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Abstract: A majority of mangroves are located in the coastal intertidal zone and are subject to tidal
periodic inundation. However, the previous vegetation indices used for extracting the spatial distri-
bution of mangroves were not able to effectively extract submerged mangroves, and the applicability
of the vegetation indices used on different spatial resolution images obtained from different sensors
was not verified. In this study, a new vegetation index, namely the intertidal mangrove identification
indices (IMIIs), was proposed, based on GF-2 images of high and low tide levels. Meanwhile, other
commonly used vegetation indices were also extracted. All the vegetation indices were used to
extract the spatial distribution of mangroves under tidal inundation, and applicability tests of the
vegetation indices were conducted on Sentinel-2 images in three different regions. It was found
that the IMIIs proposed based on GF-2 images of high and low tide levels can extract submerged
mangroves relatively well, and the spatial distribution extraction results of mangroves are better than
those of other vegetation indices, with IMII2 outperforming IMII1. At the same time, IMIIs have good
applicability in medium resolution Sentinel-2 images, and there are relatively large differences in
the extraction results of mangrove spatial distribution among different vegetation indices in areas
with significant impact of tidal inundation. Among all vegetation indices, the extraction results of
IMIIs are relatively superior. In most cases, multi variables collaborative application can improve
the accuracy of mangrove spatial distribution extraction results. Based on the results of this study, it
was concluded that the IMIIs proposed in this study can accurately extract the spatial distribution of
mangroves inundated by tides from both medium- and high-resolution images, providing accurate
basic data for effective management and scientific protection of mangrove resources.

Keywords: mangrove extraction; vegetation indexes; Gaofen-2 images; intertidal mangrove identifi-
cation index; Sentinel-2 images

1. Introduction

Mangroves are rare woody plant communities that grow in the transition zone be-
tween land and sea [1]. Mangroves are not only economically valuable [2,3] but they also
provide a variety of ecological benefits [4,5], such as preventing shoreline erosion [6,7], pu-
rifying water, and sequestering carbon [8,9]. However, mangrove resources were seriously
threatened due to both natural and human interference, resulting in a sharp decline in the
area [3,10,11]. Since 1980, approximately 35% of the world’s mangroves disappeared [12].
Global attention was directed at the serious decline in mangrove ecosystems, and the need
to protect mangrove resources is urgent [13]. International projects, such as the Ramsar
Convention on Wetlands or the Kyoto Protocol, emphasized the importance of taking
protective measures and engaging in activities to prevent further loss of mangroves. Ac-
cordingly, an accurate assessment of mangrove resources is essential to ensuring a smooth
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implementation of the scientific protection of mangrove resources. In addition to predicting
disaster-prone areas and providing data support for the formulation of targeted protection
policies, this research is highly valuable for identifying disaster-prone areas.

The accurate assessment of the spatial distribution of mangroves is the basis of the
monitoring procedure for mangrove resources and also the premise for the effective man-
agement and scientific protection of mangrove resources. Although the accuracy of field
survey data is high, the unique natural environment of mangroves with its muddy soil
and numerous air roots makes it difficult to assess mangroves through the use of tradi-
tional mangrove resource survey methods [14]. Moreover, traditional survey methods are
time-consuming and difficult to conduct on a large scale. As a result of the emergence
of remote sensing technology, it is possible to overcome the shortcomings of traditional
investigation methods, and this technology was widely used in investigations conducted
on mangrove resources with favorable results. For example, Lorenzo et al. [15] employed
Landsat MSS data as a means to monitor the decline of mangrove wetlands in Sanbaoyan,
Philippines, in 1979, and were the first to apply remote sensing technology to detect the
dynamic changes of mangrove wetlands. Chen et al. [16] conducted a study on the dynamic
changes of the spatial distribution of mangroves in Guangxi from 1955 to 2004 through
the use of five temporal remote sensing datasets, and they analyzed the factors behind
their evolution. Li et al. [17] conducted a study in which they employed a supervised
classification, an unsupervised classification, and an object-oriented classification method
in order to extract the spatial distribution of mangroves and monitor their dynamic changes
based on ALOS PRISM/AVNIR-2 images. Kumar et al. [18] conducted research in which
they successfully extracted the spatial distribution of mangroves by employing three classi-
fiers based on five vegetation indexes extracted from EO-1 Hyperion images. The results
indicated that support vector machine (SVM) performed the best, with an overall accuracy
of 99.08%. Jia et al. [19] conducted research in which they extracted the spatial distribution
of mangroves in China from 1973 to 2015 using an object-oriented method and analyzed
the dynamic changes of mangroves throughout forty-two years based on one hundred
and twenty-three Landsat images. In another study, Jia et al. [20] successfully extracted
the vegetation index sensitive to submerged mangroves based on the middle red edge
band of Sentinel-2 images. Although a considerable amount of research was conducted
on the extraction of the spatial distribution of mangroves based on remote sensing data,
there are also certain shortcomings in their approaches that need to be addressed [13].
For example, the impact of different tidal levels is seldom taken into consideration in the
extraction of mangrove spatial distribution, and only the remote sensing data of one single
tidal level are used, resulting in inaccurate extraction results that lead to inconsistencies
between the change monitoring results and the actual observation. Due to the fact that
mangroves primarily grow in coastal intertidal zones that are affected by tidal inundation,
short mangrove trees may become completely or partially submerged during high tides
and may become exposed to water during low tide, resulting in incompletely boundary
information of mangroves extracted from remote sensing images at different tide levels [21].
Therefore, for the purpose of accurately extracting the spatial distribution of mangroves,
it is necessary to utilize both high and low tide level image data in order to eliminate the
impact of tides.

To effectively eliminate the impact of tidal inundation on the extraction results of
the spatial distribution of mangroves, researchers tried to extract the mangroves spatial
distribution by employing different vegetation indexes. For example, Zhang et al. [22]
employed the mangrove recognition index, green vegetation index, and humidity index
extracted from the multi-temporal Landsat TM images of different tide levels in order
to determine the range and distribution of mangrove trees. According to the results, the
user accuracy and producer accuracy of the mangrove trees were 98.09% and 93.19%,
respectively. Jia [23] conducted a study based on Landsat remote sensing data, in which he
employed the inundated mangrove forest index extracted from Landsat remote sensing
data in order to investigate the area, the distribution, and the landscape pattern of the
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mangroves in China from 1973 to 2013 using object-oriented and decision tree classification
methods. Xu et al. [24] employed the normalized intertidal mangrove index extracted from
the Sentinel-2 image of high and low tide levels in order to extract the spatial distribution
of mangroves in the intertidal zone, with a user accuracy of 93.98%. The above research
results demonstrate that the vegetation index extracted from the high and low tide level
image data is capable of improving the extraction accuracy of the spatial distribution results
of mangroves, and it can also avoid the impact of tidal inundation on the extraction of the
spatial distribution of mangroves in a single-phase image to a certain extent. However,
the most vegetation index in the aforementioned studies is calculated based on the visible
light band, the short wave infrared band, or the medium wave infrared band of the
medium resolution image, which is difficult to directly apply to high-resolution images
with relatively few bands.

