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Abstract: Ecological patterns of species distribution can reveal essential information on the spatial
and functional relationship between species or species and their environment. Various approaches
can be used to assess species associations, and our study aimed to compare three methods at different
scales: the co-occurrence indices for binary presence–absence data, principal component analysis
(PCA) on species abundance and point process analysis. Our goal was to gain a deeper understanding
of the species’ co-occurrence patterns and notice if the three methods capture roughly the same spatial
distribution trends. Our observational study of the analysed sapling community displayed several
positive relationships between species (e.g., the association between ash and linden). However, many
relationships were inconsistent across different scales. Furthermore, attraction between species was
more prevalent than repulsion. Overall, there is a positive association trend, with more relationships
being significantly positive across all scales. This trend is consistent with other recent studies of
tree–species interaction. Nonetheless, the results suggest that the scale significantly influences spatial
patterns of associations. Positive associations tend to be more prevalent on larger scales, while
negative associations are more commonly found on smaller scales, regardless of the analysis method
used. While the PCA results are less consistent, the point process analysis allowed us to detect more
refined patterns of species associations based on the distance of their interaction. In addition, the
binary presence–absence analysis provided solid results, with a coarser spatial perspective but with
significantly less sampling effort.

Keywords: interspecific association; species co-occurrence; Jaccard index; spatial patterns; similarity
coefficients; association indices; sapling communities; species interaction

1. Introduction

Ecological patterns of species distribution are of great interest for researchers who aim
to decipher and understand the interspecific connections. Moreover, these patterns can
reveal essential information on the spatial and functional relationship between species or
species and their environment [1]. Due to this particular interest and the large amount of
information encapsulated in co-occurrence data, ecological similarity or association studies
are widely used in community ecology, assembly ecology, spatial diversity, or ecosystem
dynamics [2,3].

The species co-occurrence in a defined space could reveal interspecific associations
caused by the functional dependency of specimens and their environment. When two
species prefer the same habitat or have similar environmental requirements, there are
indications of a positive association. Conversely, if they have distinct ecological needs,
negative associations may occur [4]. Furthermore, association relationships between species
can also develop as a direct result of biotic interactions. However, a recent study [5]
highlighted that researchers should not always link species association or co-occurrence to
their ecological interactions.
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Various quantitative methods have been developed to assess the ecological resem-
blance [2] between sites or species composition patterns. Indices of co-occurrence or
pairwise association for binary presence–absence data are among the first used and still
very popular in assessing ecological resemblance [6–9]. Researchers use association or
co-occurrence metrics on pairs of entities to establish whether their presence is linked or
independent and to estimate resemblances or dissimilarities among different data sets.
These investigations unveil hidden spatial distribution patterns in ecology, biogeography,
biodiversity, epidemiology or evolution [3].

The theoretical framework of binary data metrics was developed at the beginning of the
previous century [10]. Nowadays, many indices are still used to evaluate presence–absence
associations on the analysed pairs [6,7,11] because they are practical in inferring poten-
tial biotic interactions [12]. Despite their wide use, recent studies [3,9] showed that the
theoretical framework of these indices has flaws, especially related to species prevalence
and scale analysis, which might lead to misinterpretations. Furthermore, the deficiencies
regarding significance testing led to diverse and complex approaches: identifying null
distribution [12], constructing a null model using simulations [6,11,13] or standardization
of counts and indices [6,14,15].

There are more than 80 association indices based on binary data [6,7], and selecting an
appropriate one may be provoking. However, most studies orbit around the same indices,
and the many reviews and comparisons [7,8,11,14,16–19] facilitate the selection of the right
index [10,13,15,16].

While the binary indices consider the number of shared events (species co-occurrence)
and are straightforward to calculate [7,8], the data on species proportions or abundance is
not integrated into this evaluation. Having more than two species and adding information
on their abundances increase the complexity of the analysis [6]. Therefore, this study also
uses a method which incorporates the local species abundance per quadrat. The scale
of the analysis can also influence the association patterns of the species [5,19,20]. Many
association or co-occurrence studies use quadrats analysis or quadrat sampling [19,21,22].

Species are typically nonrandomly scattered due to intra- and inter-specific interactions
and in response to their environment [23,24]. The assumption that spatial distribution
patterns meet the condition of randomness within each species limits the co-occurrence
indices’ relevance. Therefore, different modern approaches have been developed in recent
decades to assess species association based on data mining [25], network theory [3,26,27]
or spatial point pattern analysis [24,28–31].

Among the various approaches, the most common is to investigate species’ spa-
tial patterns using point process analysis through univariate or bivariate Ripley’s K-
function [32,33]. Consequently, the present study also integrates the analysis of the spatial
distribution patterns of species at different scales through bivariate Ripley’s K-function.

The object of our observational study was a sapling community. We focused on
it because biotic interactions in these communities are highly complex and confined to
limited spaces [34,35], offering a solid test platform to compare different methods for
species association assessments. Although few studies investigated the particularities of
juvenile forest communities, shaped by many biotic and environmental factors, we consider
the potential practical importance of association patterns not only for the insight into
community assembly but also to provide forest restoration directions.

Therefore, in this paper, we examine the patterns of species association in a sapling
community using three different approaches: co-occurrence indices based on binary data,
local abundance examination by principal component analysis (PCA), and spatial point
pattern analysis of species distribution. We aimed to test the three methods by examining
species associations at different scales. All three procedures cover the narrative of species
interaction and create a picture of forest species association in a sapling community.

Nevertheless, do all methods depict the same picture? Or do the different approaches
generate distinct perspectives, which could bind as part of the same scene?
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Thus, the main goal of this study is to investigate the forest species association trends
in a specific sapling community using different methods and scales to understand the
co-occurrence patterns better.

