of RS data [17–20]. The use of satellite images and RS technology has proven effective in
detecting and monitoring wildfire behavior and dynamics, enabling more precise data
and saving time and human resources [21,22]. Thus, satellite images and RS technology
are crucial tools for preventing the spread of wildfires and monitoring them on a large
scale and in real-time. Various satellite images have been employed in previous studies
to monitor and manage wildfires. For instance, Jaiswal et al. (2002) used the Indian
Remote Sensing Satellite (IRSS) and fire risk index to identify burnt areas [23], while Erten
et al. (2004) employed Thematic Mapper (TM) images of the Landsat satellite for the
same purpose [24]. Awang and Pradham (2006) used the Advanced Very High-Resolution
Radiometer (AVHRR) data of the National Oceanic and Atmospheric Administration
(NOAA) satellite and Enhanced Thematic Mapper (ETM) images of Landsat-7 to identify
areas vulnerable to wildfire. Similarly [25], Schroeder et al. (2016) identified wildfires using
Landsat-8 by determining the thresholds of thermal and spectral bands [26]. Zhang et al.
(2017) used a set of Visible Infrared Imaging Radiometer Suite (VIIRS) data to identify active
wildfires [27], and Gargiulo et al. (2019) employed the Sentinel-2 images and Convolutional
Neural Network (CNN) algorithm to identify active wildfires [28]. Finally, Konkathi and
Shetty (2021) used the Landsat-8 Operational Land imager (OLI) and Sentinel-2 images to
identify burnt areas [29].

Various target mapping methods have been used in fire monitoring research. Among
the target mapping methods used in wildfire monitoring, Change Detection [30], the use of
hyperspectral image analysis and dimension reduction [31,32], the use of spectral indices
such as NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation
Index) [33], and the utilization of thermal data [34] can be mentioned.

Geographical technologies such as RS and geographical information systems (GIS)
play a crucial role in wildfire detection and the preparation of wildfire susceptibility
maps. These maps provide essential information for evaluating conditions and making
decisions regarding wildfires. However, simulating and analyzing wildfire behavior us-
ing parameters collected from the field can be challenging. To overcome this challenge,
models, maps, and databases in GIS are employed in simulating wildfires [33]. Wildfire
susceptibility maps (WFSM) can be created using either knowledge-based or data-driven
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techniques. Knowledge-based techniques require expert analysis to identify factors that
influence the data processing and implement the models. Examples of knowledge-based
techniques include the technique for order preference by similarity to ideal solution (TOP-
SIS) [35], VIekriterijumsko KOmpromisno Rangiranje (VIKOR) [36], analytic hierarchy
process (AHP) [37], and weighted linear combination (WLC) [38]. However, these tech-
niques are prone to human errors and lack sensitivity to outlier data, which can lead to
reduced accuracy [39].

Data-driven techniques can be either statistical or artificial intelligence methods. Statis-
tical methods such as the weight of the evidence (WOE) [40,41], frequency ratio (FR) [41,42],
and evidential belief function (EBF) [43] assume that the relationships between influential
factors in wildfires remain the same in the past and future. However, the complex and
nonlinear interaction between environmental factors, such as climate and topography, can
limit the accuracy of these methods [44–46].

To address these limitations, researchers have turned to machine learning as an alterna-
tive. Machine learning algorithms have a data-driven approach that can handle large-scale
nonlinear data and process it quickly. Multiple linear regression (MLR) [47], logistic re-
gression (LR) [48], random forest (RF) [49], bagging (BA) [50], decision tree (DT) [51,52],
AdaBoost [53] adaptive neuro-fuzzy interface system (ANFIS) [54], support vector machine
(SVM) [55], and artificial neural network (ANN) [56] are all examples of machine learning
techniques that have been used to create WFSM.

These techniques have successfully solved complex relationships caused by the in-
teraction and dependence of explanatory variables [44,57–62]. Machine learning plays a
crucial role in feature extraction, which can be a challenging task when dealing with a vast
amount of data. Studies have found that training machine learning algorithms on large
datasets can lead to a decrease in their accuracy, ultimately limiting their ability to extract
features at higher levels and handle complex problems effectively [63].

However, combining multiple processing layers can improve feature extraction [64].
Unlike traditional methods that require expert skills, machine learning-based feature
extraction requires only simple preprocessing, and the algorithm can automatically learn
features from the data [65]. Deep learning using deep neural networks has been shown
to produce more accurate results due to the presence of multiple hidden layers [66,67].
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTM) networks, Generative Adversarial Networks (GANs), Radial Basis
Function networks (RBFs), and Deep Belief Networks (DBNs) are among the deep learning
algorithms that are composed of layers, learnable parameters, and error functions [68]. Due
to their structure, CNNs are widely used in image recognition and description. Therefore,
convolutional neural networks are extensively employed in applications such as face
recognition and computer vision [69]. In addition, recurrent neural networks play a
significant role in analyzing sequential data, which greatly benefits tasks such as speech
recognition and control systems [70,71].

