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Abstract: As a current research hotspot, graph convolution networks (GCNs) have provided new
opportunities for tree species classification in multi-source remote sensing images. To solve the
challenge of limited label information, a new tree species classification model was proposed by
using the semi-supervised graph convolution fusion method for hyperspectral images (HSIs) and
multispectral images (MSIs). In the model, the graph-based attribute features and pixel-based features
are fused to deepen the correlation of multi-source images to improve accuracy. Firstly, the model
employs the canonical correlation analysis (CCA) method to maximize the correlation of multi-source
images, which explores the relationship between information from various sources further and offers
more valuable insights. Secondly, convolution calculations were made to extract features and then
map graph node fusion, which not only reduces redundancy features but also enhances compelling
features. Finally, the relationship between representative descriptors is captured through the use
of hyperedge convolution in the training process, and the dominant features on the graph are fully
mined. The tree species are classified through two fusion feature operations, leading to improved
classification performance compared to state-of-the-art methods. The fusion strategy can produce a
complete classification map of the study areas.

Keywords: hypergraph convolution; data fusion; classification of tree species

1. Introduction

Recently, achieving accurate and reliable tree species classification from a large number
of trees has gained more attention. Multi-source products typically provide more trust-
worthy information than a single product of ground surface covering [1,2]. Hyperspectral
images (HSIs) are an essential part of multi-source data learning and can reflect the spec-
tral characteristics of forest mapping, which is crucial for understanding forest cover [3].
Multispectral data images (MSIs) contain high-resolution spatial information, which is
also helpful when analyzing forest tree species. By integrating multi-source data, data
fusion can overcome the limitations of a single data source [4]. Current fusion methods
for HSIs and MSIs rely on feature extraction and feature fusion, respectively, to leverage
the correlation between the two data sources [5]. To leverage diverse information from
multiple sources of data, it is necessary to implement strategies that enable the effective
extraction, integration, and analysis of data [6–8].

Deep learning has been applied to feature fusion to improve its performance in terms
of feature fusion and has achieved satisfactory results [9–11]. Li et al. proposed an effective
CNN (PPF-CNN) based on pixel features [12] in combination with a small number of
existing samples, which enabled data enhancement to optimize the classification results. A
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multi-region CNN (MRCNN) [13] algorithm is proposed to mine spectral–spatial informa-
tion, which improves the mining performance. However, with the further development of
the network, limited labeled samples may lead to overfitting or performance degradation.
Fortunately, a semi-supervised approach can be used to mitigate this shortcoming. The
insufficiency of labels in remote sensing image classification can now be addressed with
the recent emergence of graph convolution networks. The recent advancement of GCNs
has provided a promising solution to the insufficient label problem in hyperspectral or
multispectral image (HSI/MSI) classification. Unlike traditional methods, GCNs operate
on a graph and require only a small amount of labeled data to establish the relationships
between multi-source nodes. By effectively aggregating and transforming features from a
node’s neighborhood, GCNs provide an efficient pathway for multi-source image classifi-
cation [14]. GCNs are particularly suitable for handling non-Euclidean data, which refers
to datasets that do not adhere to the principles and assumptions of Euclidean geometry,
and by learning node features through hidden layers, they better capture the local features,
resolving the issue of missing class boundary information. The Chebyshev polynomial [15]
parameterized differentiable graph convolution algorithm is used by GCNs to transport the
node information after using the feature construction of all samples to create the topological
structure (G-Conv). The whole learning process of this method does not need manual inter-
vention. By excavating the structural information of many unlabeled samples in the feature
space, the deviation of learning trained with labeled samples is corrected. The potential
value of unlabeled samples is fully utilized, and the ‘small sample’ problem in terms of
classification is effectively solved. Not only is this approach applicable to non-Euclidean
statistics, but it also has broad applicability to standard domains [16]. In reality, there is
much research on the use of GCNs in relation to remote sensing images. For example,
Qin developed a spectral–spatial GCN (S2GCN) by employing current pixel spatial in-
formation [17], which has made significant improvement to the original GCN. However,
at the end of the above network, the SoftMax function is usually used to analyze the ex-
tracted features, which generates a probability vector that reflects the category of the pixel.
This method lacks intraclass compactness, which reduces classification performance [18].
Spectral and spatial information were extracted to construct adjacent matrices, and an
innovative prototype layer was designed. This prototype layer contains distance-based
cross-entropy loss function and novel temporal entropy-based regularization, which can
not only generate more low-level features, such as separable between species and compact
within species, but also represent the prototypes belonging to each species [19].

