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Abstract: Extreme weather events are increasing in frequency and intensity, posing a threat to forest
ecosystems and eliciting forest-pest outbreaks. In the southern Italian Alps, a dramatic windthrow
called Vaia occurred in October 2018, shifting populations of the European spruce bark beetle (Ips
typographus) from an endemic to an epidemic phase. Remote-sensing methods are often employed to
detect areas affected by disturbances, such as forest-pest outbreaks, over large regions. In this study, a
random forest model on the Sentinel-2 images acquired over the south-eastern Alps in 2021 and 2022
was used to detect the outbreak spots. The automatic classification model was tested and validated
by exploiting ground data collected through a survey conducted in 2021 and 2022 in both healthy
and infested spots, characterized by variable sizes and degrees of infestation. The model correctly
identified the forest conditions (healthy or infested) with an overall accuracy of 72% for 2022 and 58%
for 2021. These results highlight the possibility of locating I. typographus outbreaks, even in small
spots (between 5 and 50 trees) or spots intermixed with healthy trees. The prompt detection of areas
with a higher frequency of outbreaks could be a useful tool to integrate field surveys and select forest
areas in which to concentrate management operations.

Keywords: Ips typographus; remote sensing; pest outbreaks; Sentinel-2; forest disturbance; Google
Earth Engine

1. Introduction

Forests are a critically important component of the global terrestrial carbon cycle and
must play a part in the climate-change battle. Yet, climate change is threatening forest
ecosystems globally [1]. Extreme weather events are increasing in frequency and intensity,
although their link to climate change is still debated [2]. Extreme weather determines new
stresses for forests [3–5] and creates favorable conditions for pest infestations. Among the
most aggressive forest pests, bark beetles (Coleoptera: Curculionidae, Scolytinae) play
a major role in affecting the survival of European conifer forests [6–8]. Bark beetles rely
on debilitated trees to breed, so events such as intense and prolonged droughts or strong
windthrows create conditions suitable for their outbreaks [9–12]. The dramatic windthrow
that occurred at the end of 2018 in the southern Italian Alps (the “Vaia” storm), shifted
alpine populations of the European spruce bark beetle (Ips typographus L.) from an endemic
to an epidemic phase, eliciting an impressive infestation affecting most of the Norway
spruce forests (Picea abies Karsten) occurring in Italy [13]. Ips typographus is one of the most
important forest pests in Europe, able to respond very quickly to the great abundance of
suitable hosts available after weather extremes [6]. Bark beetle tree colonizations begin
with the attack of males on the host trees, which then attract more beetles and females
by emitting aggregation pheromones. The insects breed under the bark and females lay
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their eggs in maternal galleries, which run longitudinally beneath the bark [10]. The larvae
then develop by drilling larval galleries and feeding on the phloem, interrupting the water
and nutrient flow in the tree. In forests in the south-eastern Alps, two to three generations
per year can occur, mainly depending on the temperature levels, which can affect the
bark beetle’s physiology [8]. The development of beetles beneath the bark can last up to
eight weeks, while adults can leave the attacked trees and move to other hosts within five
weeks of the colonization [14]. Under endemic conditions, this beetle attacks only weak or
newly dead trees. However, extreme events can increase suitable breeding material and
drastically increase the abundance of the beetle population, switching to an epidemic phase,
and thus making it also able to colonize and damage healthy stands [9,15]. After storms,
I. typographus colonization occurs first in broken and windthrown trees and then spreads
onto neighboring healthy trees. During the epidemic phase the older infestation spots
expand, the distance between different infestation spots shortens, and the spreading speed
is higher as the population abundance increases [16].