Wildfire risk monitoring and mapping have been achieved using deep learning tech-
niques such as CNN [72,73], RNN [74], and LSTM [75]. For instance, Zhang et al. (2019)
used CNN to predict the spatial distribution of wildfires in Yunnan Province, China [76],
while Ngo et al. (2021) employed RNN and CNN to identify burnt areas on a national scale
in Iran [74]. Xingdong et al. (2021) utilized LSTM and drone images to predict the propaga-
tion rate of wildfires [77]. Data-driven models are often selected empirically through trial
and error due to the differences in conditions and influential factors in various regions [50].
In this study, two deep learning algorithms, RNN and LSTM, were used to prepare wildfire
susceptibility maps using Landsat-8 and MODIS satellite images, which is an innovative
approach. This study focused on modeling wildfire susceptibility by comparing two remote
sensing datasets, MODIS and Landsat-8. The innovative aspect lies in evaluating these
datasets using two deep learning algorithms—RNN and LSTM. The research aimed to
determine the most suitable remote sensing dataset for fire susceptibility modeling. The
primary contribution of this research is evaluating the dataset’s performance and the effec-
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tiveness of the deep learning algorithms in capturing and predicting wildfire susceptibility.
Through performance assessment, the study provided insights into the strengths and lim-
itations of the analyzed datasets and deep learning algorithms. This research improves
wildfire modeling by exploring data sources and deep learning techniques.

2. Materials and Methods
2.1. Methodology

The present study aimed to detect and map wildfire susceptibility by following a
four-step methodology, which involved data collection, preprocessing, modeling using
deep learning algorithms, and evaluating the accuracy of wildfire susceptibility maps.

In the first step, satellite images obtained from Landsat-8 and MODIS were utilized to
monitor wildfire areas. These images provided essential information on the characteristics
and condition of forest areas, thereby enabling the identification of potential fire-prone
zones.

In the second step, the collected data underwent extensive preprocessing through
various statistical analyses. For instance, the multicollinearity test was conducted to
examine the correlation among predictor variables, while the RF method and Gini index
were employed to evaluate the significance of the criteria. These analyses aimed to ensure
the accuracy and reliability of the data before modeling.

The third step involved modeling the wildfire susceptibility maps using two deep
learning algorithms, namely RNN and LSTM, and the two aforementioned datasets. These
algorithms were selected based on their superior performance in handling large and
complex datasets. By combining the two datasets and the algorithms, the present study
aimed to achieve a more accurate prediction of wildfire susceptibility.

Finally, the accuracy of the wildfire susceptibility maps was evaluated in the last step.
The mean square error (MSE) index and the receiver operating characteristic (ROC) curve
were used for this purpose. The MSE index provided an assessment of the overall accuracy
of the model, while the ROC curve evaluated the performance of the model in terms of
sensitivity and specificity.

In summary, the present study adopted a rigorous and comprehensive methodology
that involved multiple steps to detect and map wildfire susceptibility. Figure 1 provides a
visual representation of the methodology followed in this study.

2.2. Study Area

Gachsaran County is located in the Kohgiluyeh and Boyer-Ahmad Province in Western
Iran (Figure 2). As one of Iran’s most critical forest areas, it is located in the Zagros
Mountains range at the height of 113–3177 m above mean sea level. The county has an
area of 3929 km2, of which 70% is occupied by 320,000 pastureland and 115,000 hectares
of forests. Of the forests and meadows of different county areas, a total of approximately
900 hectares experienced significant damages in the year 2021.

Located in a tropical region, Gachsaran has a dry tropical climate in the east and a
dry climate in the west. The county has a temperature of 30–40 ◦C and a mean annual
precipitation of 6.5–30.13 mm. Performed evaluations indicate land use and climate change
as the major factors responsible for the wildfires in the forests of Gachsaran [78].

2.3. Data
2.3.1. Previous Wildfires

In the present study, the images of Landsat-8 OLI/TIRS and MODIS in the Google
Earth Engine (GEE) on May 20, July 8, and October 9, 2021, were employed to monitor the
areas burnt due to wildfires in Gachsaran County. Cloud filtering in the GEE was employed
on images with a threshold limit of lower than ten. The normalized burn ratio (NBR) was
used to identify burnt areas [79] on the images of the MODIS and Landsat-8 satellites.
Previous studies have shown that spectral indices derived from time-series images are
highly effective in identifying burned areas. These indices are obtained using spectral
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analysis techniques. The NBR spectral index combines data from visible to shortwave-
infrared spectral bands, which capture color variations, soil composition, moisture, plant
chlorophyll, and more. By extracting features from both healthy and burned vegetation,
it facilitates the accurate identification of wildfire-affected areas [80]. The NBR index is
calculated using Formula (1).

NBR =
SWIR − NIR
SWIR + NIR

(1)

NBR values higher than one indicate intact vegetation. Areas with NBR values close
to zero are considered not burnt, and negative NBR values indicate recently burnt areas.
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By calculating the difference between the post-fire Normalized Burn Ratio (NBRpost)
and the pre-fire Normalized Burn Ratio (NBRpre), valuable information can be obtained
for the identification of burnt regions. This calculation can be represented according to
Equation (2): [81].

dNBR = NBRpre − NBRpost, (2)

The images of Landsat-8, produced by the United States Geological Survey (USGS)
(https://www.usgs.gov/) (20 May 2021), consist of five visible and near-infrared (VNIR)
bands and two short-wave infrared (SWIR) bands. To apply the NBR index in Landsat-8,
bands B5 and B7, VNIR, and SWIR bands of Landsat-8 were used according to Equation (1).
In the two-band spectrum, the chlorophyll content of vegetation is reflected, while in the
5-band spectrum, the presence of water affects the reflection of vegetation. Since the quality
of vegetation coverage depends on these two factors, it can be used to assess the intensity
of vegetation burning [82].