2. Materials and Methods
2.1. Study Site

The investigations were carried out at approximately 140 m a.s.l. in a broadleaf forest
stand near Cotu village, Botosani County, Romania (47◦35′41′′ N, 26◦51′44′′ E) (Figure 1).
The climate is temperate continental, with a mean annual temperature of 9 ◦C and a mean
annual precipitation of 560 mm·year−1.
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Figure 1. Location of the study area.

The stand was regenerated using the group shelterwood system, and the final removal
cuts were applied six years before installing the sampling plots. In the study area, the
seedlings had similar vegetation conditions: the aspect was northeast, the slope ranged
between 2 and 4◦, and the altitude varied from 135 to 140 m. The soil is classified as greyic
phaeozem. We located our study in an even-aged managed forest stand with a represen-
tative species composition for this region. Before the felling, the stand composition was
pedunculate oak (50%) and hornbeam (30%), with small-leaved lime (10%) and common
ash (10%). At the moment of the final removal cut, the stand was approximately 130 years
old (130 years for the pedunculate oak and 110 for the other species), and the canopy cover
was 0.6. The final cut was synchronised with a relatively abundant fruiting year for oak
(but not a fully masting year). More detailed information on the stand can be found in the
Supplementary Material (Table S3).

We chose this regular stand type to minimise confounding factors and accurately
study the species association from the statistical point of view. Therefore, we selected a
case study in an even-aged stand, with consistent regeneration in terms of age and size and
representative species composition for this habitat type.

The tree species of the seedlings we found in the sample plots were pedunculate oak
(Quercus robur L.), hornbeam (Carpinus betulus L.), small-leaved lime (Tilia cordata Mill.),
common ash (Fraxinus excelsior L.), field maple (Acer campestre L.), wild cherry (Prunus
avium L.) and sycamore maple (Acer pseudoplatanus L.). However, very few specimens of
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other species were also identified: dog rose (Rosa canina L.), common dogwood (Cornus
sanguinea L.), common hawthorn (Crataegus monogyna Jacq.), and elder (Sambucus nigra L.).

2.2. Data Collection

Within the stand, a homogeneous area with a compact seedling cover was selected,
where we set up a network of 10 plots in which all individuals were inventoried. The
understory in that area was relatively uniform in size and age, being the last part of the
stand that was harvested. The plots were positioned in two rows, with plot limits separated
by 50 m. A buffer strip of 100 m was left from the stand boundary to prevent any specific
composition irregularities due to the edge effect.

Each rectangular plot of 7 × 7 m was positioned in the field, marked with wood
pickets, and delimited with cords. This plot size was chosen for practical reasons, following
an evaluation of the saplings’ density and considering the possibility of precise and reliable
determination of the individual positions. The species were identified for all saplings, and
each individual’s spatial coordinates were determined (x, y). The distances were measured
(1 cm precision) from the stem to the abscissa and ordinate of a Cartesian system, with
the origin in the bottom-left corner of the plot. We determined the distances in the field
using measuring tape sets and a Leica DISTO laser distance metre. The measurements
were carried out successively for one-metre sections of the plot, delimited by cords and
precise markings.

All the seedlings were sampled in the ten plots, regardless of species, resulting in
approximately 7200 saplings being inventoried in all the plots. However, to avoid a
“dilution effect” [36], only the data from 7171 individuals were used in further analysis,
belonging to the seven species with a percentage above 1% in the seedling composition.
We examined the species association for all species where this was theoretically possible,
and only dog rose, common dogwood, common hawthorn, and elder were excluded due to
their very low abundance.

2.3. Data Analysis

The proposed framework of this study involves making inferences on species associa-
tion in sapling communities using different methods and scales.

The sampling volume is crucial in identifying association patterns [5], therefore, the
analysis employed an extensive data set for 7171 individuals, which implied a significant
sampling effort and a substantial computing amount. To efficiently use the large data
volume, we performed additional processing.

Addressing the scale issue—One method utilized is spatially explicit (point process
analysis). Nonetheless, incorporating different scales in the other two methods, the binary
indices of co-occurrence and the PCA, required a supplementary space partitioning of
the ten analysed plots. Therefore, we split the data from the ten sampling plots into
seven different variants of smaller quadrats to address the problem of spatiality. Then, we
quantified the presence–absence data for the binary analysis and the abundances of the
species (for PCA) in each quadrat.

The scale of the analysis profoundly impacts the ecological spatial patterns [5,19,20,37],
and various methods are applied to integrate the spatial perspective. For instance, the
quadrat approach is frequently used to study the scale influence on species association
patterns [19,21,22]. Finding a suitable sampling size for characterizing community spatial
interactions is difficult. Interpreting species association is challenging in large quadrats
because the spatial patterns can be diffused, and in small quadrats, it is possible to record
only a few interactions between species [20,21]. Therefore, we used several different
quadrat sizes to reveal possible hidden association patterns. In our study, the regular
7 × 7 m quadrats were divided into 196, 49, 25, 16, 9, and 4 smaller quadrats corresponding
to other six scales, of 0.5 × 0.5 m, 1 × 1 m, 1.4 × 1.4 m, 1.75 × 1.75 m, 2.33 × 2.33 m, and
3.5 × 3.5 m, respectively.
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For each scale and quadrat, we assessed the species’ local abundance. Further, based
on the saplings’ x and y coordinates, a function was implemented for each individual to
compute the number of the quadrat it belongs to (the code is available in a publicly shared
repository). This procedure was repeated for all quadrats’ scale configurations. Then,
the quadrats with no seedlings of any of the seven analysed species were removed from
further analysis.

The binary analysis of co-occurrence—The binary indices are explicit in their evalua-
tion, based on the number of species co-occurrence in the same area. The joint presence of
species could be interpreted as a meaningful ecological parameter [38]. However, selecting
a relevant binary index of co-occurring may be challenging, considering the large number
of indices [6,7].