As a result of current technological advancements, the number of high-resolution
remote sensing images available at this stage is increasing and is gradually becoming
an essential data source for the extraction of the spatial distribution of mangrove trees.
As compared with a medium-resolution remote sensing image, with a high-resolution
remote sensing image, it is not only possible to extract the spatial distribution of mangroves
in smaller patches, but also the impact of tidal inundation on the spatial distribution
of mangroves can be reflected more accurately. However, due to the relatively small
number of bands, which usually only contain four bands, namely red, green, blue, and
near-infrared, it is difficult to apply the high and low tide vegetation index, which is
calculated based on the above short-wave infrared band or medium-wave infrared band.
Accordingly, a new vegetation index needs to be extracted from remote sensing images
with high resolution in order to identify mangroves that are submerged during tidal cycles.
For example, Qing et al. [25] proposed a submerged mangrove recognition index (SMRI)
based on multi-tidal GF-1 remote sensing images. The SMRI only utilized the red and
near-infrared bands, and the accuracy of the results was 94%, which was better than the
results of single-tide remote sensing images (with an accuracy of 86%). Xia et al. [26]
employed the SMRI extracted from GF-2 images as a means to map the spatial distribution
of mangroves in China, and the overall accuracy was 92% and the Kappa coefficient was 0.89.
According to the above research results, although the bands of high-resolution images were
relatively small, the extraction of vegetation indexes based on multi-tidal high-resolution
images was yet capable of achieving better extraction results in the spatial distribution
of mangrove trees and can eliminate the impact of tidal inundation to a certain extent.
However, the aforementioned high and low tidal vegetation indexes only utilized the red
edge and near-infrared bands without taking into account the role of other bands in the
extraction of the spatial distribution of mangroves under periodic tidal inundation. For
example, in the former studies, it was demonstrated that the green light band is capable of
effectively representing the water absorption and greenness of vegetation [27], which may
play a certain role in the extraction of inundated mangroves. Similarly, the former studies
did not further extend the extraction of vegetation indexes based on high-resolution images
to medium-resolution remote sensing images in order to verify that the proposed vegetation
index could be applied to the extraction of the spatial distribution of inundated mangroves
from medium-resolution remote sensing images.

Accordingly, in this study, a new vegetation index, namely IMIIs, was proposed based
on GF-2 images of high and low tide levels. Additionally, other commonly used vegetation
indices were also extracted. All the vegetation indices were used to extract the spatial
distribution of mangroves under a tidal inundation, and applicability tests of the vegetation
indices were conducted on Sentinel-2 images of three different regions in order to verify
the applicability of the vegetation index based on high-resolution images in the case of
medium-resolution remote sensing images. This is for the purpose of accurately identifying
the spatial distribution of mangroves under tidal inundation in both medium- and high-
resolution images simultaneously, as well as providing accurate basic data for effective
management and scientific protection of mangrove resources.
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2. Materials and Methods
2.1. Study Area

In this study, four different typical mangrove areas located in Guangxi Zhuang Au-
tonomous Region, China, were selected as the study areas, as shown in Figure 1. These areas
are from the important mangrove wetlands in China, including two national mangrove nature
reserves (Guangxi Beilunhekou National Nature Reserve and Guangxi Shankou Mangrove
Ecological Nature Reserve) and one autonomous region nature reserve (Guangxi Maowei-
hai Autonomous Region Mangrove Nature Reserve). The terrains of these study areas are
relatively flat, and there are five main land cover types, including mangroves, terrestrial
vegetation (forests, grasslands, and croplands), tidal flats, water (saltwater and freshwater),
and built-up land. The regions belong to the subtropical monsoon climate, with an annual
average temperature of 21–28 ◦C and the annual average rainfall of 1713–2823 mm. There is
only one tidal rise and fall in one day, also known as a diurnal tide. In the sea area near the
Beihai Sea, the maximum tidal range between high and low tide levels can reach 7 m. The
mangrove tree species in the research area mainly include Avicennia marina (Avicennia marina),
Aegiceras corniculatum (Aegiceras corniculatum (L) Blanco), Bruguiera gymnorrhiza (Bruguiera
gymnorrhiza (Linn.) Savigny), Kandelia candel (Kandelia candel (Linn) Druce), Excoecaria
agallocha (Excoecaria agallocha L.), Acanthus ilicifolius (Acanthus ilicifolius L.), Rhizophora
stylosa (Rhodophora stylosa Griff.), and Sonneratia apetala (Sonneratia apetala Buch. -Ham.).
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Figure 1. Schematic diagram of the location of the study area; (A1) high tide level image of study area
A on 9 November 2019; (A2) low tide level image of study area A on 28 September 2019; (B1) high
tide level image of study area B on 9 November 2019; (B2) low tide level image of study area B on
28 September 2019; (C1) high tide level image of study area C on 20 September 2019; (C2) low tide
level image of study area C on 30 September 2019; (D1) high tide level image of study area D on 7
December 2020; (D2) low tide level image of study area D on 27 June 2020.
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2.2. Data Introduction and Preprocessing
2.2.1. GF-2 Image

For the purpose of evaluating the potential of extracting the spatial distribution of
mangroves in the tidal inundation area based on the vegetation index derived from high-
resolution images, the GF-2 image in the study area D shown in Figure 1 was selected for
the experiment. The GF-2 satellite was successfully launched on 19 August 2014. It was the
first civil optical remote sensing satellite with a spatial resolution less than 1 m, which was
independently developed by China. The specific parameters of the sensor are shown in
Table 1.

Table 1. The specific parameters of GF-2 satellite sensor.

Bands Number Spectral Band Range (µm) Spatial Resolution (m) Revisit Time (Day)

1 0.45~0.90 0.8

5
2 0.45~0.52

3.2
3 0.52~0.59
4 0.63~0.69
5 0.77~0.89

According to Table 1, although the revisit period of the GF-2 satellite was 5 days,
it was still difficult to obtain high-quality, cloud-free GF-2 image data during high and
low tide levels with close dates due to the effects of clouds and rain in coastal areas. To
better quantify the impact of tidal inundation on the extraction of the spatial distribution
of mangrove trees, the images should be from different tide levels that are as far apart
as possible, and the tide level difference should be as large as possible. Based on the
above principles, the GF-2 image data of study area D in 2020 were screened, and one
image depicting a relatively low tide level (176 cm) on 27 June 2020, and one image
depicting a relatively high tide level (274 cm) on 7 December 2020, were selected, as
shown in Figure 1(D1,D2). According to this figure, the low mangrove coverage forest was
completely submerged as a result of the high tide level.

2.2.2. Sentinel-2 Image

In order to verify the applicability of the high-resolution image extraction index in
the case of other medium-resolution images, two Sentinel-2 images of high and low tide
levels are selected in the other three regions shown in Figure 1. Sentinel-2 is a multispectral
satellite launched by the European Space Agency, as are Sentinel-2A and Sentinel-2B
satellites. Sentinel-2A was launched on 23 June 2015, and Sentinel-2B was launched on 7
March 2017. The single satellite revisit period was 10 days, and the double satellite revisit
period was 5 days. The main payload is a multispectral imager with a total of 13 bands and
a maximum spatial resolution of 10 m. The specific parameters are shown in Table 2.

Both the GF-2 and Sentinel-2 images employed in this study were original image
data and, therefore, a series of preprocessing is required, such as radiometric calibration,
atmospheric correction, geometric correction, band fusion, resampling, etc. Subsequently,
the vegetation index was extracted from the pre-processed image data. All of the above
operations were completed through ENVI5.3 and ESA SNAP 8.0 software.
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Table 2. The specific parameters of Sentinel-2 satellite sensor.