Obtaining reliable information on the distribution and severity of bark-beetle infes-
tations following windstorms or major forest disturbances is the first step in efficiently
containing the problem [17–19]. This type of data is of fundamental importance in provid-
ing a rapid assessment of the overall economic and environmental damage, and designing
better management strategies focused on those forest areas more exposed to infestations.
Current actions to control I. typographus outbreaks, and assess damage, include trapping
and salvage (harvesting of windthrown timber and freshly attacked trees) [10,20]. On-time
salvage logging and debarking of infested trees are the most useful methods for reducing
the bark beetle population and limiting outbreak expansion, but the logistics for these
actions can be time- and cost-consuming and difficult to realize, as the windthrown areas
that prompt the pest’s outbreaks can be located in not-easily accessible sites [20].

Remote sensing (RS) techniques have proved to be an effective tool to map forest dis-
turbances [21] and their consequences [22], such as damage caused by windstorms [23,24]
or forest pests [25–29], over various spatial scales. The feeding of I. typographus larvae
on the phloem and the consequent interruption of water and nutrient flow in the trees
causes gradual alteration in the spectral characteristics and color of the attacked trees’
crowns [28,30,31]. Infested trees are therefore characterized by an intense color change of
the crown, shifting from a green to a red phase (early colonization), then a brown phase
(late colonization), and finally a gray phase (old colonization).

Several studies have investigated the possibility of detecting trees infested by bark
beetles at the single-tree level, using hyperspectral and multispectral images acquired by
UAVs (unmanned aerial vehicles), such as aircraft or drones [32–36]. These studies have
employed various machine-learning approaches and classification models, such as the
k-nearest neighbor (k-NN) and random forest (RF) models, to assess the possibility of
detecting stress due to bark beetle infestation, obtaining overall accuracies from 55% [34]
to 90% [32]. Although airborne sensors are widely used to monitor bark beetle outbreaks,
these approaches are limited by different factors, such as the costs associated with imagery
acquisition and the possibility of having a long time-series of images available for the same
areas of interest [37], which would be useful to monitor development of the outbreaks
over time.

The limited spatial scale that can be covered with these approaches is another limi-
tation, especially in cases where the outbreaks are largely distributed over vast regions,
such as in the case of the post-Vaia outbreaks in the southern Italian Alps, In these cases,
RS methods that employ satellite imagery can provide useful information on outbreak
occurrences in larger areas. Multiple satellite missions provide data globally, with a wide
range of spectral and spatial resolutions, and with a high revisit time [37–40]. In addition,
the amount of remote-sensing information freely available for researchers and other users
has greatly increased in the past few years [41]. Satellite imagery, such as Sentinel-2 or
Landsat open access collections, provide multispectral images that can be used to analyze
the variation of the land surface over time using a temporal series of images. These analyses
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allow the automatic mapping of forest changes, promptly [42] and at country level [43].
In particular, the Sentinel-2 mission of the Copernicus program of the European Space
Agency (ESA) provides surface reflection data with 10–60 m spatial resolution and revisit
times of 2–3 days at mid-latitudes, making it often chosen to analyze and monitor surface
changes [23,30,43].