In our analyses, we selected the Jaccard index [10], a classical index of co-occurrence
that does not incorporate negative matches (quadrats where both species are missing).
This is one of the most expressive and frequently used indices, which is often recom-
mended [13,15,16]. Its value ranges between 0 and 1, with values close to 0 implying highly
negative associations and those near 1 implying highly positive associations between
species. The Jaccard index (J) was used in R-mode to measure between-species associations
and not in Q-mode to measure beta diversity [2,20].

The index calculation is similar to the binary indices, based on the abcd matching
components [19] specific to contingency tables.

The mathematical formula is J = a/(a + b + c), where a represents the number of
shared presences in the same area; b is the number of presences of the first species, and
c is the number of presences of the second species. The J index is a binary index that
does not consider joint absences (negative matches), making it more reliable in analysing
communities with an unbalanced distribution of species percentage [6].

The index values were calculated by implementing a function (the code is available
in the supplementary material) that evaluates the previous formula by counting and
interpreting the data related to the presence of the analysed species in each quadrat. The
function was employed separately for every scale configuration. Presence–absence data
were obtained from the local abundance data sets calculated per quadrat for all seven scales.

The significance of the Jaccard index was assessed at a significance level of 0.05, using
computed lower and upper critical values [15,39].

The principal component analysis—The local species abundance per quadrat was
analysed using PCA, considering that binary indices do not include species proportions or
abundance data. Utilising this available data, we performed PCA to obtain a comprehensive
picture of species association preferences.

The principal component analysis is a statistical technique that condenses large vol-
umes of data into smaller components, which makes it more straightforward to visualize
and understand [40]. The procedure captures the maximum information in a data set by
re-aligning the axis in an n-dimensional space to obtain most of the variance in the data [41].
Any two principal components create a model plane on which all the observations are
projected, making it easier to observe the layout of the examined data set [42]. The entities
clustered close to each other reveal positive connections, having similar profiles, whereas
those far from each other are dissimilar. PCA is a versatile Euclidean-based ordination
method, widely used in ecology studies to analyse community data [2], and occasion-
ally utilised in investigating the association of species [43]. Furthermore, the data on the
abundance of species is also frequently integrated into PCA analyses that examine the
relationships between temporal trends in abundance and suits of functional traits [44,45]
or species–habitat associations [34,46]. In our study, all the different scales and species
analyses were performed using R [47].

Spatial point process—The previous methods are distance-independent, and we used
quadrats of different sizes to deliver spatial relevance to the analyses. The point process
approach is natively spatially explicit and have been used for several decades in ecology
to analyse spatial distribution patterns [32,33,48,49]. For example, Ripley’s K (t)-function
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is a cumulative distribution function that adds the expected number of events discov-
ered within a specified distance of each point (t) while increasing the radius of concentric
circles [32,33,49,50]. In bivariate analysis, an extension of Ripley’s K-function is used to de-
termine if species exhibit spatial attraction, independence, or repulsion [48,49,51–53]. This
approach is one of the most frequently used for examining the spatial dependency between
plant species [24,25,28–31,54,55]. Therefore, in this paper, we also used the bivariate spatial
point process to infer the spatial association within sapling communities.

For the bivariate analysis, two K(t) estimators are computed (Equations (1) and (2)),
counting the neighbours of each analysed species: K12 describes the pattern of species 2 in
relation to species 1, and K21 the pattern of species 1 in relation to species 2.

K̃12(t) = (n1n2)
−1 · A ∑ ∑ w−1

ij It
(
uij
)

(1)

K̃21(t) = (n2n1)
−1 · A ∑ ∑ w−1

ji It
(
uji
)

(2)

where, n represents the number of individuals for each species, A is the analysed plot area,
uij is the distance between individuals i and j, It is a counter of the distances, and wij is
a weighting correction factor, compensating the edge effects [49,50,54]. The estimators
calculate the expected number of individuals of one species within a radius t of an arbitrary
individual of the other species [53]. Both estimators were linearly combined into a weighted
single mean estimator (Equation (3)) [48,51], and the local weighting method [32,50,52] was
used to calculate the edge corrections.

K̂12(t) = (n1 + n2)
−1 · [n2 · K̃12(t) + n1 · K̃21(t)] (3)

To stabilize the variance of the K(t) function, we used the L-statistics transformation of
Besag [52–54], which also facilitates the visual interpretation of the results (Equation (4)).

L̂12(t) =
(

K̂12(t) · π−1
)0.5
− t (4)

Investigating spatial association patterns in bivariate spatial point processes may
require different null hypotheses: population independence or random labelling. In this sit-
uation, considering we analyse between-species interactions, the adequate null hypothesis
is population independence (L12(t) = 0) [54], making it possible to test whether interactions
between species have significantly increased their spatial dependence. The positive values
of L(t) indicate attraction, and the negative ones indicate repulsion among the spatial
pattern of the analysed species [52]

To assess the statistical significance of L(t) values, we used a randomisation method
based on 1000 Monte Carlo simulations of random coordinates of species and toroidal
shifts [52–54]. Using the simulation data, we generated a critical confidence envelope at
a significance level of 0.05 (p ≤ 0.05) for the L(t) function. Considering the independent
null model, the function values within the confidence intervals indicate no interaction
between species, while the values outside this range reveal significant associations at the
corresponding distance. Individual charts were created for each species’ relationship and
plot. The positive values of L(t) indicate attraction, and the negative ones indicate repulsion
among the analysed species (Figure 2). In the supplementary data, all the individual graphs
are presented (Figures S29–S48).
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Figure 2. The bivariate L(t) function for the Cb–Tc relationship in plot 1. Note: The dashed line
defines the critical confidence envelope at a significance level of 0.05 (p ≤ 0.05) for the L(t) function.
The positive values of L(t) above the limit of the confidence envelope indicate a significant positive
association, and the negative ones below the confidence envelope indicate a significant negative
association among the species.