Bands Number Central Wavelength (nm) Resolution (m) Revisit Period (Day)

Band 1—Coastal aerosol 443.9 (S2A)/442.3 (S2B) 60

5

Band 2—Blue 496.6 (S2A)/492.1 (S2B) 10
Band 3—Green 560 (S2A)/559 (S2B) 10
Band 4—Red 664.5 (S2A)/665 (S2B) 10
Band 5—Vegetation Red Edge 1 703.9 (S2A)/703.8 (S2B) 20
Band 6—Vegetation Red Edge 2 740.2 (S2A)/739.1 (S2B) 20
Band 7—Vegetation Red Edge 3 782.5 (S2A)/779.7 (S2B) 20
Band 8—NIR 835.1 (S2A)/833 (S2B) 10
Band 8A—Vegetation Red Edge 864.8 (S2A)/864 (S2B) 20
Band 9—Water vapour 1373.5 (S2A)/1376.9 (S2B) 60
Band 10—SWIR-Cirrus 1373.5 (S2A)/1376.9 (S2B) 60
Band 11—SWIR-1 1613.7 (S2A)/1610.4 (S2B) 20
Band 12—SWIR-2 2202.4 (S2A)/2185.7 (S2B) 20

2.2.3. Sample Data

To more clearly show the differences in the spatial distribution results of mangroves
extracted by different vegetation indexes, different land cover types in the study area were
combined into three categories, namely mangrove, other vegetation, and non-vegetation.
Among them, the mangrove includes high mangrove and low mangrove. Other vegetation
includes farmland, forest, and grassland. Additionally, non-vegetation includes building
land, tidal flat, water. The detail description of three combined land cover types in the study
area are shown in Table 3. The sample data used for land cover classification were randomly
selected based on Google Earth high-resolution images, the 2018 China mangrove resources
distribution data set, and field survey. The sample number of three combined land cover
types in four study areas are shown in Table 4.

Table 3. The detail description of three combined land cover types in the study area.

Land Cover Type Description

Mangrove High mangrove The area covered by mangroves is high and not submerged at high tide
Low mangrove The mangrove coverage area is low and submerged during high tide

Other vegetation
Farmland

Forest, farmland, and grassland coverage areaForest
Grassland

Non-vegetation
Building land Building coverage area

Tidal flat In the intertidal zone, sand and mud flats are periodically submerged by tides
Water Water-covered areas (including oceans and rivers)

Table 4. The sample number of three combined land cover types in four study areas.

Study Area
Number of Images Number of Samples (Training/Validation)

GF-2 Sentinel-2 Mangrove Other Vegetation Non-Vegetation Total

A 0 2 813/840 1105/1149 722/745 2640/2734
B 0 2 498/509 587/616 1002/1023 2087/2148
C 0 2 724/832 896/1070 623/768 2243/2670
D 2 0 1150/1174 521/539 924/956 2595/2669

2.3. Research Method

In order to accurately extract the spatial distribution of mangrove trees under tidal
inundation, in this study, the IMIIs and other commonly used vegetation indices were
extracted based on the high and low tide level GF-2 images, respectively, which are used to
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extract the mangrove spatial distribution under tidal inundation, and it serves to verify the
application potential of the IMIIs for the extraction of the spatial distribution of mangroves
through comparative research. In addition, the above vegetation indices were tested on
Sentinel-2 images of three different regions in order to further verify the applicability of the
vegetation index based on high-resolution images in the case of medium-resolution remote
sensing images, with the aim of achieving the accurate extraction of the spatial distribution
of mangroves under tidal inundation from both the medium and high-resolution images at
the same time. The technical flow chart used in the study is shown in Figure 2.
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2.3.1. Proposal of IMII

Mangroves are mostly distributed in the coastal intertidal zones. Additionally, the
mangroves growing in areas with a lower coverage become periodically submerged by
tides. Therefore, in the case of extracting the spatial distribution of mangroves, theoretically
using images from lower tide levels can achieve accurate extraction results of the spatial
distribution of mangroves growing in lower positions. However, it was difficult to obtain the
images at the lowest or highest tide level due to the transit time of satellites, tidal changes,
and the influence of clouds and rain. The obtained data were mostly between the highest
and lowest tide levels, resulting in mangroves growing in lower positions being more or less
submerged, making it difficult to accurately extract the spatial distribution of mangroves.
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To achieve accurate extraction of submerged mangroves based on most non-lowest
level images, it was attempted to extract new vegetation indices based on high tide level
images and the nearest available low tide level images. This can be successfully imple-
mented mainly because the submerged mangroves mostly grow on the edge of mangroves
that grow towards the sea, far from humans, and are relatively less affected by human
factors. The land cover types do not change completely within several months. However,
the nearshore mangroves are greatly affected by humans, and the land cover types may
completely change within several months, resulting in the extraction of nearshore man-
groves based on low tide images with several months difference not being consistent with
the latest actual situation. The spectral reflectance curves of different land cover types
based on GF-2 images at high and low tide levels were analyzed, as shown in Figure 3.
According to Figure 3, the trend of reflectance curves of tidal-flats, farmland, water, and
mangroves growing in higher positions are basically consistent at high and low tide levels,
while the mangroves growing in lower positions exhibited significant separation in the
case of the near infrared band.
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At high tide, mangroves growing in lower positions become submerged by seawater.
The spectral characteristics of mangroves in lower positions not only include those of
seawater, but also those of underwater mangroves. Based on the results depicted in
Figure 3, it became apparent that there existed a noticeable spectral resemblance among
water, tidal-flats, and mangroves in lower positions. Notably, during both low and high
tides, distinct discrepancies can be observed in the spectral characteristics of mangroves in
lower positions and tidal-flats within the near-infrared wavelength range. In comparison
to bands 1–3, the NIR band demonstrated a heightened sensitivity towards both vegetation
and water content.

Although water typically absorbed almost all reflected signals in the near-infrared
spectrum, the spectral reflectance of seawater in the near-infrared band was not zero, due to
factors such as sediment and inundation of mangroves, as shown in Figure 3. At the same
time, in the submerged mangrove area, the seawater will absorb and scatter some energy of
the green band, resulting in a lower green spectral reflectance of the submerged mangrove,
while the vegetation that was not submerged had a higher green spectral reflectance. The
spectral reflectance characteristics of the blue band between submerged mangroves and
water were similar, but there were still some differences. Specifically, the water had a
higher spectral reflectance in the blue band, while in the submerged mangrove areas, due
to the coexistence of water and vegetation, the reflectance in the blue band was relatively
lower. Additionally, pigments were also the main factor affecting the spectral response of
visible light in vegetation, with chlorophyll playing an important role [28]. The chlorophyll
absorption peak appeared in the blue and red bands, and the reflection peak appeared in the
green band. Chlorophyll and cellulose were transparent to the near-infrared wavelength, and
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leaves exhibited a lesser degree of absorption; thus, most of the light beams were transmitted
and reflected [29]. The green band is capable of representing the water absorption and
greenness of vegetation accurately [27]. Compared with bands 1, 2, and 4, the green band
was more sensitive to changes in the water content of the vegetation canopy.

Based on the spectral reflectance characteristics of different bands and the differences
in spectral reflectance of different land cover types at high and low tide levels, the new
vegetation indices were proposed based on GF-2 images of high and low tide levels, namely
the Intertidal Mangrove Identification Index (IMII), to extract the spatial distribution of
mangroves, as shown in Formula (1).

IMII1 =
NIRl − Greenh
NIRl + Greenh

∗ Greenl
Bluel

(1)

In the equation, IMII1 is the intertidal mangrove identification index; NIRl is the
spectral reflectance value of NIR band at low tide level; Greenh is the spectral reflectance
value of green band at high tide level; Greenl is the spectral reflectance value of green band
at low tide level; and Bluel is the spectral reflectance value of blue band at low tide level.