Various researchers have focused on the use of Sentinel-2 multispectral images to
detect and monitor bark beetle outbreaks, at different degrees of symptom severity, with
overall accuracies between 65% and 95%. Kranjčić et al. [38] performed a semi-automatic
classification on Sentinel-2 images acquired on a single date in Croatia, exploiting only the
visible and near-infrared spectral bands (B2, B3, B4, and B8), while other authors focused on
time-series analysis of Sentinel-2 imagery. Fernandez-Carrillo et al. [25] employed Sentinel-
2 imagery to perform a multi-temporal change-detection method to map infestation spots
at different infestation stages, at 10 m spatial resolution, in the Czech Republic. The authors
used various indices that represented the vitality and stress status of the vegetation to
distinguish between healthy and disturbed areas, obtaining accuracies that increased with
the severity of the infestation symptoms. Dalponte et al. [28] proposed a method that
combined individual tree-crown analyses integrating Lidar data with Sentinel-2 data to
detect bark-beetle infestations at the single-tree level. They focused on a relatively small area
of about 10 ha and performed a class-weighted support vector machine (wSVM) classifier to
detect bark-beetle attacks, feeding it with a selection of vegetational indices. Nardi et al. [40]
performed a time-series analysis on images acquired in the spring of 2018 and spring of 2019
over a vast area in France. They performed a supervised classification and calculated the
inter-annual variation of three spectral indices (normalized red index, normalized difference
vegetation index, and normalized burn ratio), validating the satellite detection of bark
beetle infestations with high-resolution aerial survey data. Candotti et al. [14] focused on
the early symptoms of bark-beetle infestations, performing a supervised classification
to assign each pixel to “healthy”, “stressed”, or “red-attack” classes of interest. The
authors compared four machine-learning methods (RF, k-NN, SVM, and artificial neural
networks (ANNs)), obtaining overall accuracies over 80%. For monitoring and detection
of bark beetle infestations, RS methods, especially if relying on satellite imagery, are
known to be most effective for rather large infestation spots still in the red or brown phase
of infestation [13,19,28,30,44]. However, the infestation spots occurring in a forest can
have heterogeneous characteristics, for both the density of attacked trees (from single or
sparse attacked trees to large spots without healthy trees) and for the stage of infestation.
Spots may include only attacked trees in the same phase, or intermixed trees in different
phases [44,45]. An example of this heterogeneity is shown in Figure 1.

Prompt and efficient large-scale detection of hotspots with different features (such
as spots of smaller sizes, and at different infestation stages) carried out using the freely
available satellite imagery, is needed to better manage I. typographus outbreaks.

In this respect, this study aimed to validate an automatic classification model created to
detect and map forest areas with a high probability of I. typographus infestation occurrence,
even if the infestation spots are small or contain trees at different infestation phases,
performing a time-series analysis of Sentinel-2 free imagery referring to the years 2021 and
2022. The model was tested and validated by ground truth points collected during the
initial epidemic phase of the outbreak in healthy and infested stands of different sizes (small:
between 5 and 50 infested trees; medium: between 50 and 200 infested trees; and large:
over 200 infested trees) and at different infestation stages, occurring in the south-eastern
Alps affected by the Vaia storm in 2018.
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Figure 1. Examples of the variability of infestation spots’ features: (a) homogeneous spot with only 

infested trees at the same infestation stage; (b) sparse small groups of infested trees among healthy 

trees; (c,d) coexistence of different infestation stages (early and advanced stages) in the same spot; 

and (e) mixed forest condition, with healthy trees among the infested trees in the spot. 
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Figure 1. Examples of the variability of infestation spots’ features: (a) homogeneous spot with only
infested trees at the same infestation stage; (b) sparse small groups of infested trees among healthy
trees; (c,d) coexistence of different infestation stages (early and advanced stages) in the same spot;
and (e) mixed forest condition, with healthy trees among the infested trees in the spot.

2. Materials and Methods
2.1. Study Area

The area considered for this study (Figure 2) is located in the northern territories of the
Veneto and Friuli-Venezia Giulia regions, in north-eastern Italy. It extends over 6048 km2

(46.033◦ N 11.834◦ E–46.630◦ N 13.018◦ E) and includes both alpine and pre-alpine regions
dominated by conifer stands with a clear prevalence of spruce followed by larch (Larix
decidua Miller, at higher elevations) and silver fir (Abies alba Miller). At lower elevations,
spruce stands are often mixed with beech (Fagus sylvatica L.). The whole area was affected
by the Vaia storm at the end of October 2018. The predominant spruce stands are generally
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monospecific reforestations or natural mountain forests [17], characterized by even-aged
mature trees (50 to 100 years old) and a high tree density (about 350 trees per ha).
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Figure 2. Position of the survey spots in the Veneto and Friuli-Venezia Giulia regions in NE Italy,
recorded in the field in 2021 (square dots) and 2022 (triangle dots) with details of the infestation (red
dots) and healthy (green dots) spots.