We progressively incremented the distance t by 5 cm to 350 cm. The maximum
value was half the size of the side of the plot to avoid biases for large values of the
distance [49,50,52]. We also performed an overall test of complete spatial randomness
(CSR) using the Cramer-von Mises test to assess the overall significance of patterns over
the full range of t, incorporating the squares of the L(t) function deviations from expected
values [49,52,53]. The ranking of the L-statistic considering the number of simulations was
used to obtain the significance level of probability using the Haase method [53], the null
hypothesis being rejected at the p < 0.05 level.

For the seven species, 20 out of 21 pair–species relationships were analysed, one of the
relationships (Pa–Ap) being excluded due to the low number of trees in the analysed plots.
In addition, several other plots were also eliminated in the case of point process analysis
from particular species analyses because they did not meet the requirement of having at
least ten individuals of each species in a plot.

In order to consolidate the information about the significant ranges of positive or
negative association, summarising bar charts were designed for each species’ relationship.
Therefore, only the ranges with the significant association are transposed in the bar chart
(Figure 3). Additionally, the plots with a significance level of probability lower than 0.05
for the Cramer-von Mises test were highlighted; they are marked with circles.
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Figures 2 and 3 illustrate an example of data integration of the individual graphs into
a summary chart that displays the consolidated information for the Cb–Tc relationship. The
supplementary data presents all the summary bar charts (Figures S9–S28).

The bivariate analysis, including simulations and L-statistics, was conducted using
SPPA ver. 2.03 [56].

The tree species were abbreviated in the analyses: Qr—Quercus robur, Cb—Carpinus
betulus, Tc—Tilia cordata, Fe—Fraxinus excelsior, Ac—Acer campestre, Pa—Prunus avium,
and Ap—Acer pseudoplatanus.

The other source code mentioned in this section and used for the plots’ quadrat
partitioning, the binary co-occurrence analysis, and the PCA is publicly shared (https:
//github.com/cpalaghianu/saplings, accessed on 15 May 2023).

3. Results
3.1. The Analysis Based on Binary Indices

We identified seven species with a percentage above 1% in the seedling composition:
Carpinus betulus—55% (Cb), Quercus robur—16% (Qr), Tilia cordata—11% (Tc), Fraxinus
excelsior—9% (Fe), Acer campestre—6% (Ac), Prunus avium—2% (Pa) and Acer pseudopla-
tanus—1% (Ap). The density of the saplings per square metre was 14.80, with a coefficient
of variation of 20% between the plots. Even if pedunculate oak dominated the parent stand
(Table S3), hornbeam is the species that dominates the regeneration cohort. The rarity and
low intensity of masting events for oaks in the area might partially explain this situation.

All the relationships between the seven species were analysed, and the value of the
Jaccard index was calculated for different quadrat sizes using presence–absence information
from the local abundance data. The higher values indicate positive associations between
species, while the lower infer negative associations. The significance and interpretation of
the associations for the 21 pairs of two species are presented in Table 1, the values being
differentiated by the colour of the cells.

Most relationships between species are statistically significant. Nearly 80% of the asso-
ciations are significant from 147 relationships analysed at different scales. About 48% of the
total relationships reveal significantly positive and 31% significantly negative associations.
The positive associations are mainly found in larger quadrats, over 1.75–2.33 m, while the
negative ones are encountered at a smaller scale, in quadrat sizes below 1.4–1.0 m. Almost
all Jaccard index values for the 0.5 m quadrats reveal significant negative associations, with
20 relationships out of the 21 analysed.

https://github.com/cpalaghianu/saplings
https://github.com/cpalaghianu/saplings
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Table 1. Jaccard index significance and interpretation of species associations for different
quadrat sizes.

Qdrt. Size Cb–Pa Cb–Fe Cb–Ac Cb–Ap Cb–Qr Cb–Tc Pa–Fe Pa–Ac Pa–Ap Pa–Qr Pa–Tc
7 × 7 m 1.000 1.000 1.000 0.700 1.000 1.000 1.000 1.000 0.700 1.000 1.000

3.5 × 3.5 m 0.800 0.950 0.925 0.525 0.950 1.000 0.795 0.816 0.432 0.842 0.800
2.33 × 2.33 m 0.567 0.744 0.722 0.322 0.922 0.967 0.532 0.487 0.250 0.576 0.551
1.75 × 1.75 m 0.381 0.638 0.594 0.238 0.813 0.850 0.336 0.322 0.165 0.404 0.387
1.4 × 1.4 m 0.272 0.548 0.488 0.160 0.740 0.732 0.235 0.250 0.091 0.278 0.287

1 × 1 m 0.183 0.384 0.337 0.089 0.606 0.524 0.181 0.196 0.063 0.201 0.185
0.5 × 0.5 m 0.051 0.187 0.131 0.031 0.284 0.203 0.045 0.048 0.000 0.051 0.056
Qdrt. size Fe–Ac Fe–Ap Fe–Qr Fe–Tc Ac–Ap Ac–Qr Ac–Tc Ap–Qr Ap–Tc Qr–Tc
7 × 7 m 1.000 0.700 1.000 1.000 0.700 1.000 1.000 0.700 0.700 1.000

3.5 × 3.5 m 0.875 0.475 0.900 0.950 0.568 0.974 0.925 0.553 0.525 0.950
2.33 × 2.33 m 0.610 0.215 0.705 0.750 0.306 0.721 0.727 0.318 0.303 0.889
1.75 × 1.75 m 0.470 0.167 0.589 0.630 0.198 0.585 0.604 0.273 0.234 0.739
1.4 × 1.4 m 0.385 0.113 0.464 0.546 0.117 0.476 0.473 0.172 0.155 0.586

1 × 1 m 0.262 0.073 0.297 0.413 0.071 0.340 0.281 0.110 0.066 0.382
0.5 × 0.5 m 0.102 0.018 0.124 0.198 0.006 0.134 0.092 0.026 0.019 0.128

Note: The grey-shaded cells highlight the significant values at a significance level of 0.05. Dark grey cells indicate
significant positive associations, while light grey cells indicate significant negative associations.