From Formula (1), it can be seen that the influence of red bands was not considered in
IMII1. In order to further explore the impact of red bands on the extraction results, another
new vegetation index, IMII2, was proposed based on Formula (1) by introducing the red
band, as shown in Formula (2).

IMII2 =
NIRh − Redh
NIRh + Redh

∗ NIRl − Greenh
NIRl + Greenh

∗ Greenl
Bluel

(2)

In the equation, NIRh is the spectral reflectance value of NIR band at high tide level;
Additionally, Redh is the spectral reflectance value of Red band at high tide level.

2.3.2. Other Common Vegetation Indexes

As a means of evaluating the capability of the IMII to extract spatial distributions of
mangroves, other commonly used vegetation indexes were extracted, mainly including
NDVI, normalized difference water index (NDWI), enhanced vegetation index (EVI) and
SMRI. Among them, NDVI and EVI are the most commonly used greenness indexes
for measuring the health and the greenness of vegetation [30,31]. NDWI is capable of
highlighting water body data in images for the purpose of studying the water content
of vegetation [32]. SMRI is the existing vegetation indexes specially used for mangrove
extraction [33]. The specific calculation formula for each vegetation index is shown in
Equations (3)–(6).

NDVI =
NIR− Red
NIR + Red

(3)

NDWI =
Green− NIR
Green + NIR

(4)

EVI = 2.5× NIR− Red
NIR + 6× Red− 7.5× Blue + 1

(5)

SMRI = (NDVIl − NDVIh) ∗
NIRl − NIRh

NIRh
(6)

In the equation, Green and NIR are the reflectance values of green and near infrared
bands, Red and Blue are the reflectance values of red and blue bands, NDVIl and NDVIh are
the NDVI values of low tide and high tide, and NIRl and NIRh are the reflectance values of
low tide and high tide near infrared bands, respectively.
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2.3.3. Algorithm for Extracting Spatial Distribution of Mangroves

In this paper, support vector machine (SVM) algorithm was employed to extract the
spatial distribution of mangroves. To study the differences in the extraction results of
spatial distribution of submerged mangroves using different vegetation indices, each of the
vegetation indices was first used as input variable for SVM algorithm. Then, on the basis
of the single variable extraction results, multiple variables were synergistically applied to
improve the accuracy of the spatial distribution extraction results of submerged mangroves.
SVM is a variety of generalized linear classifier that classifies data in a binary way according
to supervised learning. The decision boundary was determined by the maximum margin
hyperplane to solve the learning sample [34–36], as shown in Figure 4.
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In cases where the subject was linearly non-separable, such as in data mixing, nonlinear
functions were utilized as a means to map the nonlinear separable problem from the original
feature space to the higher-dimensional Hilbert space, and it was then converted into a
linear separable problem. In this stage, the hyperplane of the decision boundary is shown
in Equation (7).

ωTφ(X) + b = 0 (7)

where X is the mapping function; however, it is too complex to perform a series of calcu-
lations such as the inner product at this time; thus, the kernel function is employed, i.e.,
the inner product of the mapping function is defined as the kernel function, as shown in
Equation (8).

k(X1, X2) = φ(X1)
Tφ(X2) (8)

In this study, the commonly used radial basis function kernel is selected, as shown in
Equation (9).

k(X1, X2) = exp

(
−‖X1 − X2‖2

2σ2

)
(9)

2.3.4. Accuracy Evaluation

To evaluate the accuracy of mangrove classification results, the sample data obtained
from Google high-resolution images, field surveys, and the 2018 mangrove dataset (as
shown in Table S4) included two parts with about 1:1 ratio. The training part was used to
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establish the mangrove classification models and the validation part was used to evaluate
the accuracy of model classification results. The accuracy evaluation indicators mainly
included user accuracy (UA), producer accuracy (PA), overall accuracy (OA), and Kappa
coefficient (K). The calculation formulas are as shown in Equations (10)–(13).

UAi =
pii
pi+

(10)

PAi =
pii
p+i

(11)

OA =
p ∑k

i=1 pii

p
(12)

kappa =
p ∑k

i=1 pii −∑k
i=1 pi+p+i

p2 −∑k
i=1 pi+p+i

(13)

where p is the total number of samples; K is the total number of categories; Pii is the number
of samples correctly classified; P+i is the number of samples in category i; Pi+ is the number
of samples predicted for category i.

3. Results and Analysis
3.1. Results of Mangroves Spatial Distribution Extraction Based on GF-2 Images with Different
Vegetation Indices

Based on the GF-2 image, IMII and other commonly used vegetation indexes were
used to extract the spatial distribution of mangroves. The results are shown in Figure 5, and
the accuracy evaluation results are shown in Table 5. The corresponding high-resolution
image from Google Earth can be found in Figure S4 in the Supplementary Materials.
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Table 5. Accuracy evaluation of the extraction results of the spatial distribution of mangroves with
different vegetation indexes based on GF-2 images.

Vegetation
Indexes Classification Results

Vegetation
Indexes Classification Results

IMII1

PA UA

IMII2

PA UA
Mangrove 94.04% 96.00% Mangrove 95.49% 96.14%

Non-Mangrove 89.40% 86.47% Non-Mangrove 88.08% 86.93%
OA 91.49% OA 91.79%

Kappa 0.8677 Kappa 0.8717

SMRI

PA UA

EVI

PA UA
Mangrove 90.46% 96.11% Mangrove 87.73% 95.72%

Non-Mangrove 86.39% 80.97% Non-Mangrove 86.77% 79.95%
OA 88.19% OA 87.30%

Kappa 0.8178 Kappa 0.8039

NDVI

PA UA

NDWI

PA UA
Mangrove 87.22% 95.43% Mangrove 88.42% 96.20%

Non-Mangrove 87.12% 79.98% Non-Mangrove 87.19% 80.27%
OA 87.15% OA 87.64%

Kappa 0.8019 Kappa 0.8095

According to the results shown in Figure 5, it was not possible to accurately extract
the submerged mangroves by employing the EVI, NDVI, and NDWI indexes proposed
based on the single tide image. In particular, in cases where the tide level was high, a
large number of mangroves in the flooded area became undetectable, as shown in the
partially enlarged areas of Figure 5D–F. While the extraction results of IMII1, IMII2 and
SMRI based on the high and low tide level images were more accurate, this made it possible
to distinguish the submerged mangroves in the case of a high tide level, as shown in the
partially enlarged areas of Figure 5A–C. Additionally, the extraction result of the IMII2 was
more accurate than that of the IMII1 and SMRI, due to the fact that the IMII1 and SMRI
failed to effectively extract the submerged mangroves in some areas.

According to Table 5, it was indicated that the spatial distribution extraction of man-
groves based on the vegetation index extracted from GF-2 images achieved accurate results,
with an overall accuracy of more than 87% and a Kappa coefficient higher than 0.80. Among
them, the result of IMII2 was the best, with an overall accuracy and a Kappa coefficient
of 91.79% and 0.87, respectively. Next, the results of IMII1 included an overall accuracy
and Kappa coefficient of 91.49% and 0.87, respectively. While the results of NDVI were the
lowest, with an overall accuracy and Kappa coefficient of 87.15% and 0.80, respectively.

