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Abstract: The Civilian Access Control Zone (CACZ), south of the Demilitarized Zone (DMZ) separat-
ing North and South Korea, has functioned as a unique bio-reserve owing to restrictions on human
use. However, it is now increasingly threatened by damaged land and slope failures. In this study, a
machine-learning-based method was used to assess slope stability by introducing the random forest
(RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and logistic regression
(LR) approaches. These classification models were trained and evaluated on 393 slope stability cases
from 2009 to 2019 to assess slope stability in the northern area of the Civilian Control Line, South
Korea. For comparison, the performance of these classification models was measured by considering
the accuracy, Cohen’s kappa, F1-score, recall rate, precision, and area under the ROC curve (AUC).
Furthermore, 14 influencing factors (slope, vegetation, structure conditions, etc.) were considered
to explore feature importance. The evaluation and comparison of the results showed that the per-
formance of all classifier models was satisfactory for assessing the stability of the slope, the ability
of LR was validated (accuracy = 0.847; AUC = 0.838), and XGBoost proved to be the most efficient
method for predicting slope stability (accuracy = 0.903; AUC = 0.900). Among the 14 influencing
factors, the external condition was the most important. The proposed supervised learning method
offers a promising method for assessing slope status, may be beneficial for government agencies in
early-stage risk mitigation, and provides a database for efficient restoration management.

Keywords: machine learning; slope stability; variable importance; forest restoration management; DMZ

1. Introduction

The Republic of Korea is the only divided country in the world; the Republic of
Korea and the Democratic People’s Republic of Korea have been in a state of conflict for
approximately 70 years since the armistice agreement of the 6.25 War (Korean War).

The military demarcation line (MDL) between the two countries is oriented in the east–
west direction, with a total length of approximately 238 km. The parallel lines separated by
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2 km to the south and north of the Military Demarcation Line are respectively called the
Southern Limit Line (SLL) and the Northern Limit Line (NLL). The Demilitarized Zone
(DMZ) between these two lines is a place of high historical and ecotourism value as traces
of the Korean War and the ecosystem are well preserved. Approximately 5–20 km away
from the SLL, there is a civilian control line (CCL). This line forms a buffer zone to the DMZ,
namely, the Civilian Access Control Zone (CACZ) (Figure 1). The entrance of civilians into
this area is limited (although not as extensively as with the DMZ) to protect and maintain
the security of military installations and operations near the DMZ, but limited agricultural
activities that do not affect military operations and security are allowed. However, many
places have a high probability of landslides due to damage caused for military purposes.
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According to the results of the “Mountain Management Survey and Monitoring in the
CACZ” conducted by the Korean Forest Service (South Korea), 3681.3 hectares of damaged
mountain land were found in the CACZ. For the damage sources, the construction of
military installations accounted for the most at 1278.3 ha (34.7%), followed by cultivated
land at 1065.1 ha (28.9%) and roads at 599.9 ha (16.3%). Among these, the highest proportion
of damage to mountainous areas was caused by the construction of military tactical roads,
where forest soil sediment disasters have been reported to occur. Unlike constructing forest
roads, when developing tactical roads in the remote and isolated areas of the CACZ, it is
difficult to introduce facility materials and vegetation that promote the physical stability of
slopes, and the input and utilization of technical personnel are limited.

These limitations have also been confirmed in related studies on the CACZ boreal for-
est ecosystem. In order to propose mid- to long-term management plans for the protection
of native plants from invasive species in the ecosystem, a number of studies have been
conducted through vegetation surveys in areas with less human disturbance to identify
rare plants, endemic plants, naturalized plants [1–7], and northern lineage plants [8]. The
categorization and grading of wetlands formed by topographical characteristics have also
been studied by evaluating factors such as vegetation, hydrology, hydraulics, human land-
scapes, and disturbances [9,10]. However, owing to limited access, some related research on
mountain disasters has been carried out by reading satellite images, dividing the damaged
area into bare soil, landslide area, poor growth areas, etc. and calculating their areas, thus
providing basic information for recovery planning [11,12].

Recently, the Korean Forest Service attempted to develop a practical and effective
restoration technique by surveying areas where forest restoration projects had previously
been conducted in the CACZ. Through logistic regression (LR) analysis, they concluded
that the most important factors to be considered in the process of restoration are the external
condition and vegetation coverage [13]. This analysis was limited in that it only used the
logistic regression analysis method.