There is a relative consistency from the spatial point of view of the association be-
haviour of the species because some relationships are predominantly positive, while others
are mostly negative, regardless of the scale. For example, the associations Cb–Tc, Cb–Qr,
and Fe–Tc preserve a significant positive association on six of the seven spatial scales analysed.

In contrast, the associations Cb–Ap, Pa–Ap, Fe–Ap, Ac–Ap, and Ap–Tc preserve a
significant negative association on at least four of the seven spatial scales analysed.

Large differences between the co-occurrence Jaccard index for the species pairs were
recorded. In order to emphasise the general behaviour of the species’ relationships for all
seven scales, we conducted a graphical cumulation of the values of the Jaccard index to
rank the intensity of the association between the different pairs of species (Figure S1).

3.2. The Analysis Based on the Relationship between Quadrat-Specific Abundances

The second stage of examining species association trends was based on the principal
component analysis, which clusters species on abundance features. Compared to the co-
occurrence index analysis, the PCA incorporates additional information about local species
abundance per quadrat.

The principal component analysis was performed to identify tree species associations
that explain most of the variation between the individual quadrats of the same size. The
analysis helps us visualise the strongest trends in the dataset, considering PCA groups
variables (in this case, species) rather than observations (local abundances).

The investigation used seven tree species and seven different sizes of quadrats. The
results reveal species clusters with similar abundance profiles. Therefore, species close to
each other might suggest positive associations, whereas those far from each other might
be dissimilar.

The graphical output is presented in Figure 4 for two-dimensional variants (0.5 × 0.5
and 7 × 7 m quadrats), and the charts for all seven quadrat sizes can be found in the
supplementary data section (Figures S2–S8).
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Figure 4. Biplots of the principal component analysis on the species’ local abundance for 0.5 × 0.5
and 7 × 7 m quadrats.

Examining the PCA plots allows us to identify specific clustering trends. Thus, the
positive association between Fe and Tc species is evident in all the seven charts. At the
same time, although less consistent for all quadrat sizes, the clusters between the species
Ac–Pa and Ac–Qr might suggest a similar affinity.

The correlation values between species and the principal components indirectly sup-
port the visual observations on between-species associations. For example, in the quadrat
0.5 × 0.5 m, the first principal component (PC1) has the highest positive correlation values
employing Tc and Fe species (Table S4), while Qr and Cb are weakly correlated. Therefore,
Tc and Fe species explain most of the variation in the species abundance amongst quadrats.

On the other hand, the second principal component (PC2) has the highest correlation
to Cb (positive) and Qr (negative) species. Thus, these species contribute the most to species
abundance variance for PC2 (Figure 4). The pair–species correlations and the explained
variance of PCA for all the seven quadrat sizes are summarized in Table S4.

Scrolling the results and noticing PC1’s high correlation (negative or positive) with Fe
and Tc species, we consolidate the visual observations on the positive association between
Fe and Tc species. Similarly, examining other species’ associations and correlations with
PC2, the higher and similar correlation values in the case of the pairs Ac–Pa and Ac–Qr
also confirm the clustering displayed in the biplots.

These findings are consistent with all quadrat dimensions in the case of PC1, consid-
ering the Fe–Tc relationship, while there are several differences in the case of PC2. In this
case, the Ac–Qr association is evident for quadrat sizes larger than 1.75, while the Ac–Pa
relationship is noticeable only for 1 × 1 m and 1.4 × 1.4 m quadrats.

The quadrat size also determines substantial differences in the variance explained by
the principal components. The variance increases with the quadrat’s dimensions (Table S4),
as it is related to the number of analysed quadrats.

3.3. The Bivariate Analysis

Another detailed perspective provided in this observational study was assembled
using a spatially explicit approach based on L-statistics of point process analyses. This
method reveals the spatial distribution patterns of the species at finer scales without using
quadrats of different sizes. In this case, the analyses are conducted by plot, wherein each
relationship between species is analysed separately for all the ten plots.
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The species association trends analysed using point process analysis seem less consis-
tent compared to the previous methods of investigation. In this case, the analyses are no
longer independent of the plot but are confined to a particular space defined by one of the
ten plots. Considering that the plots’ variability is high, inconsistent trends of associations
between species appear more often.

For instance, the Fe–Tc relationship, one of the most consistent relationships in the
PCA analysis (Table S4), is relatively variable for different plots (Figure 5). The distinct
trends observed in the individual graphs are condensed in the bar graph showing only the
significant association ranges (Figure 6). Different association trends for the same species
relationship can be unveiled between the analysed plots and substantially different patterns
even within the same plot (plot 10). Considering only the relevant plots for which the
total Cramer-von Mises test has a significance level of probability lower than 0.05, the
association tendencies are predominantly positive between the two species (Fe–Tc). In plots
8 and 9, the significant trends of the positive association are discontinuous on intervals
up to a maximum of 300 cm. However, in plot 4, the significant trend indicates a negative
association on a continuous interval between 50 and 225 cm.
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Summary graphs were displayed for two other relationships that indicated possible
positive association tendencies following the PCA analysis. First, the Ac–Qr positive
association was suggested for quadrat sizes larger than 1.75 m. The summarising chart
(Figure 7) greatly supports this indication, considering that significant trends of a positive
association between the two species can be observed in four of the six plots.
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Another positive association was suggested in the PCA analysis for the Pa–Ac relation-
ship for 1 × 1 m and 1.4 × 1.4 m quadrats. However, the summary chart for this species
relationship (Figure 8) does not align with the PCA findings. The significant ranges also
display negative association trends between the two species, although there is a significant
positive association on a continuous interval between 50 and 350 cm in plot 9.
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The analysis of the significant ranges of associations in the condensed graphs
(Figures S9–S28) reveals several consistent types of relationships between species. Several
relationships, such as Cb–Fe (with positive ranges in all the analysed six plots), Fe–Ac,
Fe–Qr, Ap–Qr and Pa–Qr, suggest mostly positive associations. In contrast, others, such as
Qr–Tc and Ac–Tc, are mostly negative.