The burnt areas caused by wildfires were monitored using the “MCD43A4 V6” dataset
of MODIS. The data of the MODIS satellites are updated every 16 days. This dataset
has high accuracy and resolution due to combining the data of both Terra and Aqua
spacecraft and choosing the best representative pixels among the two. In this Equation,
NIR indicates Nadir_Reflectance_Band2, and SWIR indicates Nadir_Reflectance_Band7 of
MODIS images.

The areas of wildfires using two remote sensing datasets by dNBR index are shown
in Figure 3. After identifying the burned areas using satellite images, the affected areas
are quantitatively analyzed in ArcGIS 10.6 software (ESRI, Redlands, CA, USA, http:
//www.esri.com (20 May 2021)), where they are converted into a series of points. In
Landsat 8, a total of 599 points are designated as occurrence points, indicating areas that
have been affected by fire. Similarly, in MODIS, 232 points were identified as occurrence
points, representing regions impacted by fire. These occurrence points are labeled as target 1
in the supervised learning (deep learning) modeling approach used. Since supervised
learning (deep learning) is used for modeling, an equal number of non-occurrence points
(areas that have not been affected by fire) is required. The same number of points were
randomly selected as non-occurrence points in unaffected areas to improve the performance

https://www.usgs.gov/
http://www.esri.com
http://www.esri.com
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of deep learning models, and a target value of 0 was assigned to these points. To evaluate
the accuracy of the proposed models, 70% of the data were used for training and 30% were
used for testing purposes Figure 4.
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2.3.2. Effective Factors

In order to develop accurate predictor models for wildfires, it is important to carefully
consider the influential factors that contribute to their occurrence and propagation. These
factors can be broadly categorized into four main groups: topographic, climatic, human-
caused, and vegetation factors [76,83–88]. The selection of these factors is crucial, as
they play a significant role in determining the accuracy and reliability of the predictor
models [43,85,89–91].
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In accordance with previous studies [92–97] and the availability of data, four criteria
were selected for the present study. These criteria include climatic factors such as tempera-
ture, rainfall, wind speed, and wind effect, topographic factors such as altitude, slope, slope
aspect, and topographic wetness index (TWI), human-caused factors such as distance from
roads and distance from residential areas, and vegetation factors such as land cover and
normalized difference vegetation index (NDVI). A graphical representation of these criteria
is provided in Figure 5. Topography is an important factor in evaluating wildfires [6,90].
Altitude, slope, slope aspect, and TWI are topographic parameters that have been shown
to influence fire behavior [43,98,99]. Altitude affects vegetation and ground evapotranspi-
ration through its relationship with the temperature of the ground surface, which plays a
critical role in wildfire susceptibility [100,101]. Slope angle is another essential factor that
influences the propagation of wildfires. The speed of wildfire propagation increases with
the slope angle [102]. Slope aspect affects solar radiation and moisture in the region [103].
Studies on the effects of slope aspect on wildfire propagation have shown that south-facing
slopes in the northern hemisphere, along with east-facing slopes, receive more light, result-
ing in lower moisture, drier vegetation, and increased wildfires [104,105]. The topographic
criteria were developed using a digital elevation model (DEM) prepared from Shuttle Radar
Topography Mission (SRTM) images in ArcGIS 10.6 software to ensure the accuracy of
the data. Moisture is inversely related to the wildfire probability and height [106]. As in
previous studies, the TWI was used to measure and evaluate this factor [107]. Higher values
of TWI indicate higher moisture in a region, resulting in increased NDVI and reduced
propagation of wildfires [103]. The TWI was developed in the SAGA GIS 8.2.1 software
(Equation (3)).

TWI = ln
(

α

tan β

)
(3)
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α is the area of the basin, and tan(β) is the slope angle at that point.
The temperature, wind, and rainfall are among the essential climatic factors responsi-

ble for wildfires occurring in warm, dry, and windy conditions of forests [100,108]. Given
the direct impact of temperature on air and soil moisture, it also has a controlling role in
the fuel’s moisture [109].

High temperatures and low precipitation increase the risk of wildfires in forests [110,111].
The rise in rainfall increases the soil’s moisture, resulting in an area’s increased moist
vegetation. These two factors limit wildfires [112]. To calculate the spatial distribution of
climate criteria, the mean temperature, wind speed, and annual rainfall data were collected
from five meteorological stations in the studied area from 2011 to 2021. Then, the criteria
map was prepared using the inverse distance weighted (IDW) interpolation method and
the 30 × 30 m spatial resolution in the ArcGIS 10.6 software.

Given its crucial role in vegetation, moisture, and soil topography, wind speed influ-
ences wildfires [113,114]. Wind speed is another influential factor in the propagation of
wildfires since the orientation of wildfires is significantly impacted by it [115,116]. The
wind direction and speed data were derived from a 10-year climatic dataset based on the
weather stations in the Kohgiluyeh and Boyer-Ahmad province. The wind effect criterion
was also prepared using the three factors of wind direction, wind speed, and DEM of the
studied area in the SAGA-GIS 8.2.1 software [117].