Most methods extract features and then combine them using various techniques.
Additionally, low-rank model methods are used to convert multiple sources of features
into a common space through low-rank sparse representation. Feature fusion strategies
are used to convert multi-source features into a unified fused feature, but the process of
feature extraction and fusion are separate, which may result in changes to the original
information contained in the features. In graph representation learning, taking into account
both the global and local structure of the data can make the graph representation model
more robust against the effects of noisy and sparse data. However, there have been only a
limited number of GCN models that have prioritized preserving both the local and global
structures of the data concurrently.

Existing graph/hypergraph-based neural networks suffer from a significant limitation
in that they only make use of the initial graph/hypergraph structures and do not account
for dynamic modifications that may occur in the feature embedding process. This limitation
hinders the network’s ability to adapt to changing input data.

To address this issue, it is crucial to develop approaches that can account for the
modifications of graph/hypergraph structures and ensure that the original information
in the features remains intact throughout the fusion process. A semi-supervised graph
model is proposed based on an extraction fusion network for HSIs and MSIs, to fully use
the correlation of multi-source data. The feature extraction method is directed by the model
via feature fusion. The model directly outputs unified fusion features from multi-source
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data as input. For feature fusion, a multimodal graph is built, and feature extraction is
constrained using the graph-based loss function. The innovation points of the paper are
as follows:

(1) To extract the discriminative features, a common subspace is explored and found by
CCA operations on HSI and MSI, and the correlation is maximized between HSI and
MSI inputs.

(2) For the information fusion between HSI and MSI, both the node features and hyper-
graph features are integrated to improve the ability of global information extraction,
and the ability to express the relationship between all vertices becomes more robust.
During the initialization of hypergraph convolution, feature fusion is performed
on the nodes, and the hyperedge features are fused in the process of hypergraph
convolution learning.

(3) Compared with other state-of-the-art converged networks, it is more efficient and
achieves better classification results.

2. Materials and Methods
2.1. Study Area

The areas were studied in the Tahe Forestry Bureau (Figure 1), which is located in the
Daxing’an Mountains, northwest of Heilongjiang Province, China (123◦ to 125◦ E and 52◦

to 53◦ N). The studied areas have a borderline of 173 km and a total area of 14,420 km2.
The climate of the studied areas is a cold–temperate continental climate and experiences
severe climatic changes, with short hot, humid summers and long, dry, cold winters. The
annual average temperature of the area is −2.4 ◦C, and the average yearly precipitation
is 463.2 mm, occurring mainly in July and August. The forest, with a storage capacity of
53.4 million m3, covers 81% of the total area. Dominant tree species include Birch, Larch,
Spruce, Mongolica Pine, Willow, and Poplar [20].
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Figure 1. Map of the study area.

2.2. Data

To classify the tree species, we used data taken from HJ-1A and Sentinel-2. Figure 1
displays the HSI data for HJ-1A and the MSI data for Sentinel-2A, collected from the
China Center for Resources Satellite Data and Application and the USGS, respectively. The
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HJ-1A satellite has a high-speed imaging system with 115 bands and a spatial resolution
of 100 m [13], while Sentinel-2A offers 13 spectral bands with a spatial resolution of 10 m,
providing rich data for coastal and land remote sensing [20]. We used ENVI 5.1 software to
enhance the resolution of the HJ-1A/HSI images (collected on 20 August 2016) to match
the MSI spatial resolution and fill the gap concerning the relatively low HSI resolution. The
interpolation method was used to resample the experimental HSI data. The Tahe Forestry
Bureau conducted a survey in 2018 and used the results to classify major forest species in the
research region. The study areas were 500 × 500 × 115 pixels and 500 × 500 × 13 pixels for
HSI and MSI data, respectively. We selected the area with the most species as the research
object, which included Birch, Larch, Spruce, Mongolia, Willow, and Poplar. Table 1 lists the
three study areas used in this work, where the training samples comprise approximately
one-third of the total samples.