The point processes analysis allows the detection of more refined patterns of associa-
tions depending on the interaction distance between the species. In some cases, the two
types of association, positive and negative, can coexist, even within the same plot, but at a
different spatial scale. Thus, a case of mixed association is the Cb–Tc relationship (Figure 3),
which is mostly negative up to 75 cm and predominantly positive above 100–125 cm.
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4. Discussion

Although the studies on the community species composition have a strong theoretical
component, the findings can also be of practical use as a decision-making tool for parti-
tioning the mixture of species used in planting actions and in providing forest restoration
directions. [57]. Most previous studies on species association focused on species–habitat
associations and not on between-species associations [2,58]. Furthermore, many studies
concentrated on tropical and subtropical forests [29,57,59–61]. Relatively few analyses
were conducted on the association of seedlings of forest species [35,62–64] and even less
focused on deciduous species from temperate regions. Consequently, the current study
focuses on a topic that has received less attention and uses an approach involving three
different methods to determine to what extent their perspectives can be integrated into a
single “scene”.

An important aspect of our study which we want to highlight is that we considered the
sapling community to be homogeneous in size (Table S2) and age. We did not systematically
investigate the age of all the seedlings. However, we conducted several observations in
the field which suggested that the age differences between the seedlings were limited.
The installation of the first cohort significantly reduced the chances of survival of the new
seedlings, considering the limited space and access to light. Studies on deciduous [65] and
coniferous species [66] showed that generating a new cohort of saplings is challenging due
to low light availability, even for shade-tolerant species.

4.1. Specific Co-Occurrence Patterns

The three methods used in this investigation are different in terms of sampling, col-
lection, analysis and interpretation of data. Undoubtedly, these differences could lead
to distinct results. Nevertheless, do they offer conflicting perspectives? Or do we still
have a glimpse of the same associations and co-occurrence patterns of species. To better
understand the results, we briefly compare the specific elements of each analysis.

The Jaccard index is a classic binary index based on the number of species co-occurrence
in a set of quadrats, used in R-mode to measure between-species associations [2]. Although
the evaluation using this method directly provides a value that defines the “intensity” of
the relationship between two species, the quantitative assessment is based on binary data,
which inevitably leads to a loss of information [57]. Therefore, even if it uses the same frame-
work of quadrats of different sizes, the PCA incorporates additional information related to
species abundance to complete the binary co-occurrence analysis’s missing information.
The method provides a visual synopsis of the predominant association trends, the intensity
of these relationships being indirectly appreciated through species correlation with the
principal components [40]. Quadrat approaches are characterized by limited spatiality and
neighbourhood, being confined to a shape of a certain size, but the last technique we used
escapes this limitation. Point process methods have come be more frequently used in forest
ecology [67] because these methods have a continuous perspective of space. Furthermore,
the relative intensity of the bivariate spatial associations could be evaluated using the ratio
between the bivariate function and the associated confidence envelopes [64].

Analysing the results, we observe that many species’ co-occurrence patterns are
common to all the three methods we used.

Focusing on the Jaccard index values, almost 80% of the associations identified are
statistically significant. In addition, 48% of the total relationships were significantly positive,
and 31% were significantly negative. Unfortunately, we do not have the means to objectively
compare this predominantly positive trend with the results provided by other methods,
so we will compare several specific relationships. In the binary analysis of co-occurrence,
some relationships have a relative consistency from the spatial point of view, highlighting a
significant positive association on six of the seven spatial scales analysed: Fe–Tc, Cb–Qr and
Cb–Tc (Table 1). The PCA also highlights the positive association Fe–Tc as the relationship
that visually stands out the most (Figures S2–S8). The cumulative variance explained by
the first two eigenvalues are presented in the Supplementary Materials (Table S4). The



Forests 2023, 14, 1118 14 of 21

bivariate analysis is not as pronounced or consistent as previous methods in highlighting
this affinity on the entire spatial range, but positive associations are present in four of the
ten plots (Figure 6).

Our research goal was not to examine the causality mechanism leading to species
associations, considering many standard parametric and nonparametric techniques that
presume independence among non-independent sample units are inappropriate and may
produce misleading inferences [68–70]. However, the connection mentioned above might
suggest that it was not competition for resources that shaped the pattern. Instead, the
two species occupy unique niches facilitating their presence [4]. Additionally, the spatial
segregation hypothesis [71] can explain positive associations between species, especially on
a small scale. The hypothesis considers that intraspecific aggregation boosts the importance
of intraspecific competition, creating a mechanism that improves local coexistence and
shapes diverse species communities [72]. Another possible explanation might be offered
by the species herd protection hypothesis, which suggests that heterospecific neighbours
can facilitate coexistence by containing the transmission of species-specific pests and
pathogens [35,72–74].

Another consistent relation from the binary co-occurrence analysis, Cb–Tc (Table 1),
is not so obviously highlighted in the PCA (Figures S2–S8). However, this association is
consistent with the bivariate analysis performed using the L(t) function. Thus, the Cb–Tc
relationship is predominantly positive above 100–125 cm in six out of the eight analysed
plots (Figure 3). Furthermore, highlighting another similarity, both the Jaccard index and
L(t) function reveal the same type of mixed association, that is, negative on a small scale
and positive on a large scale for the Cb–Tc association.

Other relationships also show similar patterns for binary co-occurrence and bivariate
analysis, such as Cb–Fe and Fe–Qr, with predominantly positive trends. Furthermore,
several associations, such as Pa–Fe, Pa–Qr, or Fe–Ac, are positive only for the second half of
the dimensional scale. Finally, others species-couples display a partial similarity, as shown
in the case of bivariate analysis less constantly, only at specific intervals.