Human activities such as hunting, illegal logging, picnics, and smoking are among
the main causes of wildfires [118–122]. Previous studies have shown that the distance from
roads and residential areas are important human-caused factors in wildfires [10,121–125].
Roads are a key link between human activities and forests, and short distances from
residential areas can lead to more human intervention in the forest ecosystem [126]. To
prepare the distance from roads map, Open Street Map (OSM) maps at a scale of 1:100,000
were used. The map of the distribution of villages in Iran at a scale of 1:100,000 was used to
prepare the distance from residential areas map. The Euclidean distance of residential areas
and roads to forests was then calculated in 30 × 30 m pixel size using Arc GIS 10.6 software.

Land cover, whether forest, agricultural land, or impermeable surface, is used to
measure the flammability of an area [51]. The land cover is usually known as fuel for the
fire. The combination of Sentinel-1 and Sentinel-2 data products in GEE was used for land
cover analysis. The land cover data were prepared in the GEE platform [43,127,128].
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Vegetation is considered fuel for wildfires, and NDVI is an index used in most studies
to evaluate this factor [92–94]. The NDVI was calculated using the OLI Landsat-8 images
in the GEE platform using Equation (4). The annual average of Landsat-8 images in 2021
was used to prepare NDVI.

NDVI = (NIR − RED)/(NIR + RED) (4)

NIR and RED denote the near-infrared and visible red bands, respectively. The NIR
band (0.85–0.88 µm) and RED band (0.64–0.67 µm) were used from Landsat-8 images.

2.4. Wildfire Susceptibility Methods

Before modeling, the values of effective criteria were normalized between 0 and 1, and
then 70% were considered as training data and 30% were considered as validation data.
Specifically, a Windows 10 desktop PC with an Intel i7 processor, 16 GB of RAM, and the
required software were used to execute the calculations. The deep learning algorithms
were developed using the Python programming language in the Google Colab (https:
//colab.research.google.com/) (launched by Google in 12 October 2017) platform.

2.4.1. Recurrent Neural Network (RNN)

Equipped with parameter sharing and graph-unrolling schemes, an RNN is a typical
class of deep learning models that create a sequence and serve as the structural block of
other productive deep learning architectures, enabling the plotting of relationships and
dependencies between molecular character sequences of arbitrary lengths by incorporating
the concept of time or order into the model [129]. Recurrent Neural Networks (RNNs) are
deep learning algorithms that have received significant attention due to their ability to
effectively process sequential data [66,130,131]. RNNs consist of layers, learnable parame-
ters, and error functions [68]. RNN employs a recursive approach to effectively capture
the temporal correlations and dynamic nature of the data. During the training process,
the network parameters are determined by utilizing sampled data [132]. The layers of an
RNN include an input layer, one or multiple hidden layers, and an output layer [133,134].
Initially, the input layer receives input data related to wildfire conditions. Then, these data
are processed and analyzed in the hidden layers. The hidden layers, using weights and
activation functions, perform sequential transformations to generate more complex features
and produce discriminative features with enhanced distinguishability [135]. In a recurrent
neural network, the network retains information from previous inputs and incorporates it
in the computation of the current output. Unlike in convolutional neural networks where
nodes between hidden layers are disconnected, in recurrent neural networks, these nodes
are connected, and the input to the hidden layers includes both the output of the input
layer and the output of the hidden layer from the previous moment [133,134,136].

The role of the output layer is to receive results based on the features obtained in
the last hidden layer. It is also responsible for interpreting important and discriminative
features to provide final results, which is achieved through an activation function [137].
Ultimately, each unit in the hidden layer is connected to other units, and information is
transmitted from one layer to the next in the network [138].

The basic RNN’s hidden units can be represented by Equations (5) and (6).

ht = f(Wxxt + Whht−1 + bh) (5)

y = Wy + by (6)

where xt is the input data and ht denotes the hidden state in time t (seconds). This value is
summed up with the stage’s bias by the cell state in the previous stage, which is shown
with h(t − 1) in time t − 1 and input data x(t − 1).

https://colab.research.google.com/
https://colab.research.google.com/
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In the equation above, Wx and Wh of the coefficients and activator function can be
tanh or ReLU. RNN uses constant weights for calculations in all repeated modes. The
output of RNN is related to the input data in the current time and calculations in the
hidden state of the previous time. The RNN architecture can be changed depending on
different needs. An RNN can be converted to a deep RNN by increasing the chain length
of hidden layers and adding the depth between the input to hidden, hidden to hidden, and
hidden to output layers [139]. According to the findings, a deep RNN acts better than a
shallow one since it can remarkably reduce the long-term dependencies of the input dataset.
In other words, as the model’s depth increases, the relationships between hidden states
over time strengthen, enabling the model to better learn complex patterns and long-term
dependencies [139].

In this study, an RNN model was implemented using the Keras library with a simple
RNN layer architecture. The model consists of a simple RNN layer, a dropout layer to
prevent overfitting, and two fully connected layers with the ReLU activation function. The
‘Adam’ optimization algorithm was used to train the RNN algorithm [140].