Table 1. List of 6 tree species samples of the three study areas.

Birch Larch Mongolia Poplar Spruce Willow

First area 130,124 39,216 57,620 3019 15,330 3492
Second area 150,771 58,829 11,412 2175 17,048 1067
Third area 99,082 82,746 38,114 1013 13,460 1,515,486

2.3. Classification Method
2.3.1. Hypergraph

The Hypergraph Neural Network, which is commonly referred to as HGNN [21],
has been visually depicted in Figure 2. Each dataset in the multimodal dataset contains
numerous nodes with features. Then, using the complex correlation of multimodal data
sets, several parts of hyperedge features are constructed. The hypergraph adjacency matrix
and node features are input into HGNN to output the pixel features classification map [22].
Hyperedge convolution is computed as follows:

Xk+1 = σ

(
D−

1
2

v HWD−1
e HTD−

1
2

v XkΘk
)

(1)

where Xk ∈ RN×C is the feature of the l th layer. X0 = X, and σ is the nonlinear activation
function. The initial node features Xk are learned through filtering matrix Θk to extract the
dimensional feature C2. Then, according to the node features of the hyperedge RE×C2 , the
hyperedge feature is realized via HT ∈ RE×N. The output node feature is then produced by
multiplying the hyperedge features that are associated with it, and the hyperedge feature
is produced from the matrix H. Dv and De in the Hyperedge convolution play the role
of normalization [21]. Therefore, through hyperedge convolution, the HGNN layer can
successfully extract the high-order correlation of the hypergraph.
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2.3.2. Overall Architecture

The graph neural network employs an undirected graph to model the data and utilizes
graph convolution for feature extraction by calculating various data relationships. Building
on this method, we propose a tree species classification model that leverages the distinct
framework of hyperspectral and multispectral data modules for feature fusion. The model
takes in a multi-source remote sensing image as input and produces unified fusion features
as output, as illustrated in Figure 3. The framework encompasses association feature
extraction, hypergraph convolution learning, and classifier classification.
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The fusion module is designed to extract and merge features from both HSI and MSI
data. The weight matrices of HSI and MSI are merged to generate the incidence matrix of
the multimodal graph, which accounts for complementary information and correlations
between the two data sources. The feature extraction and fusion network is trained using
a loss function that incorporates graph embedding, enabling the network to effectively
capture the features of interest. Finally, the SoftMax classifier is used to categorize the tree
species map at the pixel level.

To lower the dimensionality of the HSI data from 115 to 12, we first employ the KPCA
approach. This generates a vector that represents each pixel in the data collection. The
complete image’s vector is then fed as input to the network. In this setup, XH and XL

correspond to the HSI and MSI data, respectively,

XH =
{

XH
1 , XH

2 , . . . , XH
n

}
, XH

i ∈ Rh (2)

XL =
{

XL
1 , XL

2 , . . . , XL
n

}
, XL

i ∈ Rm (3)

where h and m are the numbers of spectral channels for the HSI and MSI, respectively, and
X is the vector representing the i-th pixel. Therefore, the input of the network is as follows:

X = {X1, X2, . . . , Xn}, Xi ∈ Rh+m (4)

where Xi = CAT
(

XH
i , XL

i

)
, and CAT() represents concatenate operation. Next, we feed

X into the network for feature extraction and fusion. Although the network structure is
not the primary focus of our research, the multimodal graph and graph loss are crucial
for feature extraction and fusion. We employ the Smish method [23] as the activation
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function in this study. In practice, the foundation of the feature extraction network can be
substituted with other networks, such as a convolution layer, because the network’s input
consists of multimodal images. The network outputs unified fused features using the loss
function based on the multimodal graph, which are then provided to the classifier for pixel
recognition. We adopt the FC layer and Softmax layer as the output layer of the proposed
network to demonstrate the potential of multimodal and loss-based graphs function.