2.2. Ground Reference Data

Ground truth validation points were taken in the field using the ArcGIS Survey123
app (Esri, www.esri.com/en-us/home accessed on 12 July 2021, license granted by ESRI
through the University of Padua). This app is a useful tool that allows the collection of
GNSS positions and data of interest in the field, which can be automatically available on
the cloud for visualization and data manipulation (https://survey123.arcgis.com, accessed
on 12 July 2021). For this study, infested and non-infested (healthy) portions of forests
were recorded through field surveys conducted during both summer (August) and fall
(October) 2021 and summer 2022 (July and August). The infested spots were defined as
forest portions of at least 100 m2 with groups of trees recently infested by I. typographus
(avoiding spots with single-infested trees among healthy trees). Only groups of at least
five adjacent infested trees were considered and reported as infestation spots, as four/five
trees are enough to cover a 100 m2 surface. The healthy spots were chosen as forest
portions of at least 100 m2 completely free of infested trees, which were located at least
20 m from the nearest infested spot. The average GPS horizontal precision was 4.8 m.
Considering that the highest resolution allowed by Sentinel-2 images is 10 m, this precision
was considered acceptable. Each survey spot was characterized with auxiliary information,
including date of field record, aspect, condition of the trees (green and healthy, green but
with infestation symptoms on the bark, red or brown crown, gray or bare crown), and size
of the infestation spots.

A total of 194 survey spots were identified in the field, of which 23 infested spots were
eliminated from the dataset because they were considered too small for this study (smaller
than 100 m2) or too heterogeneous (single-infested trees amongst healthy stands). After
selection, a total of 171 spots were considered (95 in 2021 and 76 in 2022), 114 infested (67%
of the total) and 57 healthy (33%) (Figure 2). Because it was not always possible to find
accessible and completely uninfested spots occurring near the surveyed infested spots,
the number of the latter exceeded that of healthy spots in the dataset. The field surveys
were conducted according to the life history of the insects, reporting colonization stages,
i.e., the symptoms of the infestation spots. Both the definitions of infestation stages and
spots’ sizes applied to infestation spots, not to single trees. So, for example, a ground

www.esri.com/en-us/home
https://survey123.arcgis.com
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survey point registered as a small spot in the green phase would consist of a group of trees
(between 5 and 50 trees) that were all in the green phase of infestation. Of the total number
of infested spots, 70% (the majority of which were recorded in 2022) were small (between
5 and 50 infested trees), followed by 21% that were medium (between 50 and 200 trees)
and 9% that were large (more than 200 trees). As for the different phases of infestation,
represented by the color of the tree crown, 35% of infested trees were in the gray phase, 40%
were in the red phase, 10% was in the green phase, and 15% in mixed phase condition (i.e.,
infestation spots with trees in both the green and red phase, or in the red and gray phase).
Details on the percentages of different infestation stages that were reported in 2021 and
2022 are summarized in Table 1, and examples of infestation spots are shown in Figure 3.
The classification model (see below) was trained separately with the field data collected in
2021 (95 spots; 60 infested and 35 healthy) and data collected in 2022 (76 spots; 54 infested
and 22 healthy), to evaluate the capability of the model to detect and identify infested and
healthy spots in the two years. The survey spots were then used to evaluate the reliability
of the classification model (Section 2.5) in detecting and identifying infested and healthy
spots in 2021 and 2022.
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Table 1. Percentages of healthy spots and infested spots, divided by infestation stage, reHorted for
2021 and 2022.