We also found similarities in the negative relationships between species. For instance,
the Jaccard index predominantly shows negative associations at the smallest scale of analy-
sis (0.5× 0.5 m quadrats), results partially supported by the bivariate analysis. Our findings
are consistent with other studies, which found small-scale negative associations [61,64,72].
However, the rest of the negative relationships are relatively rare, and the ones encoun-
tered at larger scales could be interpreted as a result of environmental filtering at greater
scales [61].

However, there are other relationships with considerable differences or mismatches
between the three methods. Unfortunately, no comparative studies are available to compare
the three methods, but we can suggest some explanations. We used three profoundly
different methods considering the data sampling and the interpretation of spatiality. First,
the point process analysis has a continuous perspective of space, and the differences
between scales and patterns are not as sharp as in the case of quadrats. There is a quadrat
limitation considering that part of the information about neighbours of individuals near
the limit of a quadrat is lost [46]. Second, the sample sizes of quadrat-based analysis differ
from the distance ranges used in bivariate analysis. Moreover, in the case of the bivariate
analysis, the evaluation is performed per plot, and the variation of species composition of
each plot (Table S1) can explain some inconsistencies across plots. Furthermore, as many
studies indicate, the co-occurrence indices, such as the Jaccard index, are sensitive to the
prevalence of the entities [3,11,12,27,38,70]. Additionally, the performance of co-occurrence
analyses is lower in complex communities with a large number of species [70].

Sapling communities are complex and shaped by many biotic and environmental
factors. That is why a high heterogeneity at a small scale can influence the pattern of
the spatial distribution of species. Although the species composition of the regeneration
community is similar in the study area, the results of the analyses might be determined by
the species–environment interactions rather than directly by relations between species [75].
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For example, different characteristics of soil and light availability on seedlings among
species can be found [62] or various pests and pathogens can be found [74].

The mixed results obtained using the different methods are easier to observe in the
case of bivariate associations, which are very sensitive at finer spatial scales. In these
cases, our data show significant positive and negative relationships on different ranges, but
no general trend of association or repulsion is evident. However, our results are similar
to other studies in which similar fluctuations were observed, and no distinct trend was
confirmed [55,64,72,75]. Furthermore, Zhou [72] suggested that according to the low-
frequency hypothesis [76], ecological dominance might influence the spatial distribution
patterns of species because dominant individuals have more frequent interactions than
others. Although it is a more frequently encountered problem in biodiversity studies [77],
we acknowledge that sampling issues related to different scales can also impact the results
of species association investigations. For example, Legendre and Legendre [2] suggested
that it is more instructive to compare dominant or abundant species than rare taxa because
the latter, having low frequencies of occurrence, are generally inadequately sampled. In our
study, the hornbeam (Cb) has a disproportionate weight (55%) compared to the other species
in the analysed sapling community. Possibly as a result of ecological dominance, hornbeam
(Cb 55%) is found in many of the positive associations, while sycamore (Ap 1%) is in most
of the negative ones, as other rare species. To obtain a more comprehensive understanding
of species interactions, we included information about the species composition of each plot
in the supplementary material (Table S1). This information may partially explain some
of the negative associations between species in specific plots, considering that infrequent
species might experience sampling issues due to their low frequency of occurrence.

To conclude, the relationship between binary co-occurrence analysis and bivariate
analysis appears more solid, with certain overlaps and common points of view. There
are more similarities between these two methods compared to PCA. However, further
investigations might develop thorough tests and analyses to reveal additional similarities.
Thus, PCA is a flexible distance-based ordination method that can confirm and provide solid
results in other circumstances [2,43], but for this particular study, the outcomes overlapped
to a small extent with the ones provided by the other methods. The binary co-occurrence
analysis provided consistent results across different scales, and the L(t) bivariate function
emphasised detailed trends of species association at different scale levels.

4.2. Co-Occurrence Patterns at Different Scale

Investigations of the spatial distribution of individuals, processes or phenomena
are undoubtedly affected by the scale of the analysis [37,77,78]. Bivariate spatial point
process analysis is a native spatial analysis method and a robust tool for estimating species
co-occurrence patterns [61].

However, quadrats of different sizes with presence–absence data for the binary co-
occurrence analysis and local species abundances for PCA were used in this investigation to
obtain spatial relevance for these analyses. The quadrat analyses were performed at seven
different scales (0.5 × 0.5 m to 7 × 7 m) to quantify the associations of the species. The
quadrat sizes were chosen in a progression that would allow recording relevant changes in
the association patterns and also considered the possibility of the precise division of the side
length of the plot. Individuals are most likely to interact with their closest neighbours on a
small scale. At the same time, environmental filtering might extend beyond the neighbour’s
scales, generating different association patterns [61]. Considering the high sapling density,
the interaction ranges are limited in space. Large sampling cells or quadrats may not
facilitate the detection of the spatial dependency present at smaller scales [20].

On the other hand, at small scale, we might find more positive species associations if
there are local concentrations of regeneration because of dispersal limitation [79]. Moreover,
small quadrats could also be biased toward more negative associations if they are small
enough to host a reasonable number of individuals or species. In contrast, the large quadrats
will extend over several microhabitats with diverse species compositions. Such quadrats
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could contain species too far from each other to connect, affecting the biotic interactions
and making the interpretation of species associations difficult [21].

The binary Jaccard index provides a specific value defining the intensity of the rela-
tionship between two species, which offers an advantage in comparing the values obtained
at different dimensional scales (Table 1). The PCA intensity of the relationships can be
visually estimated or indirectly appreciated through species correlation with the principal
components (Table S4). However, the rarest species have the smallest eigenvalues, and the
contributions of these species to the relevant principal components are small. Therefore,
PCA results might be affected by inaccuracies generated by the low abundances of rare
species [43]. Additionally, in the case of bivariate analysis, the L(t) function provides con-
tinuous values over the analysed interval (0–350 cm) that can be easily compared between
different distances (Figures S29–S48).