Meanwhile, the user accuracy of the mangrove extraction results with EVI, NDVI,
and NDWI was high; however, the mapping accuracy was low, which indicates that there
were many errors in the mangrove spatial distribution extraction results. This is relatively
consistent with the results shown in Figure 5, i.e., the above four vegetation indexes were
unable to effectively extract the submerged mangroves, and the spatial distribution of the
mangroves became significantly underestimated in the case where the high tide remote
sensing image was employed to extract the mangrove trees. On the contrary, IMIIs and
SMRI were capable of effectively distinguishing submerged mangroves in the case of
extracting mangroves from high tide remote sensing images, and the extraction result
of IMII2 was superior to the result of IMII1. Therefore, the difference between the user
accuracy and mapping accuracy of IMII1 and IMII2 was small, and in the case of IMII2, the
difference was smaller, with results of 0.65% less than the difference of IMII1 at 1.96%.

Based on the results of univariate, the extraction of the spatial distribution of man-
groves through multivariate collaboration was attempted, and the results are shown in
Table 6. Due to the large number of multivariate combination classification results, it was
not convenient to display them all. Therefore, only some of the multivariate combination
classification results are shown in Table 6. And the confusion matrices of land cover classi-
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fication with some vegetation indices based on GF-2 images can be found in Table S1 in the
Supplementary Materials.

Table 6. Partial multivariate combination classification results.

Multivariable
Combination Classification Results

Multivariable
Combination Classification Results

IMII1, NDWI

PA UA

IMII2, NDWI

PA UA
Mangrove 95.91% 98.00% Mangrove 92.33% 94.26%

Non-Mangrove 91.07% 88.22% Non-Mangrove 84.33% 81.59%
OA 93.26% OA 88.12%

Kappa 0.8949 Kappa 0.8155

SMRI, NDVI

PA UA

EVI, NDVI

PA UA
Mangrove 95.74% 96.56% Mangrove 86.63% 94.96%

Non-Mangrove 85.92% 83.61% Non-Mangrove 86.31% 79.20%
OA 90.18% OA 86.51%

Kappa 0.8476 Kappa 0.7922

IMII1, NDWI,
NDVI

PA UA

SMRI, NDWI,
NDVI

PA UA
Mangrove 94.38% 97.97% Mangrove 95.14% 98.24%

Non-Mangrove 91.83% 87.69% Non-Mangrove 88.34% 84.24%
OA 92.92% OA 91.05%

Kappa 0.89 Kappa 0.8614

Analyzing the results presented in Tables 5 and 6, it can be observed that, in most
cases, the accuracy of multivariate collaborative applications was superior to those of
univariate. For bivariate classification results shown in Table 6, the result based on IMII1
and NDWI was the best, with an overall accuracy of 93.26% and a Kappa coefficient of
0.8949, which was superior to all univariate classification results. For the three-variable
classification results, although the result based on the combination of IMII1, NDWI, and
NDVI variables outperformed the univariate classification results, it was lower than the
classification results of IMII1 and NDWI. The results indicate that although multivariable
collaborative applications can improve classification results to a certain extent in most cases,
inappropriate variable combinations not only fail to improve the classification results, but
also reduce the classification results.

In summary, the vegetation index extracted based on GF-2 images allowed for the
extraction of more accurate spatial distribution results for mangroves. Furthermore, the
IMII1 and IMII2 derived from high and low tide level images were capable of effectively
extracting submerged mangroves, and the results were also more accurate than those
of other vegetation indexes, while the extraction result of IMII2 was the best. Although
multivariable collaborative applications can improve classification results in most cases,
it is important to pay attention when applying multivariable collaboration, as inappro-
priate variable combinations not only fail to improve classification results, but also lower
classification results.

3.2. Results of Mangrove Spatial Distribution Extraction Based on Senitnel-2 Images with
Different Vegetation Indices

For further verification of the applicability of the extraction of vegetation indices
based on GF-2 images for medium-resolution images, the proposed vegetation index was
tested on Sentinel-2 images of three regions within study areas A, B, and C. And the high-
resolution images from Google Earth in study areas A, B, and C can be found in Figures S1,
S2 and S3 in the Supplementary Materials. The extraction results for the spatial distribution
of mangroves in study area D are shown in Figure 6, and the precision evaluation results
are shown in Table 7.
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Table 7. Accuracy evaluation of the extraction results of the spatial distribution of mangroves with
different vegetation indexes based on Sentinel-2 images in study area A.

Vegetation
Indexes Classification Results

Vegetation
Indexes Classification Results

IMII1

PA UA

IMII2

PA UA
Mangrove 95.24% 91.32% Mangrove 96.67% 90.83%

Non-Mangrove 87.35% 82.17% Non-Mangrove 87.77% 92.48%
OA 90.64% OA 91.11%

Kappa 0.8558 Kappa 0.8636

SMRI

PA UA

EVI

PA UA
Mangrove 95.00% 89.26% Mangrove 95.96% 87.58%

Non-Mangrove 86.43% 92.26% Non-Mangrove 88.89% 92.50%
OA 89.87 OA 89.60%

Kappa 0.8441 Kappa 0.8413

NDVI

PA UA

NDWI

PA UA
Mangrove 96.31% 85.29% Mangrove 96.66% 85.08%

Non-Mangrove 87.95% 94.46% Non-Mangrove 84.37% 92.55%
OA 90.49% OA 88.64%

Kappa 0.8556 Kappa 0.8269
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According to the results shown in Figure 6, in the case of the Sentinel-2 image, while
the overall difference between the extraction results of the spatial distribution of mangroves
based on the vegetation index was not obvious, the difference became apparent in the case
of certain distinct areas, as shown in the partially enlarged area in Figure 6. According to
the partially enlarged area in Figure 6, it can be observed that in this particular area, the
extraction areas for IMII1, IMII2, SMRI, and EVI were relatively smaller, while NDVI, and
NDWI exhibited larger extraction areas for mangroves. This was primarily due to the severe
invasion of Spartina alterniflora Loisel. in this region. NDVI and NDWI tended to misclassify
Spartina alterniflora Loisel. as mangroves, to some extent, during the mangrove extraction
process, resulting in a larger extracted area for mangroves. On the other hand, other indices
are better at distinguishing between mangroves and Spartina alterniflora Loisel., leading to a
relatively smaller extracted area for mangroves.

According to Table 7, the extraction results of the spatial distribution of mangroves
based on the vegetation index extracted from the Sentinel-2 image in study area A were
accurate enough and the difference was not obvious. The overall accuracy was higher than
88%, and the Kappa coefficient was greater than 0.8. Among them, the overall accuracy and
Kappa coefficient of IMII2 were the highest, with 91.11% and 0.86, respectively, followed by
IMII1, where the overall accuracy and Kappa coefficient were 90.64% and 0.86, respectively.
The results of the NDWI were the lowest, with an overall accuracy and Kappa coefficient of
88.64% and 0.83, respectively.

Meanwhile, the mapping accuracy of mangrove extraction results for each vegetation
index was high; however, the user accuracy was low, which indicates that there were
many missing errors in the extraction results of the spatial distribution of mangrove trees.
The difference between the user accuracy and the mapping accuracy of IMII1 was the
smallest, with only 3.92%, while the difference between the user accuracy and the mapping
accuracy of NDWI was the largest, at 11.58%. Several factors contributed to this situation,
including the complex and scattered nature of the mangrove tree species in the region and
the invasion of Spartina alterniflora Loisel., particularly in the Dandouhai region, which
causes Spartina alterniflora Loisel. to be divided into mangrove forests in the majority
of cases.

Furthermore, the spatial distribution of mangroves was also extracted through mul-
tivariate collaboration in study area A, and the results are shown in Table 8. And the
confusion matrices of land cover classification with some vegetation indices based on
Sentinel-2 images in study area A can be found in Table S2 in the Supplementary Materials.