Reference Spots 2021 2022

Healthy 37% 29%

Infested

Gray phase 15% 33%
Red phase 26% 28%

Green phase 3% 11%
Mixed red–gray phases 5% -
Mixed green–red phases 13% -

2.3. Sentinel-2 Data and Predictors Calculation

The Sentinel-2 mission provides support for monitoring of the Earth’s surface changes.
The Sentinel-2 Multispectral Instrument (MSI) provides 14 spectral bands, of which the
visible (blue—B2, green—B3, and red—B4) and near-infrared (NIR—B8) bands are available
at 10 m resolution [43]. The elementary units of the Sentinel-2 products are 100 × 100 km2

ortho-images in UTM/WGS84 projection, which contain all the possible spectral bands; the
updated images are freely available on Google Earth Engine (GEE, https://earthengine.
google.com, accessed on 23 February 2023), and downloadable from scihub, the Coperni-
cus Open Access, Hub (https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2_SR, accessed on 23 February 2023).

The Sentinel-2 cloud probability of the images is created using a gradient boost base
algorithm and informs on the probability that each pixel is covered by clouds. In this study,
pixels were considered cloudy, and hence discarded, when the probability was higher
than 65%.

For this study, we used Sentinel-2 images with a cloud coverage percentage lower
than 50%, belonging to the T32TQS tile, and acquired between 1 September 2020 and
30 September 2022. The resulting number of images was 75. Images acquired between
1 September 2020 and 30 September 2021 were used for the year of analysis 2021 while
images acquired between 1 September 2021 and 30 September 2022 were used for the year
of analysis 2022.

The time-series analysis consisted of the analysis of images acquired on different dates
(in a year or multiple years), to detect changes in the land surface—caused by the infestation
damage in our study—and distinguish them from changes due to other environmental
factors, such as the natural behavior of light reflectance during the year. Since many of the
reference infestation spots were small, we found that 20 m spatial resolution bands could
decrease the accuracy, so they were excluded from the analysis. For each image, we selected
bands with 10 m spatial resolution (blue, green, red, and NIR) and we further calculated
two additional spectral indices, both useful to assess vegetation greenness and stress level:
the normalized difference vegetation index (NDVI) and the enhanced vegetation index
(EVI) [46]. These indices are defined in Equations (1) and (2), respectively. As a result, we
obtained a set of 6 predictors for each of the 75 images.

NDVI =
NIR − red
NIR + red

=
B8 − B4
B8 + B4

(1)

EVI = G × NIR − red
NIR + (C1 × red − C2 × blue) + L

= G × B8 − B4
B8 + (C1 × B4 − C2 × B2) + L

(2)

where G = 2.5, L is a soil adjustment factor (L = 1), and C1 and C2 are coefficients used
to correct aerosol scattering in the red band by the use of the blue band (C1 = 6.0 and
C2 = 7.5) [41].

https://earthengine.google.com
https://earthengine.google.com
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
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2.4. Harmonic Trend Functions and Medoid Composite Processing

For each pixel, and for each of the six predictors in our images, we calculated the
four coefficients that need to be multiplied for the four harmonic function parameters (i.e.,
constant, sin, cosine, and time) to identify the pixel harmonic trend (Figure 4). For each
pixel harmonic trend function, we further calculated the amplitude, phase, and root mean
square error (RMSE). For more details on harmonic function parameter calculation, refer to
Shumway and Stoffer [47].
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Figure 4. Example of NDVI pixel time-series (red) and the corresponding fitted harmonic function
(blue), for the years of analysis 2021 (A) and 2022 (B).

We also calculated seasonal cloud-free composites by using the medoid approach [48].
The objective of medoid composite processing is to populate the final image composite with
the pixels with surface reflectance values as similar as possible to the median calculated
considering the whole image collection. Accordingly, for each season, we compared the
pixel surface reflectance values of each band to the median bands’ spectral values of that
pixel in all images acquired in that season. Then, the bands’ spectral values from the pixel
closest to that median value (using Euclidean spectral distance) were chosen. The study
was conducted by comparing remote-sensing data with reference data acquired over two
years. Thus, two different remote-sensing predictor sets were constructed, one in 2021 and
one in 2022 (Table 2).
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Table 2. Summary of the time windows used to calculate predictors for 2021 and 2022 reference years.