We found a relative coherence from the spatial point of view for species association
analysed using the Jaccard index. Nearly all pairs of species were negatively associated
at the smallest scale (0.5 × 0.5 m), with 20 significant negative associations out of 21. The
maximum number of positive associations was 19, recorded for the 3.5 m quadrat size
(Table 2).

Table 2. The number of significant positive and negative species associations at different scales.

Quadrat Size 0.5 m 1.0 m 1.4 m 1.75 m 2.33 m 3.5 m 7 m

no. of positive associations 0 3 9 10 15 19 15

no. of negative associations 20 12 8 5 1 0 0

Overall, there is a positive association trend, with 71 significantly positive relation-
ships and 46 significantly negative from the 147 relationships analysed on the seven scales.
This trend is consistent with other recent studies, which found that positive interspecific
interactions are more common than negative associations in tree species communities [79].
However, the positive associations are mainly found at a larger scale (beyond 1.75–2.33 m),
and the negative ones at a smaller scale (below 1.4–1.0 m). This dispersal of species associa-
tion trends at different scales (Table 2) might provide helpful information for researchers
who want to focus on a specific type of relationship.

For the Jaccard index analysis and in the case of bivariate function L(t), attraction
occurred more frequently than repulsion for the large-scale association. We found an
increasing trend in the number of positive associations at large scales, noticeable both
for the Jaccard analysis (Table 2) and the bivariate analysis (Figures S9–S28)—20 positive
associations in the 0–0.5 m range and 28 in the 3–3.5 m range. Similarly, for the small-
scale association, repulsion was more prevalent than attraction. The number of negative
associations decreases at large scales for the bivariate analysis from 26 (range 0–0.5) to
13 (in the range 3–3.5 m) (Figures S9–S28). Unfortunately, for the PCA, we cannot make
an objective estimation of these findings. Despite the frequent use of PCA in examining
species association, this method might not be the most suitable for this investigation,
considering the distortions induced by the low weights of rare species [43]. However, the
same authors consider that PCA allows a quick view of species profiles, which was the
reason for including this method in the present study.

Similar trends of interspecific associations related to different scales are also found in
other studies [60,61,64,72]. Resource competition might be accountable for more frequent
negative associations among species pairs at smaller scales [72]. Nevertheless, competition
between individuals and species can shape communities, creating different association
patterns [24]. Several studies suggest that intraspecific competition leads to complemen-
tarity, and complementarity in resource use is crucial in creating diversity [80,81]. Spatial
individual interactions become more vigorous as the interacting specimens are ecologically
more similar in the context of resource use.
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In the case of the bivariate analysis, we also found positive and negative associations
for the same pair of species and even in the same examined plot, which might be intriguing.
The variation of species composition in each plot (Table S1) may clarify some discrepancies
observed between the plots. Nevertheless, this dynamic tendency of association depending
on the scale is frequently noticed in tree species [61,72]. Yin [61] suggested that hierarchical
competition, that is, the competitive exclusion of inferior competitors, has a more critical
role than environmental filtering in shaping the structure of forest communities at smaller
scales. Furthermore, the transition from neighbourhood competition to environmental
filtering can be observed at larger scales. However, the scale is narrower in the case of
sapling interactions, and the young cohorts are not shaped yet by environmental filtering.

Our study site has no noticeable environmental characteristics heterogeneity, but even
minor water or nutrient supply variations may cause microsite differences and influence
species’ spatial patterns [55]. Furthermore, the complexity and diversity of biotic interac-
tions between individuals or species can haze the connection between interactions and
co-occurrence. Therefore, with our present understanding, we should avoid analysing
significant co-occurrence signals between species as evidence of ecological interactions [5].
Nonetheless, we completed an observational study which was not intended to prove associ-
ations but to reveal and integrate the results from the three methods about distinct species
co-occurrence patterns without drawing conclusions about causal relationships.

5. Conclusions

Very few studies focused on the association of forest species in sapling communities,
where the biotic interactions are highly complex and confined to limited spaces. The
present study focused on such a community and combined three methods frequently
used in species associations and co-occurrence that have not yet been integrated into the
same study.

So finally, do all methods depict the same “picture”? For most parts, yes. Nevertheless,
there are distinct perspectives of the same scene and substantial differences considering
the efficiency of data sampling, collection and the complexity of the analyses. Depending
on their investigation objectives, researchers should eventually choose the method that
best suits their needs concerning sampling effort, analysis complexity and preferred spatial
resolution. Our study emphasises several features of the methods and might support
researchers in choosing an adequate approach tailored to their specific needs. For instance,
point pattern analyses are complex and suitable for fine spatial resolution analyses. Still,
co-occurrence indices based on binary data can provide a coarser spatial perspective of
the associations with significantly less effort put into data collecting and sampling. Our
findings suggested an adequate scale for this case study. However, additional investigations
are needed to establish the appropriate resolution for indirect spatial methods and choose
the proper quadrat size for data sampling.

In conclusion, our study revealed distinct co-occurrence patterns of forest species in
the analysed sapling community. More specifically, we found several consistent positive
and negative associations between species, indicated by all the three methods used in this
investigation. Furthermore, our results imply that in the particular case of our studied
community, patterns are reshaped according to scale, with more frequent repulsion interac-
tions at small scales and attraction interactions at larger scales. However, the results are
confined to the analysed community, and we cannot generalise our findings. Identifying
the many factors that shape juvenile forest communities or how they create spatial patterns
is beyond the scope of this study. Nonetheless, our results suggest the need for more rigor-
ous experiments to investigate the species associations in sapling communities, requiring
complex observations of the micro-habitat conditions, species mechanisms of dispersions
and regeneration or even the spatial pattern of the parent trees.
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