2.3.3. Associated Feature Module

The primary objective of multi-source learning is to establish the connection between
various data, which is crucial for comprehending the relationship depicted in multi-source
remote sensing images. By exploiting the relationship between different viewpoints, we
can improve the final interpretation performance [24,25]. This research area has received
increasing attention in the field of data mining over the past decade [26,27]. In this part, we
focus on multi-perspective learning from the perspective of feature fusion and classification
methods. We use the common subspace approach, which maximizes the correlation
between two inputs, as explored via the CCA method. This standard two-view subspace
learning approach is employed to achieve our research objectives.

For a multi-source learning problem, hyperspectral and multispectral images are
represented as α ∈ RL × W ×H, β ∈ RL × W ×M, respectively, where L represents the
length, W represents the width, and H and M represent the number of bands in the two data
sources, respectively. Then, α and β are transformed into V v×H and V v×M, respectively,
v = L × W. We assume that the linear representation of α and β are represented as follows,

UH = r1(α) (5)

UM = r2(β) (6)

r1, r2 represent the projection directions of HSI and MSI, respectively. CCA is obtained
by maximizing the correlation between α and β. The first projection direction can be
obtained by optimizing the following equation, and r1, r2 represent the HSI and MSI
projection axes, respectively. By maximizing the correlation between α and β with the
vector generated by CCA, the following equation can be optimized to yield the initial
projection direction,

maxρ(r1, r2) = r1sHMr2
s.t.r1sHHr1 = 1, r2sMMr2 = 1

(7)

SHM is the covariance matrix of the HSI and MSI among them. The Lagrangian
multiplier operator can be used to maximize the objective function and find the optimal
solution sum of r∗1 and r∗2 for the problem.

U∗H = r∗1(α) (8)

U∗M = r∗2(β) (9)

Multi-source image categorization involves assigning the same space to data from
various sources, as based on Equations (8) and (9). The use of a sum representation
enhances the relevance of the data and features, which is highly beneficial for the multi-
source classification of tree species. This approach not only processes the initial input but
also reduces its redundancy and complexity. However, the rate of convergence for deep
learning is slow [28]. By providing HSI- and MSI-related features, this approach enables the
development of the depth model, which can lead to further improvements in classification
performance.
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2.3.4. Multi-Source Hypergraph Fusion

To efficiently integrate information across multimodal images, input pixels are repre-
sented using a graph structure. Compared to CNNs, the graph structure offers a higher
capacity to capture the relationship between all of the vertices, as the size of the convolution
kernel in a CNN limits the extraction of global information.

Both the association features of HSIs and MSIs processed by the CCA algorithm are
QL × W ×H

h = U∗H, QL × W ×M
m = U∗M, respectively. Each pixel was represented as a vertex

of the hypergraph, and their dimensions are transformed into Xn×H and Yn×M, where
n = L × W = |V| is the number of hypergraph vertices, and H and M represent the
spectral dimensions of the HSIs and MSIs, respectively. Their features are extracted as

X
n×Hj
i and Y

n×Hj
i . For each vertex ν ∈ V and the hyperedge e ∈ E, the incidence matrix

generated from the selected k nearest neighbors is H|V|×|E|, where, |V| = |E| = n.

h(i, j) =

e
−

nσ||xi−xj ||
2

∑n
j=1 d(xi ,xj) , xi ∈ Nk

(
xj
)

0
(10)

where σ is an adjustable hyper-parameter, d
(
Xi, Xj

)
is the Euclidean distance between the

two vertices Xi and Xj. The mean value is used to regulate the multimodal distance and
simplify the process of adjusting the hyperparameters.

It was assumed that [f1, f2, . . . , fn] is a multimodal feature vector. According to Equation
(10), the incidence matrix [Hh

1 , Hh
2 , . . . , Hh

n] and [Hm
1 , Hm

2 , . . . , Hm
n ] of HSIs and MSIs are

calculated, respectively. Then, the fused features are obtained as Hh
f = CAT

(
Hh

1 , Hh
2 , . . . , Hh

n

)
,

Hm
f = CAT(Hm

1 , Hm
2 , . . . , Hm

n ), where CAT() represents the multi vector connection operation.
Then, the obtained hyperedge features are further studied.