2.4.2. Long Short-Term Memory (LSTM)

LSTM has been designed to prevent the problem of long-term dependence and memo-
rize information for long periods [141]. LSTM is the development of RNN. To overcome
the training problems of RNNs, LSTMs can learn long-term dependencies and prevent
exploding and vanishing gradients [142]. LSTM (Long Short-Term Memory) has a similar
overall structure to RNN, consisting of an input layer, one or multiple hidden layers, and
an output layer [143]. However, in LSTM, the basic RNN unit is replaced with a memory
block, which is referred to as an LSTM cell [144].

The memory block of an LSTM has an input gate, a forget gate, and an output gate,
which adjust the flow of information inside and outside a cell [145]. By utilizing these three
gating mechanisms, LSTM is capable of controlling the flow of information and memory
over time, enabling it to understand long-term dependencies in sequential data [143].

The input gate is the controller of input information to the cell state. The importance
of the output information of the forget gate is updated using Equation (7). The output gate
is responsible for combining the derived information using Equation (10). In Equation (9),
gt in the LSTM architecture is related to the previous cell’s hidden (h) and C modes, which
act as the memory.

ft = σ(WfXt + RfHt−1 + bf) (7)

it = σ(WiXt + RiHt−1 + bi) (8)

gt = tanh
(
WgXt + RgHt−1 + bg

)
(9)

ot = σ(W0Xt + RoHt−1 + bo) (10)

The sigmoid function, represented as σ in the above formulas. The input gate in LSTM
serves as a controller for inputting information into the cell state. In LSTM, each LSTM unit
comprises a hidden state and a cell state. The Hidden State is referred to as the short-term
memory, while the Cell State represents the long-term memory. The Hidden State, denoted
by H_t, is associated with the previous time step (t − 1), and the current time step (t). The
Cell State, denoted by ct, represents the current time step, while ct − 1 represents the Cell
State from the previous time step. Deep learning algorithms perform analysis on the Cell
State, determining the importance of retaining or forgetting information. This stage is
crucial as the model decides whether to forget or store the data. In this structure, in time
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step t, the cell is fed with input Ht and hidden mode H (t − 1). Output mode Ct and hidden
mode Ht are given in time step t.

Ct = ft ∗ Ct−1 + it ∗ gt (11)

Ht = ot ∗ σc(Ct) (12)

This study utilizes the LSTM layer implemented using the Keras library to extract
important features from the data. Dropout and Dense layers were employed to enhance
the flexibility and generalization power of the model. The Adam optimization algorithm is
chosen for training and improving the model’s performance [146].

2.4.3. Multicollinearity Analysis

After selecting the influential factors and incorporating them into deep learning
algorithms, it is important to examine the presence of multicollinearity among these factors.
Multicollinearity refers to the correlation between two or more independent factors, which
can lead to errors in the results [147,148]. One way to assess multicollinearity in the
modeling process is by using the variance inflation factor (VIF) method [149,150]. VIF
values greater than ten suggest the presence of multicollinearity among the criteria, and
such criteria should not be included in the modeling [151].

2.4.4. Feature Importance Using Gini Index

The random forest (RF) algorithm was introduced by Ho (1994) and was later devel-
oped by Breiman et al. (2001) [152,153]. RF is a combination of several decision trees that
can produce multiple predictions using independent algorithms. In line with previous
studies, the average Gini index was used to achieve the best classification of input data and
to determine the weight of influential factors [154–157]. This index enables the evaluation
of factors that are influential in wildfires, and the identification of prediction patterns in
large volumes of data [158,159]. It should be noted that this approach can help overcome
the limitations of traditional statistical methods and improve the accuracy of wildfire pre-
diction models. The Gini index numerically expresses the division quality of a particular
node (class) on a variable (feature) such that the division would be the best one along that
feature. This index also determines the dependence between features. The Gini index’s
lowest value indicates each node’s best division [160]. If dataset D includes instances of
class D, the Gini index can be obtained from Equation (13) [161].

gini(D) = 1 −
C

∑
c=1

P2
c (13)

In this equation, Pc is the relative frequency of class C in dataset (node) D, indicating
the distribution of class labels in a node. The number of trees used in the RF model, which
was set to 100 after considering computational efficiency and model performance; the
proportion of data used to generate each tree, which was 70% of the original training
dataset sampled through bootstrap aggregating; the parameter settings were employed to
limit over fittings, such as a maximum tree depth of ten and a minimum of five samples
per leaf node.

2.4.5. Validation

The MSE was used to evaluate the modeling accuracy by LSTM and RNN models, and
the ROC and area under the curve (AUC) were used to examine the wildfire susceptibility
maps. Overall, 30% of the wildfire data not used in the modeling were used to evaluate
the wildfire susceptibility maps. Of the wildfire data, 30%, which were not used in the
modeling, were employed to evaluate the wildfire sensitivity maps.

• MSE
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The MSE index is used as an error evaluation criterion between observed and predicted
instances (Equation (14)) [159].