Table 8. Partial multivariate combination classification results.

Multivariable
Combination Classification Results

Multivariable
Combination Classification Results

IMII1, NDWI

PA UA

IMII2, NDWI

PA UA
Mangrove 96.31% 91.00% Mangrove 96.43% 90.91%

Non-Mangrove 87.07% 92.25% Non-Mangrove 88.04% 92.53%
OA 90.71% OA 91.19%

Kappa 0.8571 Kappa 0.8647

SMRI, NDVI

PA UA

EVI, NDVI

PA UA
Mangrove 96.07% 87.15% Mangrove 96.07% 87.06%

Non-Mangrove 90.13% 95.05% Non-Mangrove 89.60% 94.36%
OA 91.84% OA 91.44%

Kappa 0.8755 Kappa 0.8694

IMII1, NDWI,
NDVI

PA UA

SMRI, NDWI,
NDVI

PA UA
Mangrove 96.31% 90.29% Mangrove 93.07% 87.91%

Non-Mangrove 89.60% 93.97% Non-Mangrove 90.81% 95.37%
OA 92.03% OA 92.36%

Kappa 0.8778 Kappa 0.8833
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According to the results presented in Tables 7 and 8, it can be observed that the
accuracy of multivariate collaborative applications was superior to those of univariate. For
bivariate classification results shown in Table 8, the result based on SMRI and NDVI was
the best, with an overall accuracy of 91.84% and a Kappa coefficient of 0.8755, which was
superior to all univariate classification results. For the three-variable classification results,
the result based on the combination of SMRI, NDWI, and NDVI variables outperformed
the bivariate and univariate classification results. The results indicate that for study area
A, although multivariate collaborative application can improve classification results, the
improvement was relatively small.

The extraction results of the spatial distribution of mangroves with each vegetation
index based on Sentinel-2 images in study area B are shown in Figure 7, and the accuracy
evaluation results are shown in Table 9.
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Table 9. Accuracy evaluation of the extraction results of the spatial distribution of mangroves with
different vegetation indexes based on Sentinel-2 images in study area B.

Vegetation
Indexes Classification Results

Vegetation
Indexes Classification Results

IMII1

PA UA

IMII2

PA UA
Mangrove 97.25% 99.20% Mangrove 97.25% 99.00%

Non-Mangrove 89.90% 89.49% Non-Mangrove 89.86% 89.56%
OA 92.27% OA 92.27%

Kappa 0.8780 Kappa 0.8780

SMRI

PA UA

EVI

PA UA
Mangrove 97.45% 99.20% Mangrove 97.45% 99.20%

Non-Mangrove 89.75% 89.34% Non-Mangrove 89.73% 89.33%
OA 92.18% OA 92.18%

Kappa 0.8766 Kappa 0.8765

NDVI

PA UA

NDWI

PA UA
Mangrove 97.64% 98.22% Mangrove 97.84% 98.61%

Non-Mangrove 89.17% 89.18% Non-Mangrove 88.92% 88.64%
OA 91.90% OA 91.62%

Kappa 0.8721 Kappa 0.8679
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According to Figure 7, the overall and detailed differences in the extraction results of
the spatial distribution of mangroves with each vegetation index were not obvious. This
was mainly because the mangroves in this area were relatively tall and, therefore, less
affected by tidal inundation. In most areas, mangrove areas that were affected by tidal
inundation were smaller than 10 m, while the spatial resolution of Sentinel-2 images was
10 m, thus making it difficult to reach a complete pixel. The effect of the tidal inundations
on the spatial distribution of mangroves was less than one pixel; hence, the difference in
the spatial distribution of mangroves extracted through different vegetation indexes was
not significant.

According to Table 9, the spatial distribution extraction results of mangroves based
on the vegetation index extracted from Sentinel-2 images in study area B were accurate
enough and the difference was not obvious. The overall accuracy was higher than 91.6%,
and the Kappa coefficient was greater than 0.86. Among them, the overall accuracy and
Kappa coefficient of IMIIs were the highest, at 92.27% and 0.88, respectively. The results of
NDWI were the lowest, and the overall accuracy and Kappa coefficient were 91.62% and
0.87, respectively, which were only 0.65% different from the results of IMIIs.

Meanwhile, the extraction results of the spatial distribution of mangroves with each
vegetation index were accurate, and there were no significant errors either. In addition, the
user accuracy and mapping accuracy of the extraction results for each vegetation index
were high. This was mainly due to the fact that the mangrove trees in this area were
relatively tall, and the image depicting tidal inundation was relatively small.

At the same time, the spatial distribution of mangroves was also extracted through
multivariate collaboration in study area B, and the specific results are shown in Table 10. And
the confusion matrices of land cover classification with some vegetation indices based on
Sentinel-2 images in study area B can be found in Table S3 in the Supplementary Materials.

Table 10. Partial multivariate combination classification results.

Multivariable
Combination Classification Results

Multivariable
Combination Classification Results

IMII1, NDWI

PA UA

IMII2, NDWI

PA UA
Mangrove 97.84% 98.81% Mangrove 97.84% 99.01%

Non-Mangrove 88.84% 88.47% Non-Mangrove 89.19% 88.83%
OA 91.53% OA 91.81%

Kappa 0.8665 Kappa 0.8709

SMRI, NDVI

PA UA

EVI, NDVI

PA UA
Mangrove 97.64% 98.22% Mangrove 97.64% 98.22%

Non-Mangrove 88.93% 88.82% Non-Mangrove 88.84% 88.68%
OA 91.67% OA 91.57%

Kappa 0.8686 Kappa 0.8672

IMII1, NDWI,
NDVI

PA UA

SMRI, NDWI,
NDVI

PA UA
Mangrove 98.04% 99.01% Mangrove 97.64% 98.61%

Non-Mangrove 89.26% 89.01% Non-Mangrove 89.00% 88.70%
OA 91.95% OA 91.67%

Kappa 0.8730 Kappa 0.8687

Based on the results shown in Tables 9 and 10, it can be observed that for study area B,
the multivariate collaborative application did not improve the accuracy of classification
results. Compared with the results of univariate classification, the results of multivariate
collaborative applications showed a decrease. This was mainly because in the study area
B, the impact of tidal inundation on mangroves was relatively small, and univariate can
achieve more accurate extraction of mangrove spatial distribution, while the multivariate
collaborative application actually reduced the classification results.
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The extraction results of the spatial distribution of mangroves with each vegetation
index based on Sentinel-2 images in study area C are shown in Figure 8, and the accuracy
evaluation results are shown in Table 11.

Forests 2023, 14, x FOR PEER REVIEW 19 of 25 
 

 

SMRI, NDVI 

 PA UA 

EVI, NDVI 

 PA UA 
Mangrove 97.64% 98.22% Mangrove 97.64% 98.22% 

Non-Mangrove 88.93% 88.82% Non-Mangrove 88.84% 88.68% 
OA 91.67% OA 91.57% 

Kappa 0.8686 Kappa 0.8672 

IMII1, NDWI, NDVI 

 PA UA 

SMRI, NDWI, 
NDVI 

 PA UA 
Mangrove 98.04% 99.01% Mangrove 97.64% 98.61% 

Non-Mangrove 89.26% 89.01% Non-Mangrove 89.00% 88.70% 
OA 91.95% OA 91.67% 

Kappa 0.8730 Kappa 0.8687 

Based on the results shown in Tables 9 and 10, it can be observed that for study area 
B, the multivariate collaborative application did not improve the accuracy of classification 
results. Compared with the results of univariate classification, the results of multivariate 
collaborative applications showed a decrease. This was mainly because in the study area 
B, the impact of tidal inundation on mangroves was relatively small, and univariate can 
achieve more accurate extraction of mangrove spatial distribution, while the multivariate 
collaborative application actually reduced the classification results. 

