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Abstract: The tea industry is one of China’s most important industries. The picking of famous tea still
relies on manual methods, with low efficiency, labor shortages and high labor costs, which restrict
the development of the tea industry. These labor-intensive picking methods urgently need to be
transformed into intelligent and automated picking. In response to difficulties in identification of
tea buds and positioning of picking points, this study took the one bud with one leaf grade of the
Fuyun 6 tea species under complex background as the research object, and proposed a method based
on deep learning, combining object detection and semantic segmentation networks, to first detect
the tea buds, then segment the picking area from the tea bud detection box, and then obtain the
picking point from the picking area. An improved YOLOX-tiny model and an improved PSP-net
model were used to detect tea buds and their picking areas, respectively; the two models were
combined at the inference end, and the centroid of the picking area was taken as the picking point.
The YOLOX-tiny model for tea bud detection was modified by replacing its activation function
with the Mish function and using a content-aware reassembly of feature module to implement the
upsampling operation. The detection effects of the YOLOX-tiny model were improved, and the mean
average precision and recall rate of the improved model reached 97.42% and 95.09%, respectively. This
study also proposed an improved PSP-net semantic segmentation model for segmenting the picking
area inside a detection box. The PSP-net was modified by replacing its backbone network with the
lightweight network MobileNetV2 and by replacing conventional convolution in its feature fusion
part with Omni-Dimensional Dynamic Convolution. The model’s lightweight characteristics were
significantly improved and its segmentation accuracy for the picking area was also improved. The
mean intersection over union and mean pixel accuracy of the improved PSP-net model are 88.83%
and 92.96%, respectively, while its computation and parameter amounts are reduced by 95.71% and
96.10%, respectively, compared to the original PSP-net. The method proposed in this study achieves a
mean intersection over union and mean pixel accuracy of 83.27% and 86.51% for the overall picking
area segmentation, respectively, and the detecting rate of picking point identification reaches 95.6%.
Moreover, its detection speed satisfies the requirements of real-time detection, providing a theoretical
basis for the automated picking of famous tea.

Keywords: target detection; tea bud; picking point; semantic segmentation

1. Introduction

Tea is one of the most important beverages in the world and a profound tea culture
has formed in all continents, featuring a wide audience, high demand and high economic
value [1]. Currently, mechanical picking methods have been applied in the field of tea
picking, but the tea leaves picked by these method are not complete, and there are a large
number of old leaves and broken branches mixed in it, so mechanical methods are only
used for bulk tea picking with low economic value [2]. Famous tea has high nutritional and
market value and rare production; famous tea strictly requires quality picking, so it still
relies on manual picking with low efficiency, high cost and labor shortages, which have
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become important problems restricting the development of the famous tea industry [3]. In
order to promote the development of this industry, there is an urgent need to improve the
working mode of famous tea picking and transform it into an intelligent way, i.e., replace
manual picking with intelligent machine picking. The key breakthrough of intelligent
picking is the automatic recognition of tea buds and their picking points in complex scenes.
Compared with other target detection tasks [4–6], the color of tea buds is close to that of
the background, the sizes of targets are small and densely distributed, and the similarity
between tea bud individuals is not high enough, and therefore, these characteristics increase
the difficulty of tea bud detection.

Currently, research in this field is mainly divided into recognition of tea buds and de-
tection of tea bud picking points. The methods adopted are mainly divided into traditional
image segmentation and deep learning. Studies on tea bud recognition through traditional
segmentation methods include the following: Zhao et al. [7] segmented tea buds by setting
a threshold to combine three channels under HSV color space and the method achieved
good results. Shao et al. [8] used the S factor under HSI color space to carry out gray level
analysis of images, and then the improved K-means algorithm was adopted to extract the
tea buds. Traditional segmentation methods used for picking point extraction include the
following: Long et al. [9] extracted the ultra-green features of images; the Otsu method
was used for threshold segmentation to obtain the segmented tea bud regions and the edge
detection and skeleton extraction methods were combined to locate the picking points.
Lei et al. [10] extracted the G-B feature of tea buds and used the Otsu method for secondary
segmentation to extract tea bud skeleton. The Shi–Tomasi algorithm was used to detect
the skeleton corners and to mark the picking points, and the recognition rate was 85.12%.
Traditional segmentation methods use the difference in color between the tea buds and the
background to extract targets, and have relatively simple algorithms and small amounts of
computation, whereas they are poor in robustness and are difficult to detect in real time.

With the continuous development of deep learning, convolutional neural networks
are gradually being applied to the field of tea bud detection; the essential feature of deep
learning is its great self-learning capability and strong perception of similar features. Some
studies have used object detection algorithms to detect tea buds. Xu et al. [11] used the
YOLOv3 algorithm to detect tea buds and the DenseNet201 algorithm to further classify
them, and the detection accuracy of the method was 95.71%. Cao et al. [12] replaced the
backbone network of YOLOv5 with GhostNet, and BiFPN structure was adopted in the
feature fusion part, and the accuracy of tea bud detection was 76.31%. Some studies have
used object detection or image segmentation algorithms to detect tea bud picking points.
Chen et al. [13] used a Faster R-CNN to detect the OTTL regions, and then used a full
convolutional network (FCN) to identify picking points within the OTTL regions. The
precision of the Faster R-CNN model was 79% and the recall rate was 90%; the FCN achieved
an average accuracy of 84.91% and an mIoU of 70.72%. Yan et al. [14] proposed an improved
Mask R-CNN model to detect the picking points; the mAP value of tea bud recognition was
44.9%, the f2 value was 31.3%, and the positioning accuracy of picking points was 94.9%.
Some studies have combined deep learning and traditional image segmentation methods,
fusing the advantages of two methods, that is, the lightweight computation of conventional
image segmentation and strong learning ability of deep learning. Yang et al. [15] used
an improved YOLOv3 model to detect tea bud regions, extracted the foreground and
the skeleton of tea buds through morphological processing, and the lowest point of the
minimum rectangle of the skeleton was selected as the picking point. Zhou et al. [16]
replaced the backbone network of YOLOv3 with DenseNet, and the object surface was
obtained by using the depth threshold method after detecting tea buds, the skeleton of tea
buds was obtained by connecting the boundary feature points, the optimal shear points
were determined according to the morphology of tea buds. Yan et al. [17] used an improved
DeeplabV3+ semantic segmentation algorithm to segment the foreground of tea buds, and
obtained the maximum connected domain of the target after binarization. Finally, the
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Shi–Tomasi algorithm was used to calculate the corner of the maximum connected domain,
and the corner with the lowest ordinate was marked as the picking point.