MSE =
∑n

i=1(yi − ŷi)
2

n
(14)

• ROC and AUC

When binary (zero and one) classification is used for forest and non-wildfire areas
in modeling methods (LSTM and RNN), validation requires a confusion matrix for each
model. This index obtains the number of points correctly or incorrectly identified as
forest or non-wildfire areas [51]. The ROC curve graphically indicates the sensitivity and
specificity of the threshold values of the classification obtained from models [126]. The
X-axis indicates the false positive rate (specificity-1), while the Y-axis indicates the real
positive rate (sensitivity) in the ROC curve [149,162,163] (Equations (15) and (16)).

X = 1 −
(

True Negative(TN)

True Negative(TN) + False Poditive(FN)

)
(15)

Y =

(
True Psotive(TP)

True Positive(TP) + False Negative(FN)

)
(16)

In Equations (15) and (16), TP indicates the number of wildfires classified as wildfires,
TN denotes the number of wildfires classified as non-wildfires, FP is the number of non-
wildfire areas incorrectly classified as wildfire ones, and FN is the number of wildfire areas
incorrectly classified as non-wildfire [128].

AUC varies from 0.5 to 1. Higher values of AUC indicate a better resolution of
classification, while lower values indicate a worse resolution [164].

3. Results
3.1. Result of Multicollinearity

Based on the results of the VIF index (Table 1), the most multicollinearity was related
to the criteria of wind speed (6.17), rainfall (5.74), temperature (4.43), altitude (2.49), slope
(2.35), TWI (2.18), wind effect (1.74), distance to the road (1.67), distance to residential areas
(1.35), land cover (1.35), NDVI (1.24), and aspect (1.03), respectively. The results showed
that the value of the VIF index for all factors that affect wildfire is less than ten, and all
factors can participate in the modeling of wildfire susceptibility.

Table 1. Result of multicollinearity in wildfire factors.

Factors VIF

NDVI 1.24
Wind effect 1.74

TWI 2.18
Slope 2.35

Aspect 1.03
Wind speed 6.17
Land cover 1.35

Altitude 2.49
Distance to residential areas 1.35

Distance to road 1.67
Rainfall 5.74

Temperature 4.43
Factors VIF
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3.2. Determining the Importance of Factors Affecting Wildfires

The results of the importance of criteria using the Gini index in Landsat-8 and MODIS
datasets are summarized in Table 2. The results showed that in the Landsat-8 dataset, the
criteria of temperature (0.2), wind speed (0.15), and TWI (0.13) had the most significant
impact, and the criteria of wind effect (0.062), distance to residential areas (0.056), and
aspect (0.041) had the most negligible impact on the occurrence of wildfires. According to
the findings, the criteria of temperature (0.12), TWI (0.098), and slope (0.076) had the most
significant impact on the occurrence of wildfires in the MODIS dataset. In contrast, the
criteria of aspect (0.019), rainfall (0.014), and distance to residential areas (0.009) had the
lowest impact.

Table 2. Result of the importance of factors affecting wildfires.

Factors Landsat-8 Dataset MODIS Dataset

NDVI 0.073 0.05
Wind effect 0.062 0.021

TWI 0.13 0.098
Slope 0.11 0.076

Aspect 0.041 0.019
Wind speed 0.16 0.063
Land cover 0.09 0.035

Altitude 0.07 0.033
Distance to residential areas 0.056 0.009

Distance to road 0.063 0.025
Rainfall 0.08 0.014

Temperature 0.2 0.12

3.3. Wildfire Susceptibility Modeling with Deep Learning Algorithms

Modeling was conducted on two datasets (Landsat-8 and MODIS), and the results of
modeling evaluation on the data of train and validation are summarized in Table 3. The
MSE index was used to assess the accuracy of the algorithms.

Table 3. Result of modeling with deep learning algorithms.

Dataset
LSTM RNN

Train Validation Train Validation

Landsat-8 0.172 0.177 0.175 0.177
MODIS 0.204 0.227 0.201 0.219

The results showed that the value of the MSE index in the LSTM algorithm for the
Landsat-8 dataset was 0.172 for train data and 0.177 for validation data. Additionally, in
the MODIS dataset, the accuracy of the LSTM algorithm for training and validation data
was equal to 0.204 and 0.227, respectively. The RNN algorithm findings showed that the
training data values for Landsat-8 and MODIS were 0.175 and 0.201, respectively, while the
validation data values were 0.177 and 0.219, respectively. Based on the modeling results
with two deep learning algorithms, the accuracy of the Landsat-8 dataset was higher than
MODIS. In the MODIS dataset, the modeling accuracy of the RNN algorithm was higher
than LSTM in training and validation data. In contrast, in the Landsat-8 dataset, the values
of these two algorithms were equal in validation data, and LSTM accuracy was better than
RNN in training data.