The linear regression (LR) method is the most widely used method for slope stabil-
ity prediction [14–17] and landslide susceptibility [18–20] in previous studies; however,
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as a traditional form of linear regression, LR has certain limitations in determining the
important factors affecting the stability of the restoration area. It is difficult for a single
learning algorithm to cope with complicated learning problems with high performance.
Furthermore, the classical statistical regression method does not effectively describe the
complex nonlinear relationship between the slope stability and influencing factors [21],
which needs to be resolved. The use of multiple machine learning algorithms has always
been accepted as a better solution, which can improve the nonlinear estimation ability
of the model. Machine learning techniques have been widely used in theoretical and
empirical approaches to geotechnical engineering and can achieve better performance
than single weak learners, particularly when solving certain complex classification prob-
lems [22]. Machine learning methods such as random forest (RF) [23–25], support vector
machine (SVM) [26–28], and extreme gradient boosting (XGBoost) [29,30] have been widely
used to predict slope stability and landslide susceptibility in many studies. For example,
Lee et al. [26] employed SVM for landslide susceptibility mapping in Gangwon Province,
South Korea. Xu et al. [30] developed an ensemble learning approach based on a stacking
strategy (XGBoost) to explore the feasibility of factor of safety prediction using dynamic
multi-source monitoring data of slopes and landslides. Furthermore, previous studies have
indicated that SVM has been effectively and widely applied as a reliable solution to many
classification problems [31]. Previous studies have also indicated that bagging and boosting
algorithms (RF and XGBoost) exhibit excellent performance in slope stability prediction and
landslide susceptibility modeling [29,30,32]. Moreover, these machine learning algorithms
have many adjustable parameters that are very important for proposing optimal models.

There has been no research on the assessment of slope stability using machine learning-
based methods in the CACZ boreal forest ecosystem. Therefore, this study aims to provide
a method for assessing the physical stability of forest restoration projects in the CACZ.
Based on field survey data and machine learning, we developed four classification models:
random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost),
and logistic regression (LR). Then, the effectiveness of LR was validated, the performance
of the classification models was compared, and the feature importance of the 14 influencing
factors was explored.

2. Materials and Methods
2.1. Investigated Data

The study area was located in the northern area of the Civilian Control Line, South
Korea. The Korean Forest Service conducted a basic survey and data collection on the
restoration area from 2009 to 2019. This area is under the jurisdiction of three metropolitan
cities and provinces (Incheon Metropolitan City, Gyeonggi-do, and Gangwon-do). Two
local forest offices (the Northern and Eastern Regional Offices of the Korean Forest Service)
administer the national forests of these areas. There are also 12 divisions spread across the
area because it is a military zone, and the study area is adjacent to tactical military roads in
the CACZ. The area is approximately 87,863 ha (as of April 2020).

2.1.1. Slope Conditions

For the study area, the altitude of the specific geographical location is accurately
reflected by the elevation [29]. From Figure 2a, it can be seen that the elevation of the study
area is mostly between 344 m and 790 m, and the average is 640 m.
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loamy (B), loamy and weathered rock (BD), sandy loam (C), sandy and weathered rock (CD), sandy
loam and soft rock (CE), weathered rock (D), and soft rock (E). The x in the box plot represents the
mean of data; m, meter; ◦, degree.

The slope angle directly affects the amount of geomaterial deposited on a slope, and
further affects the slope stability [29]. From Figure 2b, it can be seen that the slope angle of
the study area is mostly between 30◦ and 43◦, and the average is 38◦.

As shown in Figure 2c, the slope aspect was divided into four categories: north-,
east-, south-, and west-facing slopes; the south- and west-facing slopes accounted for the
largest portion.

Soil can be classified into eight primary types based on its texture. As shown in
Figure 2d, these types include clay loam (A), loamy (B), loamy and weathered rock (BD),
sandy loam (C), sandy and weathered rock (CD), sandy loam and soft rock (CE), weathered
rock (D), and soft rock (E). Sandy loam constituted the largest proportion (approximately
72%), followed by loamy (8%), sandy and weathered rocks (7%), and clay loam (6%).