Aiming at the problems that the background of tea buds in natural state is complex
and it is difficult to identify the bud and select the picking point, this study took the one
bud with one leaf grade of the Fuyun 6 tea species under complex background as the
research object, which was close in color to the background, including different growing
stages and postures. We proposed a tea bud and picking point identification method based
on deep learning, combining object detection and semantic segmentation algorithms. This
study innovatively chose the tea bud which had more apparent characteristics as the region
of interest, and proposed to detect the tea bud first, then to segment the picking area within
the tea bud detection box, and finally to obtain the picking point within the picking area. A
lightweight YOLOX-tiny model was selected for tea bud target detection and the PSP-net
semantic segmentation algorithm was used to segment the picking areas; the two models
were combined together at the inference end after they were modified. The improved
YOLOX-tiny model was used to predict the original images, to obtain the tea bud detection
boxes, and the boxes were input into the improved PSP-net for postprocessing, to obtain
the picking area. Finally, the centroid point of the segmented picking area was selected as
the picking point.

2. Materials and Methods
2.1. Experimental Equipment and Dataset Processing

The experimental hardware utilized in this study consisted of an AMD Ryzen5 3600X
CPU and a NVIDIA GeForce RTX 3060 Ti graphics processing unit. The operating system
utilized was Windows 10 and the experiments were conducted within the Anaconda envi-
ronment. Pytorch1.10.0 was utilized as the deep learning framework. A total of 300 epochs
were implemented for training, utilizing pretrained weights. The hyperparameter settings
for the training process are presented in Table 1.

Table 1. Hyperparameter settings for the training of models.

Freezing
Epoch

Freezing
Batch Size

Unfreezing
Epoch

Unfreezing
Batch Size Optimizer

Initial
Learning

Rate
Momentum Weight

Decay

Learning
Rate

Decay Type

50 4 300 2 SGD 1 × 10−2 0.937 5 × 10−4 Cos

The experiment site in this study was the Wangu Tea Garden in Mingliang Town,
Shanglin County, Nanning City, Guangxi Zhuang Autonomous Region (23◦19′38′′ N,
108◦39′24′′ E). The shooting equipment used was a Huawei Mate 30 smartphone with a rear
camera (a 40-megapixel main camera and an 8-megapixel telephoto camera). The Fuyun
6 tea species was selected as the research object. The best time for tea bud picking is early
April [18], so dataset shooting was conducted from 4–7 April 2022. Images were shot at a
horizontal angle under strong light (12:00–14:00) and weak light (17:00–19:00). A total of
1063 original images were captured, including 533 images taken under strong light and
530 images under weak light; all images were saved in JPG format. This study produced
three datasets, including (a) a tea bud detection dataset, (b) a semantic segmentation
dataset of the picking area and (c) a directly detecting picking area dataset. The detailed
information of the three datasets is listed in Table 2.
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Table 2. Detailed information of three datasets.

Labeling
Tool Labeling Method Augment

Method
Number of

Original
Dataset

Number of
Final

Dataset
Training

Set
Validation

Set Test Set

(a) Tea bud
dataset Labelimg

Labeled
on the original

images Horizontal
mirroring

1063 2126 1360 340 426

(b) Picking area
dataset Labelme

Labeled
within the

detection boxes
1153 2306 1475 369 462

(c) Directly
detecting picking

area dataset
Labelme

Labeled
on the original

images
1063 2126 1360 340 426

2.1.1. Labeling Method for Tea Bud Detection Dataset

One bud with one leaf is usually recognized as first-class tea with high economic
value [19]. The standard of one bud with one leaf, namely the tender bud and the first
leaf next to it, was labeled in this study. There are two forms of one bud with one leaf:
spreading and developed [20]. The two forms are not distinguished during actual picking,
and both are targets to harvest, so this study identified both spreading and developed
forms as objects to recognize. As shown in Figure 1, the tea buds were divided into four
classes for labeling.
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Figure 1. Labeling method for tea bud detection dataset: (a) Class “1”, stretched, bud and leaf are
clearly separated and the first leaf is completely stretched; (b) Class “2”, maturely stretched, bud and
the first leaf are not completely separated and the leaf is curled up; (c) Class “3”, stretched, with buds
contained within the first leaf; (d) Class “c”, buds in lateral posture.

2.1.2. Labeling Method for Picking Area Dataset

After training and prediction using the improved YOLOX-tiny model on the original
images, 1153 tea bud detection boxes were selected and cropped to create a dataset for the
picking area. Annotations were made within the detection boxes output from the improved
YOLOX-tiny model, as shown in Figure 2a. Referring to the position of the bud-pulling
point selected during manual tea picking, the tea stem portion within the tea bud detection
box was regarded as the picking area and annotated accordingly.

2.1.3. Labeling Method for the Directly Detecting Picking Area Dataset

In order to explore the better method for detecting picking points, in this study, we
compared the effects of our method and the method of directly detecting the picking area
on the original images. Directly detecting the picking area means that the tea stem areas on
the original images are directly segmented by the segmentation model, without any other
preprocessing. A segmentation dataset of directly detecting the picking area was produced
and labeled on the original images, as shown in Figure 2b. According to the actual picking,
the tea stem area within about 3 mm below the end of the tea bud was regarded as the
picking area.
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2.2. Picking Point Detection Method Combining the Improved YOLOX-Tiny
and the Improved PSP-Net

A target detection model identifies and locates targets through detection boxes, and a
semantic segmentation model identifies and locates targets through the segmented pixel
areas. A target detection model can provide the accurate location and size information of
small-sized targets, while the accuracy of a semantic segmentation model for small-sized
targets is relatively poor. Considering the characteristics that tea buds are small in size and
densely distributed, and their picking areas are not regular rectangles, whereas compared
to picking areas, tea buds are more differentiable to the background, we proposed an idea to
detect the buds first, then secondly, to obtain the picking area based on the tea bud detection
boxes, and finally, to obtain the picking point based on the picking area. We decided to use
a target detection model to detect tea buds, and a semantic segmentation model to segment
the picking area, the picking point is within the picking area. In this study, we combined a
target detection model (the improved YOLOX-tiny) and a semantic segmentation model
(the improved PSP-net) for tea bud picking point detection. The workflow is shown in
Figure 3; the improved YOLOX-tiny was used to train the tea bud detection dataset, and
the improved PSP-net was used to train the picking area dataset. The two models were
combined at the inference end, the cropped tea bud detection boxes were output from the
improved YOLOX-tiny, and then they were input into the improved PSP-net to segment
the tea stem area within the detection boxes as the picking area. Finally, the centroid pixel
point of the picking area was regarded as the picking point.