3.4. Wildfire Susceptibility Mapping

After modeling with two deep learning algorithms on Landsat-8 and MODIS datasets,
the results were applied to the entire study area, and four susceptibility maps were created.
The four prepared susceptibility maps were divided into five risk classes from very low to
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very high using the natural breaks classification method (Figure 6a–d). Based on suscepti-
bility maps in the MODIS dataset, the study areas northwest, north, and east are prone to
wildfires. The susceptibility maps in the Landsat-8 dataset showed that the wildfire-prone
areas are similar to the MODIS dataset and differ in terms of the extent percentage.
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Figure 7 shows the percentage of wildfire susceptibility classes generated by each
algorithm. The RNN (Landsat-8) classifies 14.6% of the very high susceptibility class area,
18.2% in high, 34% in moderate, 27.1% in low, and 6.1% in very low. Similarly to the RNN
(MODIS), the very low, low, moderate, high, and very high classes correspond to 4.7, 15.5,
25, 33.4, and 21.4%, respectively. With the LSTM (MODIS), these percentages are similar:
4.1%, 13.5%, 32.22%, 33.9%, and 16.28%. Additionally, the LSTM (Landsat-8) algorithm
showed that the moderate (34.9%), low (26.05%), high (21.22%), very high (11.33%), and
very low (6.5%) classes have the highest risk percentage, respectively. The results showed
that RNN (MODIS), LSTM (MODIS), RNN (Landsat-8), and LSTM (Landsat-8) algorithms
had the highest percentage in the very high-risk category, respectively.
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3.5. Validation of Models and Susceptibility Maps

The susceptibility maps of two deep learning algorithms were evaluated in two
datasets using 30% of the data and the ROC curve. The results of this evaluation are shown
in Table 4 and Figure 8. The results of the AUC index showed that the highest accuracy
was related to RNN (MODIS) (97.1%), RNN (Landsat-8) (96.6%), LSTM (MODIS) (96.4%),
and LSTM (Landsat-8) (94.1%) algorithms, respectively.

Table 4. Result of AUC index in in four wildfire susceptibility models.

Algorithms AUC Standard Error 95% CI

LSTM (Landsat-8) 0.941 0.00640 0.926 to 0.954
RNN (Landsat-8) 0.966 0.00463 0.954 to 0.976
LSTM (MODIS) 0.964 0.00874 0.939 to 0.981
RNN (MODIS) 0.971 0.00776 0.948 to 0.985
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4. Discussion

Based on the results, two deep learning algorithms were highly accurate in modeling
(AUC > 0.9). Deep learning provides numerous benefits, including higher accuracy, more
effective feature engineering, adaptability, scalability, and improved natural language pro-
cessing and computer vision [165]. The results showed that the RNN algorithm was more
accurate than the LSTM algorithm in two datasets for preparing the wildfire susceptibility
map. RNNs have an advantage over LSTMs in that they are more straightforward and
less computationally expensive, making them faster to train and easier to interpret [166].
The flexibility, memory, parallelization, and interpretability of RNNs make them suited
for a wide range of sequence modeling and prediction problems [167]. Among the two
datasets, deep learning algorithms in the MODIS dataset had higher accuracy than the
Landsat-8 dataset. The advantages of MODIS compared to Landsat-8 include broader
coverage, higher temporal resolution, coarser spatial resolution in large-scale phenomena,
and improved atmospheric correction [168]. Overall, remote sensing can significantly
improve the speed and accuracy of wildfire detection and monitoring, helping to reduce
the damage caused by wildfires and protect human lives and wildlife [169].

The comparison of the accuracies obtained in this research with other researchers
is summarized in Table 5. According to the obtained results, the accuracy of the RNN
algorithm for both the MODIS and Landsat-8 images is 97.1% and 96.6%, respectively.
The LSTM model achieves accuracies of 96.4% and 94.1% for the aforementioned images,
respectively. Referring to the Table 4 and previous research in the field of deep learning for
wildfire susceptibility mapping, The RNN algorithm employed in this study demonstrates
slightly lower accuracy compared to both the DCN_Fire model, achieving 98.3% accuracy,
and the GRU model, which achieves an even higher accuracy of 99.89%. The employed
LSTM algorithm in this study exhibits a comparable accuracy to the Multi-AM-LSTM
model, both achieving an accuracy of approximately 96%. Among the mentioned models,
the CNN model achieves an accuracy of 87.92%, the DNN model achieves 75.14%, and the
LSTNet model achieves 94.1%, and all three of these models have lower accuracy compared
to both LSTM and Multi-AM-LSTM models in our study.
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Table 5. Comparison of modeling accuracies of this research with past research.

Model Name Reference Study Area Best Model (Accuracy %) Accuracy of Our Study
Models (Accuracy %)

DCN_Fire, Kim’s CNN
model, AlexNet,

Eight-layer CNN +
Fisher vector, HOG +

SVM, Deep belief net +
neural net

[170] Guangdong Province,
China DCN_Fire (98.3) RNN (MODIS) = 97.1

LSTM (MODIS) = 96.4

RNN, LSTM, GRU [141] data GRU (99.89) RNN (MODIS) = 97.1
LSTM (MODIS) = 96.4

LSTM, LSTNet, RNN,
SVR [171] Chongli, China LSTNet (94.1) RNN (MODIS) = 97.1

LSTM (MODIS) = 96.4

VM, XGBoost, NN,
RNN, LSTM,

Multi-AM-LSTM
[172] Montesinho Natural

Park, Portuguese Multi-AM-LSTM (96) RNN (MODIS) = 97.1
LSTM (MODIS) = 96.4

Logistic Regression,
DNN, KFRI (Fire Risk

Index)
[173] South Korea DNN (75.14) RNN (MODIS) = 97.1

LSTM (MODIS) = 96.4

ANN, SVM, RF [174] Amol County, Iran RF (88) RNN (MODIS) = 97.1
LSTM (MODIS) = 96.4