Cross-sectional and longitudinal slope types can be classified as follows: convex,
parallel, concave, and combined. Figure 2e,f plots the distributions of these four types.
This shows that for both cross-sectional and longitudinal slope types, the combined type
accounts for the highest proportion.
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2.1.2. Vegetation Conditions

Vegetation plays an important role in slope stability and has a mechanical influence
on the stability of the slope; that is, vegetation stabilizes the slope through mechanical
reinforcement of the soil by the root system [33]. Vegetation works include seeding, sodding,
slope mulching, tree planting, and combinations thereof. We classified the samples into
two categories based on the absence or presence of vegetation: no and yes. As shown in
Figure 3a, plots without vegetation works accounted for 34%, and more than half of the
plots had vegetation works.

Forests 2023, 14, x FOR PEER REVIEW 5 of 17 
 

 

2.1.2. Vegetation Conditions 
Vegetation plays an important role in slope stability and has a mechanical influence 

on the stability of the slope; that is, vegetation stabilizes the slope through mechanical 
reinforcement of the soil by the root system [33]. Vegetation works include seeding, sod-
ding, slope mulching, tree planting, and combinations thereof. We classified the samples 
into two categories based on the absence or presence of vegetation: no and yes. As shown 
in Figure 3a, plots without vegetation works accounted for 34%, and more than half of the 
plots had vegetation works. 

Vegetation coverage is a critical indicator of vegetation growth and is divided into 
three categories according to vegetation coverage: good (>70%), moderate (40%–70%), and 
poor (less than 40%). Figure 3b shows the distribution of these three categories; as shown, 
the plots with good vegetation coverage were the most common, accounting for approxi-
mately 40%, followed by moderate (36%) and poor (24%) conditions. 

 
Figure 3. Distributions of vegetation condition features. (a) Vegetation works and (b) vegetation 
coverage. 

2.1.3. Structure Conditions 
Slope structures are categorized into three types according to their functions: slope 

stabilization works for supporting the slope, slope protection works for slope protection 
and vegetation, and surface water drainage works for surface water removal. The areas 
are categorized into two categories, presence or absence, based on the presence or absence 
of these works. 

Figure 4a shows that the width of the structures is mostly between 20 m and 60 m, 
and the average is 35 m. The length (Figure 4b) of the structures is mostly between 10 and 
31 m, with an average of 15 m. 

Regarding slope stabilization (e.g., boulder stacking, retaining walls) (Figure 4c), 78% 
of the plots lacked slope stabilization works, whereas 22% of the plots included slope sta-
bilization works. For slope protection works (e.g., mulching, stone masonry, and vegeta-
tion sack stacking) (Figure 4d), 20% of the plots lacked slope protection works, whereas 
80% of the plots had these works constructed. For surface water drainage works (e.g., 
stone, sod, concrete channels, rill control, and diversion drains at the top of the slope) 
(Figure 4e), 80% of the plots lacked surface water drainage works, whereas 20% of the 
plots had these works constructed. 

External conditions are categorized into three classes based on the structure’s condi-
tions, function, and slope conditions: good, moderate, and poor. Good conditions mean 
that there are no problems in the structures, such as cracks and broken areas, the disaster 
prevention function and safety function is in good condition, and the rills and drainage 
channels are slightly developed. Moderate conditions mean that there are some minor 
problems for the structures, such as cracks and broken areas, and there is no problem in 
function or safety, but the existing problems may continue to expand the risk, and the rills 

Figure 3. Distributions of vegetation condition features. (a) Vegetation works and (b) vegetation
coverage.

Vegetation coverage is a critical indicator of vegetation growth and is divided into
three categories according to vegetation coverage: good (>70%), moderate (40%–70%),
and poor (less than 40%). Figure 3b shows the distribution of these three categories; as
shown, the plots with good vegetation coverage were the most common, accounting for
approximately 40%, followed by moderate (36%) and poor (24%) conditions.

2.1.3. Structure Conditions

Slope structures are categorized into three types according to their functions: slope
stabilization works for supporting the slope, slope protection works for slope protection
and vegetation, and surface water drainage works for surface water removal. The areas are
categorized into two categories, presence or absence, based on the presence or absence of
these works.