2.3. Tea Bud Detection Method Based on YOLOX-Tiny
2.3.1. The Improved YOLOX-Tiny Model

YOLOX [21] was proposed in 2021, and like its predecessors, it is divided into back-
bone, neck, and head parts, as shown in Figure 4. YOLOX uses CSPDarknet as its backbone
network, continues to use Feature Pyramid Network (FPN) structure in the neck part, and
uses a decoupled head with stronger expression ability in the head part, combined with
Mosaic data enhancement, anchor free and SimOTA methods, to achieve stronger detection
ability and faster convergence speed, with high accuracy on public datasets and fast detec-
tion speed. To facilitate the deployment of this algorithm on mobile devices for real-time
tea picking, a lightweight model should be selected. In this study, the YOLOX-tiny model
with lower computation and parameter amounts and relatively high detection accuracy
was selected for tea bud detection. To improve the detection ability of the model and to
avoid introducing a lot of extra computational effort, this study did not add additional
modules but replaced the existing modules of the original model. We introduced the Mish
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activation function to replace the Silu activation function, and a content-aware reassembly
of feature (CARAFE) module was introduced to perform the upsampling operation.
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2.3.2. Mish Activate Function

The Mish activation function [22] is a nonlinear function with an upper bound and no
lower bound, and it is not monotonically increasing or decreasing in its domain of definition.
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When the input is a small negative value, Mish outputs a similar small negative result; a
small negative input can also activate its neurons for fitting. Except when the input tends
to negative infinity, the gradient tends to zero, the Mish function for other values of input
can maintain the stability of the gradient flow, which efficiently prevents the phenomenon
of gradient disappearance. The curve of the Mish function is smooth to achieve better
generalization and propagation ability. The Mish function is defined as follows:

Mish(x) = x× tanh(ln(1 + ex)), (1)

tanh(t) =
et − e−t

et + e−t , (2)

The Silu activation function is used in the original YOLOX-tiny model. In this study,
the Mish activation function was introduced to compare the detection effects with the prede-
fined Silu function and to select the function with better effects as the activation function.

2.3.3. The CARAFE Module

Since tea shoots are relatively similar to each other and the targets are small in size,
to meet the requirement of more detailed features, this study used a content-aware re-
assembly of feature (CARAFE) [23] module for the upsampling operation, which helped to
retain more detailed features of tea buds and obtain higher quality images even after the
size was enlarged.

YOLOX-tiny uses a nearest-neighbor interpolation-based upsampling module. In
this study, we introduced the CARAFE module to implement the upsampling operation.
Unlike the interpolation-based upsampling operation, the CARAFE method makes use
of the semantic information of the feature map. The CARAFE consists of two modules,
i.e., upsampling kernel prediction and feature reorganization. The upsampling kernel
prediction module of CARAFE consists of three main components, namely channel com-
pression, content encoding and kernel normalization. The CARAFE utilizes its larger
perceptual domain to make full use of the surrounding feature information, and its up-
sampling kernels are related to the semantic information of input, focusing more on local
point information than interpolation, and the upsampling is based on the content of the
feature map rather than just its position, providing richer and higher leveled semantic
information. The CARAFE has better performance than traditional upsampling operations
and its lightweight characteristic avoids introducing a large amount of computational cost.

2.4. The Improved PSP-Net Model

The structure of the original and improved PSP-net [24] is shown in Figure 5. For the
input image, the feature map is extracted by the backbone network ResNet, and the output
feature map is one-eighth of the size of the original image. The pyramid pooling module
in Figure 5d is used to obtain the contextual information of the feature map, where the
pyramid pooling module is divided into four layers as shown in the figure, and finally,
the four layers can be fused into global features. The obtained global features are stitched
together with the original feature map through a residual structure, and a convolution layer
is used to generate the final prediction map in Figure 5e. The most important characteristic
of PSP-net is the usage of the pyramid pooling module, where the obtained feature maps are
divided into different sizes and numbers of subregions and the average pooling operation
is performed within each subregion, which effectively produces high-quality results in
scenario analysis tasks, thus improving the ability of obtaining global information. PSP-net
provides effective global contextual information for pixel-level scene parsing. In order
to make it more suitable for the segmentation task in this study, the model should be
lightweight enough with segmentation accuracy guaranteed. The PSP-net model was
modified by replacing the backbone network with MobileNetV2 and by incorporating
Omni-Dimensional Dynamic Convolution (ODConv). The improved PSP-net model was
used to segment the tea stem part within the detection boxes output from YOLOX-tiny.
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(b) backbone network; (c) feature map output from backbone; (d) the pyramid pooling module;
(e) the output image.

2.4.1. MobileNetV2 Backbone Network

The segmentation task in this study is relatively simple, and does not require a large
volume of the model. In order to meet the requirements of real-time detection and to
avoid wasting arithmetic power, in response to the large volume and slow computing
speed of the PSP-net model, in this study, the original ResNet backbone network was
replaced by the lightweight network MobileNetV2 [25], which could significantly reduce
the number of parameters and improve the detection speed of the model. The structure of
the MobileNetV2 backbone network is shown in Table 3.

Table 3. The network structure of the MobileNetV2 backbone.

Input Size Operation Expansion
Coefficient

Input
Channels

Output
Channels

Convolution
Times Stride

512 × 512 Conv2d - 3 32 1 2
256 × 256 bottleneck 1 32 16 1 1
256 × 256 bottleneck 6 16 24 2 2
128 × 128 bottleneck 6 24 32 3 2
64 × 64 bottleneck 6 32 64 4 2
32 × 32 bottleneck 6 64 96 3 1
32 × 32 bottleneck 6 96 160 3 1
32 × 32 bottleneck 6 160 320 1 1

MobileNet [26] is a lightweight deep neural network proposed by Google in 2017,
featuring small size, high accuracy and fast computing speed, whose core idea is the
usage of depthwise separable convolution. MobileNetV2 is the upgraded version, and
the most highlighted improvements to MobileNet are the usage of inverted residuals
and linear bottlenecks. Compared to MobileNet, MobileNetV2 uses channel compression
followed by expansion, inverted residuals first increase the number of channels, allowing
the depthwise separable convolution to extract more features before channel compression.
This modification improves the phenomenon that depthwise separable convolution does
not extract enough features after compressing the number of channels, and optimizes the
feature extraction capability of MobileNet. The ReLU activation layer is replaced with a
linear layer in the final layer of the bottleneck structure, to compensate for the tendency of
the ReLU function to lose negative-value features.