2.3.5. Hyperedge Learning

To obtain fused hyperedges from multimodal features, we connect their incidence
matrices. This process enables the hypergraph convolution in Equation (1) to be applied,
which becomes

Xl+1 = σ

(
D−

1
2

v HfWfD
−1
e HT

f D−
1
2

v XlΘl
)

(11)

In the case of without considering regularization [29], the equation is simplified as
follows:

Xl+1 = σ
(

HfWfH
T
f XlΘl

)
(12)

Since H and W are diagonal matrices, the equation becomes

Xl+1 = σ
((

H1W1HT
1 + . . . HnWnHT

n

)
XlΘl

)
(13)

For multi-source remote sensing images, each node has many characteristics [30]. The
hyperedges of its hypergraph are first learned, respectively, then they are integrated. The
objective function in backpropagation is calculated via cross-entropy loss function and the
final feature map outputs with pixel-level SoftMax function. The Algorithm 1 is presented
as follows:
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Algorithm 1 Pseudo code of hypergraph feature fusion for HSI and MSI

Input: HSI associated feature XH, MSI associated feature XM, neighbor node number k, iteration
number of layer n, number of graph convolution layer g.
1: Generate X′H and X′M by flatting XH and XM, respectively
2: Generate X by connecting X′H and X′M horizontally
3: Generate the fusion incidence matrix of HSI and MSI as H, according to Equations (8) and (9)
4: Calculate the degree diagonal matrix De of the hyperedge and the degree diagonal matrix Dv of
the vertex
5: Initialization parameters W and Θ
6: for i = 1 to n
7: for j = 1 to g
8: Calculate characteristic X according to Equation (10)
9: Xpre = SoftMax(BN(FC(Hconv(X))))
10: Calculate losses L, update W and Θ
11: Gradient back propagation
12: end for
13: end for
14: Output tree species classification map based pixel node

2.3.6. Evaluation Indicators

To test the tree species classification accuracy of the proposed method, the OA, average
accuracy (AA), and Kappa coefficient (kappa), were determined using Equations (14)–(16),
respectively.

OA =
∑k

i=1 C(i, i)
M

, (14)

AA =
∑k

i=1 OA
K

, (15)

kappa =
M ∑k

i=1 C(i, i)−∑k
i=1(C(i,+)C(+, i))

M2 −∑k
i=1(C(i,+)C(+, i))

, (16)

where i and k represent i-th tree species and the size, respectively. OA represents the
proportion of correctly classified samples in the whole test sample, AA denotes the average
accuracy of every tree species, and kappa is a statistical measure that reflects the consistency
between the ground truth and classified ground maps.

3. Results
3.1. Experimental Setup

The experiment uses HJ-1A and Sentinel2A images as datasets, which were introduced
in Section 2.2. Several compared models are as follows:

SpectralNET [31]: A deep learning method for spectral clustering by embedding input
data points into the eigenspace of their associated graph Laplacian matrix and subsequently
clusters them.

FuNet [32]: A new minibatch GCN was proposed by training large-scale GCNs in a
mini-batch mode. The method has the ability to predict data that is not part of the training
set without the need to retrain the networks.

MFDF [33]: A classification model based on decision fusion between multiple features
and super-pixel segmentation, which integrated 2D and 3D Gabor features of multi-source
datasets.

DMULN [6]: end-to-end pattern model which integrates the multi-view features, and
the view union pool was proposed by associating with the feature extractor, and the fused
features are input into the classifier.

The proposed model and other compared methods were evaluated using 10%, 20%,
and 30% of the samples as randomly chosen training sets. For the other samples, we
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allocated 30% of the samples as validation sets and the rest as test sets randomly. Parameter
settings have a great impact on performance. Although the resolution of the datasets is
different, the resolution of the geomap is fixed. The experiment is implemented in Python
3. The parameters of graph convolution are set in Table 2, where ‘Hconv’ refers to the
hypergraph convolution layer.

Table 2. Detailed layers and shape in multi-source fusion hypergraph convolution model.