Figure 4a shows that the width of the structures is mostly between 20 m and 60 m, and
the average is 35 m. The length (Figure 4b) of the structures is mostly between 10 and 31 m,
with an average of 15 m.

Regarding slope stabilization (e.g., boulder stacking, retaining walls) (Figure 4c),
78% of the plots lacked slope stabilization works, whereas 22% of the plots included
slope stabilization works. For slope protection works (e.g., mulching, stone masonry, and
vegetation sack stacking) (Figure 4d), 20% of the plots lacked slope protection works,
whereas 80% of the plots had these works constructed. For surface water drainage works
(e.g., stone, sod, concrete channels, rill control, and diversion drains at the top of the slope)
(Figure 4e), 80% of the plots lacked surface water drainage works, whereas 20% of the plots
had these works constructed.

External conditions are categorized into three classes based on the structure’s condi-
tions, function, and slope conditions: good, moderate, and poor. Good conditions mean
that there are no problems in the structures, such as cracks and broken areas, the disaster
prevention function and safety function is in good condition, and the rills and drainage
channels are slightly developed. Moderate conditions mean that there are some minor
problems for the structures, such as cracks and broken areas, and there is no problem in
function or safety, but the existing problems may continue to expand the risk, and the rills
and drainage channels are developed on a small scale. Poor conditions mean that there
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are many problems, such as cracks and broken areas in the structure or structural defects
due to soil loss from the foundation of a structure, and the rills and drainage channels
are developed on a large scale. Figure 4f plots the distribution of these three classes. It is
shown that plots with good structure conditions are most common, accounting for about
46%, followed by moderate conditions (38%) and poor conditions (16%).
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2.2. Data Processing

To assess the slope stability of the mountainous restoration sites, it was necessary to
select the most influential factors. For this purpose, 14 features were selected as input to
establish the models. Descriptions of each selected feature are presented in Table 1.

Among the influencing factors selected in this study, there are four continuous vari-
ables (elevation, slope angle, width of structure, and length of structure) [16,29], and ten
categorical variables (soil classification, cross-sectional, etc.). For the continuous features,
they are not further coded as the established model can distinguish their magnitude. For
the categorical features, since the model is not distinguishable from the text-descriptive
features, each categorical feature will be numbered by the label encoding method [29]. In
addition, in this study, data scaling was achieved by standardization.
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The database consisted of 393 sample data points of slopes adjacent to military opera-
tion roads in the CACZ. The Korean Forest Service conducted a basic survey and collected
data from the restoration area from 2009 to 2019. In addition, the survey plots in the area
were classified into two grades for analysis: stable (228 cases) and unstable (165 cases). The
two categories of slope stability cases were relatively balanced (stable 58%, unstable 42%)
and were randomly divided into two groups of data with a ratio of 8:2 (Figure 5), of which
321 were grouped into the training set and 72 were grouped into the test set (Table 2).

Table 1. Description of selected features.

Classification Feature Type Description

Slope
conditions

Elevation Number Meter (m)
Slope angle Number Degree (◦)

Aspect 4 categories North, east, south, and west

Soil classification 8 categories

Clay loam (A), loamy (B), loamy and weathered
rock (BD), sandy loam (C), sandy and weathered

rock (CD), sandy loam and soft rock (CE),
weathered rock (D), and soft rock (E)

Cross-sectional type 4 categories Convex, parallel, concave, and combined
Longitudinal type 4 categories Convex, parallel, concave, and combined

Vegetation
conditions

Vegetation works 2 categories Presence and absence
Vegetation coverage 3 categories Good, moderate, and poor

Structure
conditions

Width of the structure Number Meter (m)
Length of the structure Number Meter (m)

Slope stabilization works 2 categories Presence and absence
Slope surface protection works 2 categories Presence and absence
Surface water drainage works 2 categories Presence and absence

External condition 3 categories Good, moderate, and poor
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Table 2. The slope stability data partition.

Grade Training Data Test Data Total

Stable 188 (0.586) 40 (0.556) 228 (0.580)
Unstable 133 (0.414) 32 (0.444) 165 (0.420)

Sum 321 72 393
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2.3. Methodology
2.3.1. Discrimination Methods

Supervised learning methods were used to simulate and predict slope stability, and
four commonly used classification models were selected: random forest (RF), support
vector machine (SVM), extreme gradient boosting (XGBoost), and logistic regression (LR).
These were chosen for their advantages of mature theory and high efficiency [34].