2.4.2. Omni-Dimensional Dynamic Convolution

In order to enhance the feature extraction capability of the model, to enrich the expres-
sion information of tea bud features, to compensate for the loss of accuracy caused by the
lightweight backbone networks and to avoid introducing a large amount of computational
cost, omni-dimensional dynamic convolution (ODConv) [27] was introduced in this study
to replace the 3 × 3 convolution in the PSP module.
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The main idea of dynamic convolution is to use different convolution kernels for differ-
ent inputs, and then weigh these kernels with attention. ODConv summarizes the features
of CondConv [28] and DynamicConv [29], building on them to make improvements. On
top of weighting the number of convolution kernels, ODConv introduces three additional
dimensions, namely the number of input channels, the number of output channels and the
perceptual domain of the convolution kernel. ODConv utilizes a novel multidimensional
attention mechanism and parallelism strategy to weigh all dimensions of the convolution
kernel. These four types of attention are complementary, and by progressively multiplying
the convolution along the position, channel, filter and kernel dimensions with different
attentions will allow the convolution operation to differ across dimensions for the input,
better capturing rich contextual information. Thus, ODConv can improve the feature
extraction capability of convolution, and ODConv with fewer convolution kernels can
achieve better performance than CondConv and DyConv. ODConv can be conveniently
inserted into many CNN architectures, and experimental results show that it can improve
the performance of both large- and lightweight models.

3. Results

As shown in Figure 6, in this section, the indicators used to evaluate the performance of
each model are first introduced in Section 3.1. In the second part of this section, Section 3.2.1
presents the comparative experimental results of different target detection models, explain-
ing that YOLOX-tiny is the most suitable tea bud detector for our method and Section 3.2.2
presents the results of each step of modification of the improved YOLOX-tiny. Similarly, the
third part of this section firstly presents the comparative experimental results of different
semantic segmentation on picking area segmentation within the tea bud detection box in
Section 3.3.1, explaining that the PSP-net model is the most suitable. Section 3.3.2 presents
the results of each step of modification of the improved PSP-net model. Section 3.4 presents
the results of our method, combining the improved YOLOX-tiny and the improved PSP-net
models, on picking area segmentation on the original images, and compares them to the
method of directly segmenting the picking area on the original images. Different to the
above chapters, Section 3.5 presents comparisons through actual images and the analyses
of the actual detection effects of YOLOX-tiny and its improved model according to the
detected images, the actual segmentation effects of PSP-net and its improved model ac-
cording to the segmented images, and the actual picking area segmentation effects on the
original images of our method and the directly segmenting method according to the actual
segmented images. In addition, the actual selection effects of the picking points after the
picking area are determined.

3.1. Evaluation Indicators
3.1.1. Evaluation Indicators for Target Detection Models

This study evaluates the detection accuracy of the target detection models using mean
average precision (mAP) (%) and mean recall (mR) (%), the detection speed using frame per
second (FPS) (frames), and the volume of the model using computation amount GFLOPS
(G) and parameter quantity PARAMS (M). mAP is calculated from average precision (AP)
and the number of classes, and AP is calculated from precision (P) and recall (R). mR is
calculated from recall and the number of classes. Precision (%) means the percentage of
targets predicted by the model that are actually targets, and it evaluates how accurate the
model is in recognizing targets; precision (%) is calculated using the following equation:

Precision =
TP

TP + FP
, (3)
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Recall (%) represents the percentage of targets identified by the model to the number
of real targets, and it evaluates how many of all targets the model has identified. Recall (%)
is calculated using the following equation:

Recall =
TP

TP + FN
, (4)

where TP (true positive) indicates the correctly identified true target, i.e., a target is iden-
tified as a target; FP (false positive) indicates the incorrectly identified target, i.e., a back-
ground is identified as a target; TN (true negative) indicates the correctly identified back-
ground, i.e., a background is identified as a background; FN (false negative) indicates the
incorrectly identified background, i.e., a target is identified as a background. Here, TP, FP,
TN and FN evaluate each of the detection boxes [30].
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Since precision (%) and recall (%) have interactive effects and different precision (%) and
recall (%) values can be calculated from different confidence thresholds, it is difficult to
evaluate the two indicators comprehensively, so the area enclosed by the P-R curve formed
by the two indicators is used to comprehensively evaluate the detection accuracy of the
model [31], expressed as AP (%):

AP =
∫ 1

0
P(R)dR, (5)

where AP (%) indicates the average precision of the model for a single class of targets. The
higher this value is, the more accurate the model is in detecting targets in that class.
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mAP (mean average precision) (%) represents the mean value of AP (%) for all classes
(assuming k classes), and the higher its value is, the more accurate the model is in detecting
targets in all classes. mAP (%) is calculated by the following equation:

mAP =

k
∑
1

AP(i)

k
, (6)

Recall (%) indicates the model’s detection completion rate for a single class of targets,
and the higher its value is, the more accurate the model is in detecting targets in that
class. The mR (mean recall) (%) represents the mean value of recall (%) for all classes
(assuming k classes):

mR =

k
∑
1

R(i)

k
, (7)

FPS (frames) indicates the number of frames processed per second and is calculated
as follows:

FPS =
1
T

, (8)

where T (s) is the time taken by the model to process an image.
The computation amount (GFLOPS) (G) and parameter quantity (PARAMS) (M)

represent the volume of the model, where GFLOPS (G) is influenced by the number of
layers, depth, number of channels, input image size, total number of target classes, etc.,
and PARAMS (M) represents the size of the memory space occupied by the model. The
higher the values of these two indicators are, the larger the model is and the greater the
computing power requirement.

3.1.2. Evaluation Indicators for Segmentation Models

In this study, the segmentation accuracy of the segmentation models is evaluated
using the mean pixel accuracy (mPA) (%) and the mean intersection over union (mIoU)
(%). mPA is calculated from pixel accuracy (PA) (%) and the number of classes. Pixel
accuracy (%) is based on the pixel level and represents the proportion of correctly predicted
pixels to the total pixels. mPA (%) is the mean value of PA (%) of all classes (this study
includes two classes, i.e., the picking area and background). mPA (%) is calculated using
the following equation:

mPA =
1
2
(

TP
TP + FP

+
TN

TN + FN
), (9)

mIoU (%) is based on the set of pixel points, and represents the ratio of the intersec-
tion and union of the predicted and true target regions, evaluating the degree of over-
lap between the predicted and true target regions. mIoU (%) is calculated by using the
following equation:

mIoU =
1
2
(

TP
TP + FP + FN

+
TN

TN + FN + FP
), (10)

Here, TP, FP, TN and FN evaluate each of the pixel points [32].
The volume of the segmentation model is also evaluated using GFLOPS (G) and