CNN, SiameseNet,
Multi-head CNN, VAE,

XGBoost, SVM,
Ensemble

[53] Biobío and Ñuble
regions, Chile

Ensemble (95.3) RNN (MODIS) = 97.1
LSTM (MODIS) = 96.4

FDA, GLM, SVM [175] Chaharmahal and
Bakhtiari Province, Iran GLM (83.7) RNN (MODIS) = 97.1

LSTM (MODIS) = 96.4

EO-GBDT, ANN, RF,
DT, SVM, NB, LR,
GBDT, PSO-SVM

[52] Nanda Devi, India EO-GBDT (95) RNN (MODIS) = 97.1
LSTM (MODIS) = 96.4

ANFIS-GA-SA,
RBF-ICA [176] Chaharmahal and

Bakhtiari Province, Iran ANFIS-GA-SA (90.3) RNN (MODIS) = 97.1
LSTM (MODIS) = 96.4

GAM, MARS, SVM,
GAM-MARS-SVM [177] Golestan Province, Iran GAM-MARS-SVM (83) RNN (MODIS) = 97.1

LSTM (MODIS) = 96.4

FR-MLP, FR-LR,
FR-CART, FR-SVM,

FR-RF
[178]

Tanger-T’etouan-Al
Hoceima region, North

of Morocco
RF-FR (90.4) RNN (MODIS) = 97.1

LSTM (MODIS) = 96.4

CNN, RF, SVM, MLP,
KLR [76] Yunnan Province of

China CNN (87.92) RNN (MODIS) = 97.1
LSTM (MODIS) = 96.4

Regarding the development of wildfire risk prediction models in the field of ma-
chine learning, the RF-FR model achieves an accuracy of 90.4%, GAM-MARS-SVM model
achieves 83.0% accuracy, ANFIS-GA-SA model achieves 90.3% accuracy, GLM model
achieves 83.7% accuracy, and RF model achieves 88.0% accuracy. However, all of these
models have lower accuracy compared to both mentioned algorithms in our study. Among
the machine learning models, EO-GBDT and the proposed Ensemble model by Bjånes et al.
achieve higher accuracies of 95% and 95.3%, respectively, compared to the LSTM algorithm
in our study, which demonstrates their superior performance on the Landsat-8 images.

In general, and based on two datasets, the parameters of temperature, wind speed,
slope, and TWI had a more significant impact on the occurrence of wildfires in the study
area. The occurrence and behavior of wildfires are greatly influenced by temperature. An
increase in wildfires’ likelihood, intensity, difficulty to contain, and their effect on air quality
and human health has been linked to rising global temperatures [179]. Higher winds can
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increase the likelihood of flames, make them harder to extinguish and alter a fire’s behavior,
intensity, and spread [180]. Wildfires tend to be less severe in places with higher TWI
values, while ignition, fire spread, and fire severity tend to be higher in areas with lower
TWI values [143]. Wildfires are more likely to spread and be destructive on steep slopes
because more material is needed to burn [181].

Limitations and Future Recommendations

The preparation of wildfire risk and hazard maps is inherently subject to uncertainties,
stemming from various stages of modeling and environmental conditions. Uncertainty
arises in terms of input data, monitoring of wildfires through satellite imagery, as well as
prediction and analysis carried out by algorithms.

Noise in the data, data scaling irregularities, insufficient samples, or measurement
errors are factors contributing to uncertainty in the input data of fire-affected areas caused
by wildfires [182].

Choosing the wrong algorithm, improper parameter configuration, limited availability
of training data, selecting inappropriate features, and inadequate model generalization are
all factors that contribute to the presence of uncertainty in the algorithm’s prediction and
analysis [182].

Our recommendation for future research is to consider this uncertainty in various
modeling approaches for forest wildfire. Despite the extensive research conducted on
modeling and predicting wildfires, there is still no absolute certainty in these models due
to their complexity and the multitude of factors influencing fire occurrences. Therefore, in
order to enhance the accuracy and predictive capabilities of these models, it is essential to
pay attention to this uncertainty in future research and employ improved and advanced
methods for modeling wildfires.

5. Conclusions

This research examined two remote sensing datasets (Landsat-8 and MODIS) for
wildfire monitoring and used these two datasets to model wildfire susceptibility with
two deep learning algorithms (RNN and LSTM). The results showed that the parameters
of temperature, wind speed, and slope are more critical in the occurrence of wildfires.
Among the deep learning algorithms, the RNN algorithm had higher accuracy than the
LSTM algorithm in both datasets. Additionally, the MODIS dataset had higher accuracy
than the Landsat-8 dataset in modeling wildfire susceptibility. The results showed that
the northern and eastern regions of the study area are more prone to wildfires. Wildfire
risk maps can help local managers and planners better control and manage wildfires.
Despite the advantages of this research in data and modeling, it had limitations, such as not
using the feature selection method and not optimally determining the parameters of deep
learning algorithms. Therefore, suggestions for future research include using other deep
learning algorithms, using a feature selection method in modeling, determining the optimal
parameters of deep learning algorithms with metaheuristic algorithms, and using different
remote sensing images for wildfire monitoring and data fusion in the modeling provided.
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