1. Random forest (RF)

RF is an ensemble machine learning technique developed by Breiman [35] that com-
prises decision trees using bagging methods. As one of the most widely used classifier
methods, RF has been successfully used for regression, classification, and feature selection,
and represents an ensemble of individually trained binary decision trees [36]. Random
forest is a tree-based machine learning algorithm that leverages the power of multiple
decision trees to make decisions. During model building, RF creates multiple decision trees
by randomly subsetting a predefined number of variables. The final prediction result is
determined by a majority vote of all trees [37].

2. Support vector machine (SVM)

The SVM, introduced by Boser, Guyon, and Vapnik [38], is a widely used classification
approach. As a supervised learning method, one of the key features of SVM is the ability to
use different kernel functions to model nonlinear relationships between the input variables
and the output variable. Here the default kernel Gaussian radial basis function is used as the
kernel function. SVM has been widely utilized in different classification, pattern recognition,
and regression problems because of its effectiveness in working with linearly non-separable
and high-dimensional datasets [39,40]. It aims to identify a decision boundary with the
largest possible margin that can still separate different classes [15].

3. Extreme gradient boosting (XGBoost)

XGBoost is another ensemble learning technique (specifically, a boosting technique)
proposed by Friedman [41], which creates a prediction model utilizing weak prediction
techniques such as decision trees [16]. XGBoost is an improvement of the gradient boosting
algorithm. Newton’s method is used to solve for the extreme value of the loss function,
and the Taylor loss function is expanded to the second order. In addition, a regularization
term is added to the loss function. The objective function during training consists of two
parts: the gradient boosting algorithm loss and the regularization term [42].

4. Logistic regression (LR)

LR refers to a type of generalized linear model used to describe data and estimate
the probability of a binary response based on one or more nominal, ordinal, interval, or
ratio-level independent variables [43]. A binary logistic regression model has a dependent
variable with two values: 0 and 1.

2.3.2. Parameter Optimization

The complexity of a model is determined by its hyperparameters, which are the key
elements of the model. Determining the best combination of these parameters is critical
for optimizing the model [44]. Of the four aforementioned model types, the hyperparam-
eters for RF, SVM, and XGBoost have been optimized to improve the proposed models.
To achieve high performance for these machine learning models, we need to tune their
hyperparameters. Hyperparameters are parameters of a model that are not trained from
data and are used to configure the model (e.g., number and depth of decision trees) [45].
The hyperparameters of the different models that we mainly considered are as follows:

Random forest (RF) model: The hyperparameters of the RF algorithm are mtry and
ntrees; mtry defines the number of variables randomly sampled as candidates at each split,
and ntrees defines the number of trees to grow. The optimal hyperparameters for mtry and
ntree were 4 and 200, respectively.
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SVM model: The hyperparameters of the SVM algorithm are the penalty coefficient
C and gamma (γ). The hyperparameter C reflects the tolerance of the SVM model to
errors, and the hyperparameter γ defines how far the influence of a single training example
reaches. Based on the 10-fold CV method, the range of values tuned for C and γ are 2−2:210,
and 2−10:25, respectively, and the optimal values for C and γ are 4 and 0.125, respectively. In
addition, the default kernel Gaussian radial basis function was used as the kernel function
in this study.

XGBoost model: The hyperparameters of the XGBoost algorithm include the learning
rate (Eta), minimum loss during splitting (gamma), maximum tree depth (max depth),
minimum sum of weights (min child weight), number of rounds (nrounds), column subsam-
pling parameters (colsample bytree), and ratio considered for model training (subsample).
Based on the highest accuracy values from all combinations, the XGBoost model was
optimized by fixing values of 0.1, 0, 10, 1, 100, 0.5, and 1 for Eta, gamma, max depth, min
child weight, nrounds, colsample bytree, and subsample, respectively.

2.3.3. Performance Metrics

The confusion matrix is a basic tool for evaluating the performance of supervised ML
algorithms. In this study, the confusion matrix is a 2 × 2 matrix (Table 3); according to
this matrix, certain metric values (e.g., accuracy, recall rate, precision, and F1-score) can be
estimated [46].

Table 3. Confusion matrix.