PARAMS (M). The detection speed is evaluated using FPS.
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3.2. Results of Tea Bud Detection Based on YOLOX-Tiny
3.2.1. Comparison of Different Target Detection Models

In this study, we compared the detection results of YOLOX-tiny with Retinadet, Faster
R-CNN, SSD, YOLOv5-s and YOLOX-s. The experiments were performed on the tea bud
dataset. The experimental results are shown in Table 4:

Table 4. Results of different target detection models.

mAP 0.5 (%) mR (%) FPS (Frame) GFLOPS (G) PARAMS (M)

Retinadet
-resnet50 94.28 89.21 32.82 164.553 36.392

Faster R-CNN
-vgg 92.75 95.10 26.87 401.764 136.750

SSD-vgg 86.42 77.53 92.52 274.493 24.013
YOLOv5-s 89.54 80.41 66.76 16.502 7.072
YOLOX-s 97.61 95.36 60.21 26.763 8.939

YOLOX-tiny 97.13 94.22 66.70 15.236 5.034

As can be seen from the table, Faster R-CNN and Retinadet have relatively high
detection accuracy, but the mAP and mR of both models are lower than YOLOX-s, and their
detection speed is slow, where the 26.87 FPS of the two-stage network Faster R-CNN does
not reach the 30 FPS required for real-time detection [33]. Faster R-CNN has the largest
computation and parameter amounts. SSD and YOLOv5-s have better detection speed than
YOLOX-s and YOLOX-tiny, but they have lower mAP and mR. YOLOX-s has the highest
mAP and mR values, at least 0.48% and 0.26% higher than other target models, respectively.
The detection accuracy of YOLOX-tiny is slightly lower than and almost close to that of
YOLOX-s, with mAP and mR only 0.48% and 1.14% lower than YOLOX-s, respectively. The
mAP of YOLOX-tiny is only second to YOLOX-s and higher than other models, and mR is
only lower than YOLOX-s and Faster R-CNN. The computation and parameter amounts are
43.07% and 43.68%, respectively, less than YOLOX-s. YOLOX-tiny is the lightest among the
above models and its detection speed is relatively fast. Comprehensively considering all the
indicators, YOLOX-tiny has close detection accuracy, lower computational cost and faster
detection speed than YOLOX-s, so YOLOX-tiny is more suitable for the needs of this study.

3.2.2. Results of Improvement of YOLOX-Tiny

YOLOX-tiny was selected to detect the tea buds, and in this study, some modifications
were made to the YOLOX-tiny to improve its detection performance. The improved
YOLOX-tiny is proposed through introducing the Mish activate function and a CARAFE
module. The results of each step of improvement for YOLOX-tiny are shown in Table 5,
where Model (a) is the original YOLOX-tiny model, Model (b) is the YOLOX-tiny with
the Mish function as the activation function, and Model (c) is the final improved model,
with the Mish function as the activation function and a CARAFE module to implement the
upsampling operation. The experiments were also performed on the tea bud dataset. The
detection results of each model were compared to analyze whether the incorporation of
each module achieves positive results and to verify the feasibility of the improved method
in this study.

Table 5. Results of YOLOX-tiny with different modules added.

mAP 0.5 (%) mR (%) FPS (Frame) GFLOPS (G) PARAMS (M)

(a) 97.13 94.22 66.70 15.236 5.034
(b) 97.36 94.49 63.30 15.236 5.034
(c) 97.42 95.09 59.82 15.730 5.214
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As can be seen from the table, the results of each step of improvement are positive, with
the addition of each module improving the detection results of the model. Compared to the
original model (Model (a)), the mAP and mR values of the final improved model (Model (c))
are improved by 0.29% and 0.87%, respectively, with a slight increase in computation and
parameter amounts, which increased by 0.494 G and 0.18 M, respectively. The detection
speed decreased slightly, to 59.82 FPS. The mAP and mR values of the final improved
YOLOX-tiny are 97.42% and 95.09%, respectively, and the computation and parameter
amounts are 15.730 G and 5.214 M, respectively, which meets the requirements for precise
tea bud detection. In addition, the detection speed of 59.82 FPS meets the requirements for
real-time detection. The loss curve during training of the improved YOLOX-tiny (Model (c))
is shown in Figure 7, the model reaches convergence after approximately the 250th epoch.
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3.3. Results of Picking Area Segmentation Based on PSP-Net
3.3.1. Comparative Study of Different Semantic Segmentation Models

The picking areas within the tea bud detection boxes were segmented through the
semantic segmentation model. To select the most suitable model, performed on the picking
area dataset, the segmentation results of semantic segmentation models such as PSP-net,
U-net, DeeplabV3+ and Hrnet were compared, and the results are shown in Table 6.

Table 6. Results of different semantic segmentation models.

mIoU (%) mPA (%) FPS (Frame) GFLOPS (G) PARAMS (M)

U-net 90.48 91.41 36.31 184.167 43.933
Hrnet-18 79.00 81.95 14.68 37.337 9.637

DeeplabV3+ 85.45 89.84 18.73 166.858 54.709
PSP-net 87.98 89.95 28.92 118.429 46.708

U-net achieves the highest accuracy for both mIoU and mPA, but it has the highest
computational complexity and requires more computing power from the device. The mIoU,
mPA and FPS values of PSP-net are 87.98%, 89.95% and 28.92, respectively, compared to
Hrnet and DeeplabV3+; the mIoU of PSP-net is 8.98% and 2.53% higher and mPA is 8.00%
and 0.11% higher, respectively. In terms of volume, Hrnet is the lightest model, but Hrnet
also achieves the lowest segmentation accuracy and detection speed. PSP-net has lower
computation and parameter amounts than DeeplabV3+, while its detection accuracy and
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speed are both better than DeeplabV3+. In summary, considering both accuracy and speed,
PSP-net is the most suitable model for this study.

3.3.2. Results of PSP-Net with Different Modules Added

The volume of the original PSP-net model was too large; therefore, in this study,
some modifications were made to the PSP-net to make it more relevant to the needs of the
segmentation task. The PSP-net model was modified by replacing its backbone network
with MobileNetV2 and replacing the 3 × 3 convolution in its pyramid pooling module with
ODConv, and the results for each step of modification are shown in Table 7, where Model
(a) is the original PSP-net, Model (b) is the first step modification to the PSP-net, namely
the PSP-net with its backbone network replaced with MobileNetV2, and Model (c) is the
final improved PSP-net, namely the PSP-net with both the backbone network replaced with
MobileNetV2 and the 3 × 3 convolution replaced with ODConv. The experiments were
performed on the picking area dataset.