The extraction results of the spatial distribution of mangroves with each vegetation 
index based on Sentinel-2 images in study area C are shown in Figure 8, and the accuracy 
evaluation results are shown in Table 11. 

 
Figure 8. Results of mangroves spatial distribution extraction with different vegetation indices 
based on Sentinel-2 images in study area C: (A) IMII1; (B) IMII2; (C) SMRI; (D) EVI; (E) NDVI; (F) 
NDWI. 

According to Figure 8, the overall difference in the extraction results of the spatial 
distribution of mangroves for each vegetation index was not obvious, although the differ-
ence was relatively obvious in the case of certain areas, as shown in the partially enlarged 

Figure 8. Results of mangroves spatial distribution extraction with different vegetation indices based
on Sentinel-2 images in study area C: (A) IMII1; (B) IMII2; (C) SMRI; (D) EVI; (E) NDVI; (F) NDWI.

Table 11. Accuracy evaluation of the extraction results of the spatial distribution of mangroves with
different vegetation indexes based on Sentinel-2 images in study area C.

Vegetation
Indexes Classification Results

Vegetation
Indexes Classification Results

IMII1

PA UA

IMII2

PA UA
Mangrove 95.91% 88.47% Mangrove 95.91% 92.36%

Non-Mangrove 91.71% 95.12% Non-Mangrove 93.31% 95.10%
OA 92.66% OA 93.97%

Kappa 0.889 Kappa 0.9086

SMRI

PA UA

EVI

PA UA
Mangrove 95.91% 88.96% Mangrove 95.91% 88.96%

Non-Mangrove 91.92% 95.06% Non-Mangrove 91.92% 95.06%
OA 92.81% OA 92.81%

Kappa 0.8912 Kappa 0.8912

NDVI

PA UA

NDWI

PA UA
Mangrove 95.43% 88.42% Mangrove 95.67% 89.64%

Non-Mangrove 91.98% 95.03% Non-Mangrove 92.49% 95.20%
OA 92.62% OA 93.15%

Kappa 0.8884 Kappa 0.8963

According to Figure 8, the overall difference in the extraction results of the spatial dis-
tribution of mangroves for each vegetation index was not obvious, although the difference
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was relatively obvious in the case of certain areas, as shown in the partially enlarged area
in Figure 8. As shown in the figure, in cases where the tide level was high, it was likely that
the IMII2, NDVI, and NDWI classified other vegetation as mangroves, while the extraction
results of the IMII1, SMRI, and EVI were relatively accurate with relatively few errors.

According to Table 11, in study area C, there were only minor differences among the
results when using different vegetation indexes to determine the spatial distribution of
mangroves; the overall accuracy was higher than 92.6%, and the Kappa coefficient was
greater than 0.88. In this case, the overall accuracy and Kappa coefficient of IMII2 were
the highest, with 93.97% and 0.91, respectively. The results of the NDVI were the lowest,
with 92.62% and 0.89, respectively. The difference in overall accuracy and Kappa coefficient
between IMII2 and NDVI was only 1.35% and 0.02, respectively.

Meanwhile, it can be observed that various vegetation indices exhibited high mapping
accuracy but low user accuracy in mangrove extraction, indicating a significant amount
of misclassifications in the spatial distribution of mangroves using these indices. Among
them, IMII2 had the smallest difference between user accuracy and mapping accuracy, with
only 3.55%, while NDVI had the largest difference, reaching 7.01%. This was primarily due
to the complexity of tree species and the scattered distribution of mangroves in the study
area, as well as the presence of a certain amount of Spartina alterniflora Loisel. invasion,
resulting in many other vegetation types being misclassified as mangroves. The specific
results are shown in the magnified area of Figure 8.

Similar to study areas A and B, the spatial distribution of mangroves was extracted
using multivariate collaboration in study area C, and the results are shown in Table 12. And
the confusion matrices of land cover classification with some vegetation indices based on
Sentinel-2 images in study area C can be found in Table S3 in the Supplementary Materials.

Table 12. Partial multivariate combination classification results.

Multivariable
Combination Classification Results

Multivariable
Combination Classification Results

IMII1, NDWI

PA UA

IMII2, NDWI

PA UA
Mangrove 95.67% 89.64% Mangrove 95.31% 92.53%

Non-Mangrove 92.34% 95.15% Non-Mangrove 93.78% 95.21%
OA 93.07% OA 94.08%

Kappa 0.8951 Kappa 0.9103

SMRI, NDVI

PA UA

EVI, NDVI

PA UA
Mangrove 95.43% 88.22% Mangrove 95.43% 88.22%

Non-Mangrove 91.91% 95.01% Non-Mangrove 91.91% 95.01%
OA 92.55% OA 92.55%

Kappa 0.8873 Kappa 0.8873

IMII1, NDWI,
NDVI

PA UA

SMRI, NDWI,
NDVI

PA UA
Mangrove 95.31% 91.57% Mangrove 95.31% 90.73%

Non-Mangrove 93.18% 95.01% Non-Mangrove 92.88% 94.90%
OA 93.63% OA 93.33%

Kappa 0.9035 Kappa 0.8991

Because of the complexity of the environment in study area C, most multivariate
collaborative applications can improve classification results, as shown in Table 12. However,
when NDVI was combined with other vegetation indices, the classification results may
slightly decrease, such as SMRI and NDVI, as well as EVI and NDVI combinations.

In summary, the extraction results of the spatial distribution of mangroves of each
vegetation index based on the medium-resolution Sentinel-2 images were not significantly
different on the whole. However, the differences were relatively large in some regions, and
the results of IMII2 were relatively more accurate in comparison to the other vegetation
indexes. This was mainly because the spatial resolution of Sentinel-2 images was relatively
coarse, and the optimal resolution was only 10 m. Generally, for most areas, the longi-
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tudinal length between the start and end lines of mangrove inundation rarely exceeded
10 m. Therefore, the difference between the extraction results of the spatial distribution
of mangroves in most regions was less than one pixel, while the low mangroves in some
regions became largely or even completely submerged during tidal inundation; this led
to the occurrence of significant differences in the extraction results of the spatial distribu-
tion of mangroves. However, such regions were relatively small in the study area; thus,
they did not lead to any significant differences in the overall extraction results of each
vegetation index. At the same time, introducing different variables in SVM classification
typically enhanced classification accuracy. This was because multivariable inputs provided
more information and features, aiding in the accurate differentiation of various land cover
categories. However, in some cases, the introduction of multiple variables may lead to
a decrease in accuracy. This is because each variable provides features from a different
perspective, which can introduce inconsistencies and uncertainty in the decision boundary
of the algorithm.