Predicted Class
Actual Class

Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

In addition, the receiver operating characteristic (ROC) curve was used, which plots
the true sensitivity or positive rate against 1-specificity or false positive rate and can be
used to evaluate the performance of the classification performance [47]. Moreover, the
area under the ROC curve (AUC) is also commonly used as a metric to evaluate the
prediction accuracy of classifiers. The value of the AUC ranges from 0.5 to 1, and the
relationship between the AUC and discrimination accuracy can be interpreted using five
ratings [47]: no discrimination (0.5–0.6), poor discrimination (0.6–0.7), fair discrimination
(0.7–0.8), good discrimination (0.8–0.9), and excellent discrimination (0.9–1.0). In addition,
in order to measure the degree of agreement between the ratings assigned by the two
groups, the interrater reliability was assessed through Cohen’s kappa, which is a measure
of interrater reliability used to measure agreement between two coders [48]. Kappa values
range from −1 to 1, with 1 indicating complete agreement and 0 meaning no agreement
or independence. According to Landis and Koch [49], these values can be interpreted as
follows: kappa values of 0.61 to 0.8 indicate substantial agreement, and values of 0.8 to
1.0 suggest almost perfect agreement.

3. Results
3.1. Predictive Performance of Different Machine Learning Models

Figure 6 shows the confusion matrix of the RF model. For the training data, the
accuracy, recall rate, and precision of the two conditions were all 1.000. All stable and
unstable conditions were correctly identified. For the testing data, the accuracy was 0.875,
and the recall rates for the stable and unstable conditions were 0.850 and 0.906, respectively.
Six stable conditions were mistakenly identified as unstable, and three unstable conditions
were incorrectly predicted as stable. As shown, the prediction results of the RF model on
the training data are perfect.
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Figure 7 shows the confusion matrix of the SVM model. For the training data, the
accuracy and recall rates of the two conditions (stable and unstable) were 0.928, 0.956, and
0.893, respectively. For the testing data, the accuracy was 0.847, and the recall rates for the
two conditions were 0.837 and 0.862, respectively. Seven stable conditions were mistakenly
identified as unstable, and four unstable conditions were incorrectly predicted as stable.
Thus, the performance of the SVM was similar to that of the RF model.
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Figure 8 shows the confusion matrix of the XGBoost model. For the training data,
the accuracy, recall rate, and precision of the two conditions were all 1.000. All stable
and unstable conditions were correctly identified, as in the RF model. For the testing
data, the accuracy was 0.903, and the recall rates for the two conditions were 0.902 and
0903, respectively. Four stable conditions were mistakenly identified as unstable, and
three unstable conditions were incorrectly predicted as stable. It can be observed that the
performance of the XGBoost model was better than that of the RF and SVM models.

Figure 9 summarizes the confusion matrix obtained from the LR model. For the
training data, the accuracy and recall rates of the two conditions (stable and unstable) were
0.903, 0.920, and 0.881, respectively. For the testing data, the accuracy was 0.847 and the
recall rates for the two conditions were 0.822 and 0.889, respectively. Eight stable conditions
were mistakenly identified as unstable, and three unstable conditions were incorrectly
predicted as stable. In general, the performance of the LR model was similar to that of the
SVM model, and the XGBoost model outperformed the other three models.
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According to the accuracies of these four models, RF and XGBoost perform better
than SVM and LR when predicting the stability of the slopes adjacent to military tactical s
roads in the CACZ. In machine learning, overfitting is a common phenomenon in which
a model fits the training data too well and, as a result, is unable to accurately predict
on test data. In other words, overfitting may occur if there is a significant difference in
the accuracies between the training data and test data [29]. In addition, the differences
between the prediction accuracies of the training and test data are 0.125 (RF), 0.081 (SVM),
0.097 (XGBoost), and 0.056 (LR), which are less than 0.15. According to Hou et al. [34],
there is still no exact reference regarding to what extent differences between the training
and test data indicate overfitting; in this study, the difference was relatively small.