Table 7. Results of each step of modification for PSP-net.

mIoU (%) mPA (%) FPS (Frame) GFLOPS (G) PARAMS (M)

(a) 87.98 89.95 28.92 118.429 46.708
(b) 87.81 91.97 88.03 6.031 2.376
(c) 88.83 92.96 84.90 5.086 1.821

After replacing the backbone network with MobileNetV2, the mIoU is reduced by
0.17%, the mPA is improved by 2.02%, the computation and parameter amounts are both
reduced by 94.91%, and the detection speed is significantly improved to 88.03 FPS. After
replacing the 3 × 3 convolution with ODConv on the basis of the previous modification,
the mIoU and mPA are improved by 1.02% and 0.99%, respectively, and the computation
and parameter amounts are further reduced by 0.945 G and 0.555 M, respectively, with a
slight decrease in detection speed to 84.90 FPS. The final improved PSP-net improves the
mIoU and mPA by 0.85% and 3.01%, respectively, compared with the original model, and
the computation and parameter amounts are decreased by 95.71% and 96.10%, respectively.
The loss curve during training of the improved PSP-net (Model (c)) is shown in Figure 8;
the model reaches convergence after approximately the 150th epoch.
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3.4. Comparison of Our Method with Directly Segmenting the Picking Area

In order to verify that the method proposed in this study has a better detection
capability compared with the method of directly segmenting the picking area on the
original images, we compared the results of our method with those of directly segmenting
the picking area through segmentation algorithms. The improved PSP-net and Mask R-
CNN were used for comparison, and to verify that it was necessary to detect tea buds
first, in this study, we tried to segment the picking areas directly on the original images
through the semantic segmentation model. To make the result equitable and comparable,
the improved PSP-net was selected for comparison. However, the approach of finding the
interest region of the target first and then performing semantic segmentation, was similar
to the idea of the instance segmentation algorithm. The difference is that the instance
segmentation algorithm takes the surrounding area of the picking area as the region of
interest [34], and our method takes the tea bud area as the region of interest. To verify
that our method achieves better performance than the instance algorithm, our method was
also compared with the result of directly segmenting the picking area through the instance
segmentation model Mask R-CNN at the same time. In this chapter, the experiments of the
improved PSP-net and Mask R-CNN were both trained on the directly detecting picking
area dataset. To compare the picking area segmentation performance, on the original
images, the segmented picking areas obtained by using the three methods, the annotated
truth picking areas were compared and their mIoU and mPA valus were calculated. The
indicators mIoU and mPA merely represented the quality of picking area segmentation.
Whereas, in the cases where the result was poorly segmented but the segmented area was
still within the truth picking area, the centroid of the segmented area could still be an
available picking point, thus mIoU and mPA could not represent the quality of picking point
detection. To compare the picking point detection performance of the three methods, in this
study, the indicator of detection rate was introduced. A total of 50 images were randomly
selected from the original images, and the picking areas of the 50 images were segmented
using our method, the improved PSP-net and Mask R-CNN models. As shown in Figure 9,
when the picking area was correctly segmented and the centroid of the segmented area was
at the suitable position for picking, the picking point was marked as successfully detected.
The ratio of successfully detected picking points to all target picking points is the detection
rate. The detection rate of each method was calculated from all selected 50 images. The
comparison results are shown in Table 8.
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Figure 9. Example for judging the successfully detected and wrongly detected picking points. When
the detected picking point is marked at the right position suitable for picking, it is marked as
successfully detected. When no tea buds or picking areas are detected, or when the picking point is
marked at an inaccurate position, it is marked as falsely detected.
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Table 8. Comparisons of results of our method and the methods of directly detecting the picking area.

mIoU (%) mPA (%) FPS (Frame) Detection Rate (%)

Improved PSP-net 60.54 61.30 81.77 17.2%
Mask R-CNN 58.30 59.25 10.21 21.7%
Our method 83.27 86.51 32.86 95.6%

The segmentation accuracy of our method is better than that of the other two models,
and the mIoU and mPA of our method are 22.73% and 25.21% higher than those of the
improved PSP-net, respectively, and 24.97% and 27.26% higher than those of Mask R-CNN,
respectively. In terms of detection speed, the speed of our method after combining two
models is 32.86 FPS, which meets the requirement of 30 FPS for real-time detection. The
segmentation accuracy and speed are both higher than those of Mask R-CNN. Although
the detection speed of our method is lower than that of the improved PSP-net model, the
segmentation accuracy of our method is significantly higher. In terms of the picking point
detection rate, Mask R-CNN has a higher detection rate than the improved PSP-net, and
the detection rate of our method reaches 95.6%, which is significantly higher than that of
the methods directly detecting the picking area.

3.5. Actual Detection Effects
3.5.1. Comparison of Actual Detection Effects of the Improved YOLOX-Tiny with the
Original YOLOX-Tiny

The actual detection effects of YOLOX-tiny and its improved model are shown in
Figure 10. The images under two lighting conditions, i.e., strong light and weak light, are
compared. For the images of Group (a) and Group (b) under strong light, the original
model misses one Class “1” target, respectively, in both groups, as both targets are partially
obscured and the shape of the tea bud is not fully displayed, resulting in the original model
failing to identify them. However, the improved model accurately recognizes the two Class
“1” targets on the premise of accurately recognizing other targets in the images. For the
images of Group (c) and Group (d) under weak light, there are one and two FP results,
respectively, falsely detected by the original model, that is, old leaves are misjudged as tea
buds. All three FP targets are at the edge of the image, with only part of leaf or tea stem
inside the image, showing the trait of one bud with one leaf, so they are all identified as
Class “1” targets. The improved model accurately identifies all TP results in the images
and correctly eliminates these three FP results. According to the actual detection effects, it
can be seen that the improved YOLOX-tiny model outperforms the original model under
both strong and weak light conditions, with no significant influence caused by lighting
conditions on its detection effects. The improved YOLOX-tiny model is not only able to
accurately identify tea buds that are partially obscured, but also the backgrounds that are
incorrectly identified as tea buds by the original model, and the improved model is able
to accurately identify and reject similar false detection results. In summary, the improved
model can accurately identify and correctly classify the tea buds in the images, with low
missed and false detection rate, high recognition rate and recall rate. The excellent detection
capability of the improved YOLOX-tiny can meet the requirements for tea bud target
detection in this study.