Time Window Year of Analysis

Medoid 1 March 2021, 31 May 2021 2021
Medoid 1 June 2021, 31 July 2021 2021
Medoid 1 August 2021, 30 September 2021 2021

Harmonic 1 September 2021, 30 September 2021 2021
Medoid 1 March 2022, 31 May 2022 2022
Medoid 1 June 2022, 31 July 2022 2022
Medoid 1 August 2022, 30 September 2022 2022

Harmonic 1 September 2022, 30 September 2022 2022

2.5. Automatic Mapping

To automatically identify infested forests, we used the random forest (RF) model [49].
RF is an ensemble of decision trees that learns through a supervised approach and pro-
duces multiple models that are aggregated, using a bootstrap aggregating procedure, to
produce the result. The models are built using different training subsets, generated by
bootstrapping, which are used to build the ‘forest’. RF can reduce the output variance and
the overfitting problem of other machine-learning approaches, improving model stabil-
ity and accuracy [49]. In this study, we used a Google Earth Engine implementation of
the RF algorithm. The number of input predictors resulting from the harmonic function
and seasonal medoid composites calculation was 93, the number of trees was set at 500,
and for the remaining RF hyperparameters, we used default RF values as detailed in
the documentation (https://developers.google.com/earth-engine/apidocs/ee-classifier-
smilerandomforest, accessed on 23 February 2023). Indeed, tuning of hyperparameters and
variables selection slightly changes the performance in the case of RF [24,50], which is one
of the reasons why RF is often exploited [51].

RF predicts probabilities that are then converted into classes, depending on the study.
Herein, the pixels were considered disturbed (i.e., infested) when the probability of infesta-
tion was greater than 50%, which is what RF does by default.

To avoid overfitting, one of the most useful methods is k-fold cross-validation (k-fold
CV [50]) that splits the training set into K number of subsets, called folds [24]. When k is
equal to the number of samples in the reference dataset this method is called leave-one-
out (LOO). Using LOO CV, the model was iteratively trained on data from all the points
except one, which was instead used to apply the model and finally construct a confusion
matrix [52]. Thus, the performance of the model was evaluated on never-seen-before data.

The models and accuracy assessment were implemented for both 2021 and 2022 using
the respective predictors (Table 2). Both models were then applied across the whole study
area to predict infestation spots in 2021 and 2022. To assess the accuracy of our models
we calculated the following accuracy metrics for the model [53]: (i) the overall accuracy
(OA), which refers to the proportion of reference sites that were correctly classified by the
model, (ii) the omission errors (omissions), which refer to reference sites that were not
included (omitted) in the correct class by the model (false negatives for a certain class),
(iii) the commission errors (commissions), which refer to reference sites incorrectly included
in a class by the model (false positives for a certain class), (iv) the producer’s accuracy
(PA), which represents the probability that a certain land cover or feature on the ground is
correctly classified on the map, and (v) the consumer’s accuracy (CA), which represents the
probability that a certain class predicted on the map will represent a land cover or feature
actually present on the ground. PA is based on the reference sites and is calculated as
100%-omissions (number of correctly classified reference sites divided by the total number
of reference sites for that class), while CA is based on the classified sites and is calculated
as 100%-commissions (the number of correct classifications for a particular class divided by
the number of total classifications for that class).

Finally, the 93 harmonic and medoid predictors used were studied to define their
contribution to increasing the accuracy of the model. To do so, the variables’ importance

https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest
https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest
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was assessed in terms of the Gini index (GI). The greater the GI of a specific variable, the
greater the contribution of that variable to increasing the performance of the model. The
importance of the variables, according to the GI, is shown in Figure 5.
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3. Results

The probability of infestation was calculated for the whole study area. A predicted
map of the probability of infestation, for the year 2022, over the areas covered by spruce
can be seen in Figure 6.