Layer Shape Layer Shape

Input (500 × 500 × 115) Input (500 × 500 × 12)

CCA (500 × 500 × 17) (500 × 500 × 12)

Calculate Wh Calculate Wm

Normalization Normalization

Hconv 128 Hconv 128

Smish Smish

Fusion hypergraph
Hconv

FC Layer
BN Layer
Softmax

After hypergraph fusion, the proposed model consisted of two FC-BN layers and two
active layers. The patch size was set to 7, and we set both the learning rate and weight
decay to 0.005. We used the KNN method (k = 10) to construct the initial graph for the
datasets, with k values set to [5,10,15,20] and the number of convolution layers set to 15.
We initialized the weights of all methods using the Glorot method. Adam was utilized as
an optimizer, with a maximum of 1000 epochs. To ensure the optimal performance of other
comparative models, we consulted the relevant literature. The method was repeated 100
times, with the average outcome for 10 iterations and the corresponding standard deviation
used as the result. The training procedure was terminated if the loss did not decrease for
100 consecutive epochs.

3.2. Classification Performance Comparison

The average accuracy (AA) of tree species classification in terms of the three multi-
source datasets is shown in Figure 4. The proposed method achieves the highest perfor-
mance, followed by MFDF, FuNet, DMULN, and SpectralNet, as shown. The proposed
model outperforms MFDF, FuNet, DMULN, and SpectralNet by 0.67, 0.46, 0.3, and 0.7,
respectively, in terms of OA, as shown in Figure 5. Figure 6 shows the KAPPA values of the
proposed model are 0.38, 0.23, 0.16, and 0.69 higher than those of MFDF, FuNet, DMULN,
and SpectralNET, respectively. These results indicate that the proposed method is superior
to the other methods. The performance of the proposed model is further demonstrated in
the three figures.
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Tables 3–6 illustrate the confusion matrix of five models used for tree species clas-
sification, and MFDF, FuNet, DMULN, and SpectralNET are unsatisfactory compared
to the proposed model. Spruce is particularly challenging to classify, but the proposed
model has a higher recognition rate for Spruce than that in the other models, leading to an
overall increase in OA. The classification effect of the SpectralNET model is inadequate,
as it identifies almost no other tree species except for Larch and Birch. Other models also
lack the advanced ability to identify multiple tree species. The DMULN model mistakenly
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classified almost 30% of Spruce trees as Larch, while the recognition rate of Poplar was
0. The OA of MFDF for Poplar is 0.61, which is better than DMULN. The classification
performance of FuNet for other tree species is slightly better than DMULN, except for
Spruce. As shown in Figure 5 and Table 7, the recognition rate of the proposed model for
Spruce, Mongolian, and Willow is better than that of MFDF, but the recognition rate for
Spruce is not significantly improved.

Table 3. Confusion matrix of tree species classification using the SpectralNet method. Tree species
code, column (ground truth code), and row (prediction code).

Tree Species Code 0 1 2 3 4 5

Birch 0 462 513 101 99 2 0
Larch 1 428 2535 701 311 0 0

Spruce 2 433 1411 525 103 0 0
Mongolica 3 81 153 52 49 0 0

Willow 4 4 100 0 0 0 0
Poplar 5 2 88 0 0 0 0

Precision 32.76 52.81 38.07 8.71 0 0

Table 4. Confusion matrix of tree species classification when using the DMULN method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 805 342 4 25 0 0
Larch 1 297 3600 16 51 1 0

Spruce 2 186 11.21 507 44 0 0
Mongolica 3 70 103 14 146 0 0

Willow 4 1 68 0 1 32 0
Poplar 5 15 67 1 5 0 0

Precision 68.30 90.01 27.29 43.30 31.69 0

Table 5. Confusion matrix of tree species classification when using the FuNet method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 859 240 42 34 0 1
Larch 1 314 35.66 31 47 0 3

Spruce 2 63 850 930 14 0 1
Mongolica 3 56 126 0 151 0 0

Willow 4 0 70 1 2 30 0
Poplar 5 1 33 0 0 0 55

Precision 73.03 89.98 50.0 45.19 29.29 61.14

Table 6. Confusion matrix of tree species classification when using the MFDF method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 10.81 71 1 21 0 1
Larch 1 390 35.25 7 35 2 3