3.5.2. Comparison of Segmentation Effects of the Original PSP-Net
and the Improved PSP-Net

Comparing the segmentation effects of the original PSP-net and the improved PSP-net,
the tea bud images obtained from the improved YOLOX-tiny were segmented and the
results are shown in Figure 11.
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The original PSP-net and the improved PSP-net both have excellent segmentation
effects for the tea stem area within the detection box. With a significant reduction in
the computation and parameter amounts (computation amount decreases by 95.71% and
parameter amount decreases by 96.10%), the improved PSP-net has close segmentation
effects to the original model and is able to accurately identify the tea stem area and segment
the pixel points of the picking area, with few misjudged background pixels. In addition,
comparing the images under strong and weak light shows that the performance of the
improved model is not affected by the lighting conditions. The segmentation capability of
the improved PSP-net model can meet the requirements for identifying the picking areas in
this study.

3.5.3. Comparison of Actual Picking Area Segmentation Effects of Our Method and the
Methods of Directly Segmenting the Picking Area

We compare the actual picking area segmentation effects on the original images using
our method and using the semantic segmentation model (the improved PSP-net) and the
instance segmentation model (Mask R-CNN); the results are shown in Figure 12.
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Figure 12. Actual picking area segmentation effects on the original images of our method compared
with the methods directly segmenting the picking area. Subfigures (a–f) are images under strong
light, subfigures (g–l) are images under weak light. Subfigures (a,d,g,j) are results of our method,
subfigures (b,e,h,k) are results of PSP-net, subfigures (c,f,i,l) are results of Mask RCNN.

The performance of our method is significantly better than the other two algorithms.
For images with fewer targets under strong light (Figure 12a–c), all three methods can
correctly identify two targets. The segmentation result of the improved PSP-net is rough and
contains part of background pixels, the result of Mask R-CNN is more accurate, whereas
one of the picking areas (shown in Figure 12c) is wrong and the segmented picking area
is for a single bud, not for the one bud with one leaf required in this study. Our method
accurately identifies the two Class “1” targets and classifies them correctly, but one of the



Forests 2023, 14, 1188 19 of 24

segmented picking areas is incomplete. For images with multiple targets under strong
light (Figure 12d–f), the improved PSP-net and Mask R-CNN methods both show a large
number of missed targets, and the improved PSP-net only identifies two targets, which still
has the problem of rough segmentation results. The segmentation result of Mask R-CNN is
more accurate, but only one target is identified by Mask R-CNN. Our method accurately
identifies, classifies and segments all the targets. However, an obscured Class “3” target is
detected, but the tea stem part is not in the image, so it is not segmented. For images with
fewer targets under weak light (Figure 12g–i), the improved PSP-net and Mask R-CNN,
respectively, lose one and two targets, and our method successfully detects all the targets.
For images with multiple targets under weak light (Figure 12j–l), the improved PSP-net
and Mask R-CNN methods lose a large number of targets, whereas our method has no
target missing phenomenon, accurately identifies and correctly classifies all targets in the
image, and the segmentation effects are also ideal; therefore, it is able to completely and
accurately segment the picking area. The comparison shows that the segmentation ability
for the picking areas on the original images of the improved PSP-net and Mask R-CNN are
greatly affected by the lighting conditions and the number of targets. In the case of weak
light or multiple targets, the two models tend to miss a large number of targets, resulting
in poor picking area segmentation effects and low detection rate. The method proposed
in this study has significantly better performance under strong light and weak light with
multiple targets or fewer targets.

3.5.4. Picking Point Marking

After using the improved YOLOX-tiny to detect the tea bud boxes and using the
improved PSP-net to segment the picking area within the tea bud detection box, the
centroid of the picking area is taken as the picking point. As shown in Figure 13, the
centroid of the picking area falls exactly on the tea stem and is at a moderate distance from
the end of tea buds, which is suitable for picking. This method for picking point selection
is appropriate and meets the requirements for actual picking.
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4. Discussion

Famous tea is still dependent on manual picking, and intelligent picking should be
applied to the industry as soon as possible. In the actual situation, the color of tea buds in
complex scene is close to that of the background, and the target is small, making it difficult
to distinguish. Picking point selection is built on the basis of tea bud identification, with
even smaller targets and no clear endpoints to choose from, causing greater difficulties
for intelligent picking. To address this problem, in this study, we creatively proposed a
method that combined target detection and semantic segmentation networks, to detect the
location of tea buds first, and then performed accurate picking point extraction. As can
be seen from the above figures, unlike most other studies, the Fuyun 6 tea species dataset
used in this study contains all growth stages from tender to mature, and the tea buds are in
different postures, such as lateral positions, which is more in line with the actual working
conditions of picking. The experimental results show that our method performs better than
the methods directly detecting picking areas on the original images, with a low missing rate,
high detection rate and accurate picking point location. The mIoU and mPA of this method
for picking area segmentation are 83.27% and 86.51%, respectively, and the detection rate
of picking points reaches 95.6%.

In this study, the lightweight YOLOX-tiny was chosen to detect tea buds. The compu-
tation and parameter amounts of YOLOX-tiny are, respectively, 56.93% and 56.32% those
of YOLOX, but its detection accuracy is close to that of YOLOX. There are only four classes
in the tea bud detection dataset, and the number of images is not large, with a total of 2126.
The YOLOX-tiny model with smaller depth and width is more suitable for this dataset
to avoid wasting computation power caused by excessive computational complexity. In
order to facilitate the deployment of our method to an outdoor mobile device during actual
picking, the lightest possible model should be chosen without significant loss of accuracy.
Therefore, the YOLOX-tiny with more lightweight volume and faster detection speed is
more suitable for the needs of this study. To improve the detection accuracy of the model,
the activation function of the original model was replaced by the Mish function to obtain
better nonlinear expression capability, and its upsampling operation was implemented
using a CARAFE module to increase the perceptual domain and to enhance the usage
of contextual semantic information, avoiding losing more feature information and more
deeply understanding the content of the features. The two modifications for YOLOX-tiny
effectively improve the detection capability of the model.

The picking area was obtained by segmenting the tea stem area within the cropped
tea bud detection boxes. Each box contains only one tea stem area; there was a single
class of target, so the segmentation task was relatively simple. The original PSP-net
was too computationally intensive, and the detection speed of 28.92 FPS did not meet
the 30 FPS required for real-time detection. Replacing the PSP-net backbone network
with the lightweight MobileNetV2 resulted in a significant reduction in the computation
and parameter amounts and a significant increase in detection speed, yet only caused a
slight change in accuracy, with a 0.17% reduction in mIoU and a 2.02% increase in mPA,
indicating that MobileNetV2 with higher computational efficiency is more suitable for
a simple computational environment. After the ODConv was added, the mIoU reached
88.83%, surpassing that of the original PSP-net, and the mPA was further improved to
92.96%. The ODConv learns complementary attention along four dimensions of the kernel
space using a multidimensional attention mechanism through a parallel approach. The
results show that the linear combination of its convolution kernels and associated attention
can enhance the feature expression of the model and can improve the accuracy of the
lightweight convolutional network. The final improved PSP-net decreases the computation
and parameter amounts by 95.71% and 96.10%, respectively, compared to the original
model; improves the mIoU and mR by 0.85% and 3.01%, respectively; and significantly
increases the detection speed to 84.90 FPS. The improved PSP-net significantly improves
the lightweight characteristics of the model while improving the segmentation capability in
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all aspects. The results show that the improved PSP-net has good segmentation capability
for the picking area within the detection box.