The performance of the four models for the testing dataset is shown in Table 4. Between
these models, according to the F1-score of the testing dataset, XGBoost (F1-score = 0.914)
had the highest model accuracy among the models, followed by RF (F1-score = 0.883), LR
(F1-score = 0.871), and SVM (F1-score = 0.867). As shown, the kappa values of the models
varied from 0.688 to 0.803, and XGBoost had the highest kappa value (0.803), indicating an
almost perfect agreement. Furthermore, XGBoost also had the highest recall rate (0.902).
XGBoost and LR had the same precision value (0.925).
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Table 4. Evaluation metrics of the four ML algorithms.

ML Algorithm F1-Score Kappa Value Recall Rate Precision

RF 0.883 0.749 0.850 0.919
SVM 0.867 0.688 0.837 0.900

XGBoost 0.914 0.803 0.902 0.925
LR 0.871 0.686 0.822 0.925

The AUC scores of the four ML models are shown in Figure 10. It can be seen that
the AUC value of the testing dataset for XGBoost is 0.900, which could be considered to
indicate excellent classification performance (AUC > 0.9), followed by RF (AUC = 0.878),
SVM (AUC = 0.841), and LR (AUC = 0.838).
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In general, among the four predictive models, XGBoost performed better than RF,
SVM, and LR in assessing the stability of the mountainous restoration sites assessment in
the northern area of the Civilian Control Line.

3.2. Feature Importance Analysis

Feature importance analysis was performed to investigate the role of each feature.
Feature importance is an important reference for feature selection and model interpretability.
A trained XGBoost-based model can automatically calculate the feature importance, which
can be obtained through the interface feature importance criterion, that is, the gain criterion.
The gain is calculated by taking each feature’s contribution to each tree in the model;
the higher the relative importance of the feature, the more the feature contributes to the
model [50]. The importance of the 14 features in the XGBoost model is ranked in Figure 11.
The external condition and vegetation coverage were the most important variables, with
importance values of 38.5% and 15.2%, respectively, followed by elevation (11.9%), slope
angle (11.2%), length (6.1%), and width (6.0%). This result provides an important reference
for exploring the stability evolution of landslides and provides multisource monitoring
data for slope restoration.
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4. Discussion

In this study, supervised RF, SVM, XGBoost, and LR methods were developed to pre-
dict slope stability. RF and XGBoost were shown to be superior to the conventional methods
(i.e., SVM and LR) [29]. This conclusion is basically the same as in the literature [29]. This
may be because the model inherits the powerful learning ability of multiple individual learn-
ers so that the ensemble learning models can approximate the implicit high-dimensional
relationship between the various influencing factors and slope stability in this study [29].
XGBoost performed the best among these four methods in the stability assessment of slopes
adjacent to military tactical roads within the CACZ, South Korea. Compared with random
forest, XGBoost, as a tree-based model, includes more tuneable hyperparameters, and in
boosting, boosted trees are grown sequentially. Specifically, each of the trees is grown
using information from previously grown trees, unlike bagging, where multiple copies
of original training data are created and fitted to separate decision trees [51]. This may
explain why XGBoost generally performs better than random forest. In contrast to SVM,
XGBoost attempts different paths when it encounters a missing value on each node and
learns which path to use to handle missing values [52]. In addition, SVM does not perform
well with missing data; therefore, it is better to impute the missing values before running
SVM. Furthermore, as for LR, if the relationship between the features and slope stability is
well approximated by a linear model, linear regression may be a strong candidate.

Among the 14 influencing factors, the external condition was determined to be the
most important based on the feature importance analysis in the XGBoost-based method.
This was followed by vegetation coverage, elevation, and slope. These results are different
from those of general forest slopes; the structure of the slopes in this area (CACZ) is
limited owing to military security restrictions, such as construction materials, construction
methods (stone stacking), etc. Thus, slope management is relatively difficult, and can only
be completed on a small scale or with simplified materials and construction methods [53]. In
addition, enhancing the stability of slopes through comprehensive reforestation is difficult
because of the need to ensure visibility in military areas. Therefore, in this area, the
external condition and vegetation coverage are the most important factors affecting slope
stability. The importance of altitude and slope were third and fourth, respectively, because
military installations (e.g., military roads) are concentrated at relatively high altitudes in this
area [54] for the convenience of military operations. Therefore, elevation has a great impact
on slope stability. The slope angle, similar to that of a general forest area, is a very important
factor affecting the stability of the slope, and the variable importance analysis showed a
similar result in this area [55]. In addition, other influencing factors, such as aspect, soil
classification, cross-sectional type, longitudinal type, vegetation works, slope stabilization
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works, slope surface protection works, and surface water drainage works, affect the stability
of slopes in this area through various complex interactions. Different influencing factor
rankings may be obtained when different datasets and classification models are analyzed
in different study areas [56]. In addition, previous studies have paid more attention to the
mechanical parameters and geometric variables (e.g., slope height, slope angle, cohesion,
the pore water ratio, internal friction, and the unit weight) [16,53,57]; for example, Yang
et al. [57] showed that cohesion was the most sensitive factor affecting slope stability,
followed by slope height, rock bulk density, and slope angle. Wang et al. [58] found that
the most important factor influencing slope stability is slope height, followed by cohesion,
internal friction angle, and slope angle. However, it is well recognized that slope stability is
affected by many factors such as mechanical parameters, geometric variables, topographic
features, and geological conditions [29]. Therefore, in future research, for improving the
assessment of slope stability, it is necessary to consider these comprehensive factors.