Spruce 2 39 496 13.00 24 0 0
Mongolica 3 39 32 1 261 0 0

Willow 4 0 13 1 7 82 0
Poplar 5 3 5 0 0 0 81

Precision 91.90 88.95 69.85 78.13 78.72 90.28
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Table 7. Confusion matrix of tree species classification when using the proposed method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 10.82 71 1 21 0 1
Larch 1 286 3601 74 2 1 0

Spruce 2 48 79 1714 6 5 5
Mongolica 3 12 13 14 290 2 2

Willow 4 7 2 5 0 90 0
Poplar 5 1 3 4 1 0 80

Precision 92.07 90.82 92.14 86.78 85.87 91.05

The results of the various methods used to generate tree species classification maps
in three regions are presented in Figure 7. The proposed method employs the fusion map
convolution method using HJ-1A and Sentinel-2 data, achieving an OA of 0.88, an AA of
0.85, and a Kappa of 0.82 in the consistent areas. The proposed model outperforms other
methods in identifying Spruce and Larch, which have commercial value due to their rarity.
The SpectralNet method performs poorly, followed by DMULN, FuNet, and MFDF. Other
methods have blurred edges, low recognition rates, and a high rate of misclassification and
fragmentation. Overall, the proposed method accurately identifies all of the tree species
and yields favorable results, surpassing the compared methods. The superior performance
is attributed to the proposed strategy based on depth hypergraph convolution fusion and
hyperedge convolution fusion.
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3.3. Parameter Analysis

In this section, we utilize three tree species datasets from Section 2.2 to analyze the key
parameters that affect classification performance. These parameters include the labeling
ratio (partial labeling of the total datasets), K value, and depth. We conduct tests and
analyses to examine the impact of these parameters on classification performance. Figure 8
displays the tree species classification accuracy of the five models with varying label
rates. The classification accuracy of all five models increases as the label rates increase.
However, the proposed model achieves desirable accuracy and outperforms the other
methods significantly.
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Figure 8. The accuracy of tree species classification with different label rates.

To verify the robustness of the method, it is advisable to strive for consistency in
the selection of k across different modal features while minimizing any potential impact
on accuracy. This approach allows for a thorough assessment of the method’s resilience,
particularly in terms of its ability to handle variations across modalities. By maintaining
a consistent value of K, the performance of the method can be effectively evaluated, and
the robustness can be determined in terms of achieving accurate results while considering
the unique characteristics of each modality. Figure 9 illustrates the classification accuracy
of three models for different K values (K ∈ {5, 10, 15, 20, 25, 30}). As only three of the
compared models have a K value parameter, the results show that the accuracy of the three
methods varies with K. The accuracy tends to increase as the K value is set between 5 and
15. However, when K is set between 15 and 30, the accuracy starts to decrease.
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The experimental results demonstrate that the proposed method achieves the best
performance when K is set to 15. These findings lead to two main conclusions: (1) A small
K value may fail to capture the neighborhood of the data, while an increasing K value could
result in incorrect neighborhood samples that render the relationship between samples less
discriminative. (2) The proposed fusion learning method is sensitive to the choice of the
K value.

To investigate the influence of the depth of the proposed model, we set the range of
the DHCN layers to {5, 10, 15, 20, 25}. Figure 10 demonstrates that the accuracy of the
classification result with DHCN is highest when the K value is set to 15, and the method is
not extremely sensitive to the number of layers. However, as the number of layers increases
beyond 15, performance slightly degrades with excessive smooth curve.
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As shown in Figures 9 and 10, the main factors that affect the computation time are the
complexity of the datasets, the number of categories, the number of spectral channels, and
the image size. The computation time is influenced by various factors, including image size,
data complexity, and the model parameters. Figures 11 and 12 illustrate the RAM usage and
running time of different models in the classification experiments. Larger images and more
complex datasets necessitate increased memory and computation time. Comparatively, the
GCN-based methods require more memory and time compared to the CNN-based method,
primarily due to the time-consuming computation of the adjacency matrix. However, the
proposed model, with its fusion graph structure, outperforms other GCN methods in terms
of speed. This is achieved by eliminating the utilization of ineffective features, resulting in
improved overall system efficiency. By removing irrelevant or redundant features from the
data, the model can concentrate on the most informative aspects of the input, leading to
enhanced performance and faster computation times.
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4. Discussion

The proposed model first performs typical association analysis on the two data sources
used as the input, maximizes the correlation of multi-source data, performs convolution
calculation on the generated vector to extract features, and then fuses the nodes of its graph
structure. This process not only reduces redundant information but also strengthens the
effective features. Finally, hyperedge convolution is introduced into the graph convolution
training process to adaptively mine the relationship between the representative descriptors
and fully integrate the node and attribute features.