4. Discussion

The accurate extraction of mangrove spatial distribution is the basis of mangrove
dynamic change monitoring. However, due to the special growth area of mangroves, most
of them grow in the coastal intertidal zone and are, therefore, affected by tidal inunda-
tion, mangroves in low positions will be completely submerged by high tide levels [14].
However, they will be exposed to the seawater at low tide level, resulting in inconsistent
mangrove boundary information extracted from remote sensing image data at different
tide levels. In theory, using images with lower tide levels can achieve more accurate ex-
traction of mangrove spatial distribution. However, due to the transit time of satellites,
tidal changes, and the influence of clouds and rain, it is often difficult to obtain images
at the lowest or highest tide level. Most of the images obtained are from images between
the highest and lowest tide levels, with mangroves located at low altitudes being more or
less submerged, making it difficult to accurately extract the spatial distribution of man-
groves. How to minimize the impact of tidal inundation based on most non-lowest level
images is the foundation for achieving accurate extraction of mangrove spatial distribu-
tion. The collaborative application of high tide level images and nearest low tide level
images provides new ideas and methods for eliminating the impact of tidal inundation
on the spatial distribution of mangroves and achieving accurate extraction of submerged
mangroves [22,25]. In this study, the IMIIs were extracted based on high tide level images
and nearest low tide level images and used to extract the spatial distribution of mangroves.
The results showed that the extraction results of submerged mangroves based on IMIIs
were superior to those of commonly used vegetation indices and other vegetation index
extracted based on high and low tide level images. This was mainly because compared
to the vegetation index previously proposed based on high and low tide level images,
IMIIs integrated all four bands of red, green, blue, and near-infrared into the calculation
formula of IMIIs. However, the previous vegetation index only used a few bands without
considering the four bands of red, green, blue, and near-infrared. From the results shown in
Figure 3, it can be seen that there were differences in the spectral reflectance characteristics
of tidal inundated mangroves and other land cover types among the four bands of the GF-2
image. Therefore, the collaborative application of the four bands can more comprehen-
sively utilize the differences in spectral reflectance characteristics of different bands. At the
same time, different algorithms such as addition, subtraction, multiplication, and division
were comprehensively applied in the calculation formula of IMIIs, which also amplified
the differences in spectral reflectance characteristics to a certain extent, Ultimately, IMIIs
can achieve accurate extraction of mangroves. Although the study results indicated that
IMIIs can extract the spatial distribution of tidal inundated mangroves and verified its
applicability on medium resolution Sentinel-2 images, there were still some shortcomings
in extracting mangroves completely submerged by tides. This was mainly because the
spectral reflectance characteristics of mangroves completely submerged by tides were very
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similar to those of seawater, and relying solely on the red, green, blue, and near-infrared
bands of high-resolution images was difficult to accurately distinguish between the spectral
reflectance characteristics of submerged mangroves and seawater. Therefore, in the future,
efforts can be made to collaborate with other data to extract the spatial distribution of
mangroves under completely submerged tides.

In addition to the differences in bands and structures used in vegetation indices, sam-
ple selection is also an important factor affecting the classification results of mangroves [37].
The samples used in this study were mainly from Google Earth high-resolution images, the
2018 China mangrove resource distribution dataset, and field survey data. There was time
difference between Google Earth high-resolution images, the China mangrove resource
distribution dataset, and the GF-2 and Sentinel-2 images used by the study. Although
Google Earth high-resolution images and the 2018 China mangrove resource distribution
dataset were used for sample data mutual verification and proofreading when the sample
data were selected and the vast majority of erroneous sample data were removed, it cannot
be guaranteed that the sample points used were 100% correct due to the lack of field
validation of these sample data. Meanwhile, due to the fact that most of the submerged
mangroves were located in relatively distant offshore areas and the inability to conduct field
investigations, the sample data of submerged mangroves selected based on Google Earth
high-resolution images and the 2018 China mangrove resource distribution dataset may
have contained some samples of Spartina alterniflora Loisel. The uncertainty in sample data
can also have a certain impact on the extraction results of mangrove spatial distribution.

Several studies successfully extracted the spatial distribution of mangroves using
different vegetation indices [38,39]; however, few studies verified the applicability of the
proposed vegetation index on remote sensing images with other resolutions. In this study,
in order to verify the applicability of a vegetation extraction index based on high-resolution
images to other medium-resolution images, the IMIIs, SMRI, EVI, NDVI, and NDWI were
tested on Sentinel-2 images in three different regions. The results indicate that for Sentinel-2
images, the overall results of the extraction of the spatial distribution of mangroves with
each vegetation index only contain minor differences; however, the results were relatively
different in the case of other specific areas. This was primarily due to the fact that the
height of mangrove trees in most of the selected three research areas was higher than
the maximum tidal level; thus, the impact of tidal inundation was relatively small in
these areas. Meanwhile, in most areas, the longitudinal length between the start and end
lines of mangrove inundation was less than 10 m, while the optimal spatial resolution
of Sentinel-2 images was 10 m, which made it difficult to achieve a complete pixel in
the longitudinal direction of tidal inundation. The difference between the effects of tidal
inundations on the spatial distribution of mangroves was less than one pixel; thus, the
spatial distribution results of mangroves extracted by employing different vegetation
indexes were not significantly different. However, in some specific areas, the mangrove tree
species were complex and scattered, the tree height was relatively low, and the impact of
tidal inundation was relatively large. Furthermore, there was a certain amount of Spartina
alterniflora Loisel. invasion in some areas; as a result, some vegetation indices were unable
to identify mangroves submerged by tides, and they may also mistakenly include Spartina
alterniflora Loisel. in mangroves. The IMII, based on the high and low tide level images,
was capable of identifying the mangroves submerged by the tide somewhat accurately
and did not often misclassify Spartina alterniflora Loisel. as mangrove trees. Therefore, the
overall extraction results of the spatial distribution of mangroves were not different in this
case, but the differences were relatively large in the case of certain specific regions.

5. Conclusions

To eliminate the impact of tidal inundation on the extraction of spatial distribution
of mangroves, the new vegetation indices, IMIIs, were proposed based on GF-2 images
of high and low tide levels. Meanwhile, other commonly used vegetation indices were
also extracted. All the vegetation indices were used to extract the spatial distribution of



Forests 2023, 14, 1145 22 of 24

mangroves under tidal inundation, and applicability tests of the vegetation indices were
conducted on Sentinel-2 images in three different regions. It was that a vegetation index
that can accurately extract the spatial distribution of mangroves under tidal inundation
in both medium and high-resolution images would be found. The main conclusions are
as follows:

(1) The IMIIs proposed based on GF-2 images of high and low tide levels can better
identify mangroves inundated by tides, with results superior to those obtained from SMRI,
EVI, NDVI, and NDWI. Among them, IMII2 had the highest accuracy, followed by IMII1,
and NDVI had the lowest result.

(2) The proposed IMIIs based on GF-2 images of high and low tide levels exhibited a
favorable generalization applicability on Sentinel-2 images. The results of IMIIs were relatively
good among all vegetation indices, and the differences in the extraction results of different
vegetation indices were obvious in areas with a significant impact of tidal inundation.

(3) In most cases, multi variables collaborative application can improve the accuracy
of mangrove spatial distribution extraction results. For GF-2 images, the results of IMII1,
NDVI, and NDWI were relatively better among the three variable combinations, while for
the two variable combinations, the results of IMII1 and NDWI were relatively better.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14061145/s1, Figure S1: High resolution image from Google
Earth in study area A on 14 October 2019; Figure S2: High resolution image from Google Earth in
study area B on 15 September 2020; Figure S3: High resolution image from Google Earth in study
area C on 5 November 2019; Figure S4: High resolution image from Google Earth in study area D on
21 February 2021; Table S1: The confusion matrices of land cover classification with some vegetation
indices based on the GF-2 images; Table S2: The confusion matrices of land cover classification with
some vegetation indices based on Sentinel-2 images in study area A; Table S3: The confusion matrices
of land cover classification with some vegetation indices based on Sentinel-2 images in study area B;
Table S4: The confusion matrices of land cover classification with some vegetation indices based on
Sentinel-2 images in study area C.
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