The performance of LR (accuracy = 0.847; AUC = 0.838) was good, and from the results
of the feature importance analysis, the two most important factors concluded through LR
analysis by the Korean Forest Service [13] were the same as those in the XGBoost-based
analysis. Thus, the effectiveness of LR in predicting slope stability in this area was verified
to be acceptable.

This study did not need to consider the influence of sample imbalance on the prediction
effect. According to the above analysis, there were no significant differences in the number
of samples with the two slope stability conditions, as shown in Table 2, and the ratio of
the training data to test data was approximately 8:2 (321/72). In the training dataset, the
ratio of stable and unstable conditions was approximately 3:2(188/133), and in the test
dataset, these two conditions were approximately 5:4 (40/32), which may lead to better
fitting and prediction performance for samples. Thus, the overfitting effect in this study can
be ignored. However, as for the k-fold cross-validation technique used during the tuning
of the hyperparameters, the k value defined is 10; this may be a little large for our small
sample dataset. If the k value is too large, this will lead to less variance across the training
set and limit the model currency difference across the iterations [58]. Therefore, for a binary
task, this seems to work by ignoring sample imbalance. However, this would not be true
for multiclassification tasks. Commonly, the best CV for training and expecting to obtain a
good generalization model is defined by using the stratified k-fold.

Our study has some limitations. First, in addition to the 14 influencing factors con-
sidered, the mechanical parameters (e.g., cohesion) [59–61] may also affect slope stability.
Because the information on slope height and cohesion was not recorded, this may lead
to certain limitations in determining factors that affect slope stability. Thus, in the future,
adding these factors to the assessment may lead to more effective conclusions and provide
a better database for restoration planning. Second, our small sample size of approximately
400 cases was one of the most crucial problems in the analysis. Machine learning techniques
generally benefit from a large amount of data, which increases their performance [62]. How-
ever, we benefited from the detailed and high-quality data of the CACZ, which has many
limitations in conducting surveys owing to military security restrictions.

5. Conclusions

In this study, based on 393 slope stability cases, an empirical comparison of four
supervised learning methods (RF, SVM, XGBoost, and LR) was applied to assess slope
stability in the CACZ, South Korea. Furthermore, 14 influencing factors (slope, vegetation,
structure conditions, etc.) were considered to explore the feature importance of the XGBoost
model, which exhibited the best performance. The conclusions are as follows.

(1) Among the four algorithms, according to the performance metrics, RF and XGBoost
performed better than SVM and LR in the predictive analysis of slope stability. The
effectiveness of LR was validated with an accuracy, kappa value, and AUC of 0.847, 0.686,
and 0.838, respectively. Furthermore, the accuracy, kappa value, and AUC of XGBoost on
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the test data were 0.903, 0.803, and 0.900, respectively; thus, XGBoost could be considered
the best model for prediction.

(2) Among the 14 influencing factors, according to the feature importance analysis
results obtained from XGBoost, the external condition and vegetation coverage were the
most important variables, similar to the results of the analysis by the South Korean Forest
Service using the LR method.

The proposed supervised learning-based method may also be applied to other landslide-
prone areas. The analysis of the importance of influencing factors provides a database for
restoration plans, which is necessary to understand the dynamics of damaged land and
formulate a systematic management plan to prevent the expansion of damage.
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