The SpectralNet model exhibits significant statistical advantages when using the
spectral clustering method as it overcomes the scalability and generalization of the spec-
tral embedding. However, in our experiment, the SpectralNet method displayed severe
shortcomings in terms of coniferous forest species classification, with almost no Willow
identified and other tree species misrecognized as Larch. The DMULN method [32] utilizes
an encoder–decoder network to input the features related to the two data sources separately.
Its recognition ability in terms of Mongolian, Poplar, and Willow is better than the other
three methods, owing to the benefits of deep multi-view learning and view pooling. The
DMULN method proved to be superior to SpectralNet in terms of tree species classification
performance as it can learn both spectral and spatial modal features simultaneously during
the experiment. However, it is inferior to FuNet and MFDF. FuNet utilizes mini batches of
non-European features in graph convolution processing as well as European features CNN
processing, which are then fused together. This approach has demonstrated impressive
performance in a single hyperspectral data source. However, in the present experiment, Fu-
Net did not perform as well when using multi-source tree species datasets. MFDF, which is
based on Gabor wavelet feature representation, utilizes a two-dimensional Gabor filter [31],
making it more suitable for feature extraction when using multi-source datasets. As we use
Sentinel-2 data as the multispectral data, which is more effective when extracting spatial
features, the Gabor extraction of spatial features is slightly worse, resulting in a lower OA
in terms of tree species classification compared to the proposed method [34]. However,
its recognition rate for Spruce is significantly lower than the proposed method, which
uses a graph structure to represent the higher-order features. Hyperedge learning also
integrates the features of the graph structure from the two data sources, thus improving the
recognition of Spruce and the overall recognition rate more accurately [33]. The proposed
hypergraph fusion structure can transfer the complex high-order correlation between HSIs
and MSIs, and better represent the underlying data interrelation between them than the
basic graph structure. Additionally, the proposed method has the advantage of fusing
multimodal information into the same data structure with flexible hyperedges, owing to
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the existence of multimodal features. Through hypergraph fusion and hyperedge convo-
lution fusion, the multi-source graph convolution model proposed significantly reduces
computation time while improving learning efficiency.

Our model outperforms the compared models in the classification of six tree species,
yielding a higher AA. The proposed model has several advantages:

(1) The model utilizes multiple graph learning and multi-source fusion, where each
graph provides complementary information that is unique from the other graphs.
By removing the noise hyperedges present in tiny graphs, the model improves tree
species classification performance.

(2) Multi-graph learning is proven to be feasible in tree species classification, and our
model considers both the global and local features of multi-source data simultaneously
with regularization.

(3) Compared to other models, our proposed method is more effective in classifying tree
species by using the fusion of multi-source data. The utilization of multimodal graph
learning enhances the effectiveness of the classification process.

5. Conclusions

In this paper, we proposed a novel model for tree species classification by designing a
multi-source fusion graph neural network. The proposed model first calculates the pixel-
based correlation between HSIs and MSIs, generating two types of hypergraph structures.
Both the HSI graph structure and MSI graph structure are saved in each initial graph
and fused with each other in the hyperedge learning process. The proposed model fuses
the two data sources twice, capturing the global graph from the low-dimensional space
of the original high-dimensional data. We propose a new fusion method that combines
complementary and common information to correctly capture the graph structure inherent
in the data. We evaluated our method using a tree species dataset and compared it with
state-of-the-art approaches. The experimental results show that the proposed method is
effective in improving the accuracy of tree species classification.

In the future, our research aims to investigate multi-source feature fusion algorithms
based on self-supervised learning methods. Additionally, we intend to explore tree species
classification in higher-resolution remote sensing images. These endeavors will further
enhance the accuracy and capabilities of our classification models, enabling us to tackle
more complex and detailed datasets in the field of tree species classification.
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