The areas suitable for picking are small and densely distributed, and the color is
very similar to the background. When directly segmenting the picking area without
preprocessing of the improved YOLOX-tiny, the segmentation models (the improved PSP-
net and Mask R-CNN) cannot extract enough features, resulting in low segmentation
accuracy and poor effects. Without reference to the tea bud detection box, the picking areas
of a single bud and one bud with one leaf are relatively similar in appearance, and Mask R-
CNN is prone to misidentify the picking location, as shown in Figure 12c, where the picking
area of a single bud is misidentified as that of one bud with one leaf, the similar mistakes are
prone to cause wrong picking, affecting the quality of the product. The improved PSP-net
can more accurately identify the picking position of one bud with one leaf. The mIoU and
mPA of Mask R-CNN are lower than those of the improved PSP-net, but its detection rate
of picking points is higher than that of the improved PSP-net, which is because, if the
model successfully segments part of the pixel areas within the actual picking area, then
the centroid must be located at a suitable position for picking and the case is judged as a
successful detected picking point. Therefore, the result of detection rate depends more on
the number of picking areas segmented by the model, and less on the segmentation quality
of a single area. Mask R-CNN identifies more picking areas, so its picking point detection
rate is higher. The detection effects of both models are largely influenced by the lighting
conditions and the number of targets; in scenarios with weak light and multiple targets, the
improved PSP-net and Mask R-CNN miss a large number of targets, and the two models
fail to segment the picking area directly on the original images. Our method first identifies
tea buds through the target detection model. Tea bud targets generally occupy a larger area
on the original image than picking areas and look more conspicuous, making it less difficult
to identify tea buds. Detecting tea buds first can significantly reduce the target missing
rate, and therefore, the detection rate is higher than that of directly identifying the picking
area. Segmenting the picking area within the tea bud detection box, limits the picking
position to one bud with one leaf, which can avoid the phenomenon of wrong position of
segmented area, and significantly reduces the background complexity, and thus, difficulty
of the segmentation task. Thus, the mIoU and mR of the improved PSP-net on picking area
segmentation within the detection boxes are much higher than those of the same model on
picking area segmentation on the original images. The results show that our method has
much better detection capability than that of the methods directly segmenting the picking
area; the accuracy of tea bud detection and picking area segmentation are both relatively
high, which can accurately detect and correctly classify tea bud targets, and then segment
picking areas more accurately. Our method has excellent detection results for images with
few or multiple targets under both strong and weak light. The disadvantage of combining
the two models of the improved YOLOX-tiny and the improved PSP-net is a significant
loss in detection speed, but 32.86 FPS still meets the requirement for real-time detection.

During actual picking, a robotic arm requires precise coordinates, so the pixel region
of the picking area is not enough, and the picking point coordinates are needed. In this
study, the picking point is extracted on the basis of the segmented picking area. The picking
point needs to be located at a suitable position on the tea stem; the distance to the bud must
not be too close, which could damage the bud during picking, nor too far, which could
affect the economic value of the finished product if the buds are with a too long stem. The
centroid of the picking area is chosen as the picking point, this method is suitable for tea
bud picking, efficiently controlling the distance from the picking point to the two ends of
the picking area, and the distance to the tea bud is kept moderate. The segmentation result
of the picking area is not always extremely accurate, whereas this picking point selection
method has a certain fault-tolerant space for that, as shown in Figure 12a; if the segmented
area is not complete, the picking area does not contain all the tea stem pixel points, which
does not seriously affect the position of its centroid point, if the segmented area is too large,
the picking area contains a small portion of background pixel points, the centroid point still
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falls on the tea stem. When the stem part is obscured, as shown in Figure 12d, the improved
YOLOX-tiny recognizes the Class “3” target, but its stem part is not within the image; thus,
the improved PSP-net does not segment it, and the wrong position information would not
be returned, causing no adverse effects, this is somehow a screening mechanism.

The research object of this study is only the Fuyun 6 tea species. Future research
could add datasets of other tea species to enhance the detection ability of our method on
other varieties to improve its applicability and robustness. In addition, this study only
researched the one bud with one leaf grade with high economic value. For the needs of
different markets, the single bud and one bud with two leaves grades are also worthy of
studying. Other grades of tea buds could also be added in order to enhance the detection
and classification ability of this method for different tea species and grades of tea buds, so
as to develop a multifunctional intelligent tea picking robot in one collection.

5. Conclusions

To address the difficulty of detecting tea buds and the picking points in complex
backgrounds, this study proposed a method combining a target detection model and a
semantic segmentation model at the inference end, the improved YOLOX-tiny was used
to detect tea buds first, the tea bud detection boxes were input into the improved PSP-net
for picking area segmentation within the tea bud detection boxes, and the centroid of the
picking area was taken as the picking point. The method achieves an mIoU of 83.27% and
an mPA of 86.51% for picking areas on the original images, and the picking point detection
rate is 95.6%, the detection speed satisfies the real-time detection requirements. The actual
detection effects show that our method is better than the method directly segmenting the
picking area.

This study proposed an improved YOLOX-tiny as the tea bud detector, which was
modified by replacing the activation function with the Mish function, and introducing
a CARAFE module to implement the upsampling operation. The mAP of the improved
YOLOX-tiny is 97.42% and the mR is 95.09%, which are improved by 0.29% and 0.87%,
respectively, compared with the original model. The actual detection effects show that the
improved model performs better than the original model under both strong and weak light.

This study proposed an improved PSP-net for picking area segmentation within the
detection box, which was modified by replacing the backbone network with MobileNetV2
and the conventional convolution with ODConv. The mIoU and mPA of the improved
model are 88.83% and 92.96%, which are improved by 0.85% and 3.01%, respectively, and
the computation and parameter amounts decrease by 95.71% and 96.10%, respectively,
compared to those of the original PSP-net.

Datasets of other tea species and other grades of tea buds such as the single bud and
the one bud with two leaves can be added in future research to enhance the detection and
classification ability of this method for different tea species and grades of tea buds.
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