For the 95 survey spots of 2021, omissions were 22%, commissions were 36%, and
the overall accuracy was 59%. For the 76 survey spots in 2022, omissions were 11%,
commissions were 23%, and the overall accuracy was 74%. For 2021 the PA was 78% for the
infested spots and 26% for the healthy ones, while the CA was 64% and 41%, respectively.
For 2022 the PA was 89% for the infested spots and 36% for the healthy ones, while the
CA was 77% and 57%, respectively, for the two spot types. The producer and consumer
accuracies were lower for 2021 compared to 2022. In both cases, the PA and CA were lower
for the healthy spots. The confusion matrices that resulted from the RF model and the
accuracy results, for both reference years, are shown in Table 3.
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3. Results

Figure 6. Predicted map of the probability of infestation, for the year 2022, extracted from the
model and applied on spruce-covered areas (forest cover data from the Veneto Region geoportal,
https://idt2.regione.veneto.it/idt/webgis/viewer?webgisId=147, accessed on 9 January 2023), with
a detail on the right.

Table 3. Confusion matrices and summary of the accuracy metrics that resulted from the RF model,
for 2021 (top) and 2022 (bottom).

Model

Healthy
Spots

Infested
Spots

Ground
Truth Data
2021

Healthy
Spots 9 26 35 Omissions 22%

Infested
Spots 13 47 60 Commissions 36%

22 73 95

PA 26% 78%

CA 41% 64%

Overall
Accuracy 59%

Model

Healthy
Spots

Infested
Spots

Ground
Truth Data
2022

Healthy
Spots 8 14 22 Omissions 11%

Infested
Spots 6 48 54 Commissions 23%

14 62 76

PA 36% 89%

CA 57% 77%

Overall
Accuracy 74%

https://idt2.regione.veneto.it/idt/webgis/viewer?webgisId=147
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4. Discussion

The increasing occurrence and intensity of extreme disturbances pose a serious threat
to forests, eliciting further stress factors such as pest outbreaks. Rapid gathering of infor-
mation about the occurrence and distribution of bark beetle outbreaks is fundamental for
providing a reliable assessment of the related overall environmental and economic issues
and better design management strategies to contain the damage. RS methods have proven
to be time- and cost-efficient tools for the detection of forest disturbances distribution
and occurrence [13,18,24,28,31]. In this work, an analysis of multitemporal and seasonal
composites of Sentinel-2 predictors was conducted, and an automatic classification model
was applied to predict the occurrence of Ips typographus infestation spots, giving an overall
accuracy of 74% and 59% in 2022 and 2021, respectively. The model was validated with
ground truth points collected during field surveys in forests of the north-eastern Italian
regions of Veneto and Friuli-Venezia Giulia.

The time-series spectral profiles highlighted by the harmonic functions of the pre-
dictors considered in our work (Figure 4) are consistent with previous studies [54,55],
with a higher Sentinel-2 cloudless imagery availability in spring and summer and also
higher values of photosynthetic activity due to the vegetative phenological phase. For the
year 2021, the proportion of infested ground points (63%) was lower than in 2022 (71%).
Similarly, the accuracy was lower for 2021, suggesting that our model commits more errors
in the infested class. The differences between the number of spot types for both years also
reflects on the PA and CA, which were always higher for the infested spots (PA of 78% for
2021 and 89% for 2022, and CA of 64% for 2021 and 77% for 2022), confirming that lower
accuracy was reached in the infested class.

The infestation spots occurring in the forest can have heterogeneous characteristics,
both for the variable density of infested trees and the coexistence of different stages of
infestation (Figure 1). Of the total infested spots, 35% were in the gray phase, 44% were in
the red and brown phase, and 21% were in the green phase (see Table 1). This source of
variability can reduce the accuracy of the classification model, as the spots with moderate
damage are more difficult to detect. Moreover, two mixed classes (green–brown and brown–
gray spots) were also registered in 2021, increasing the level of variability for the infested
spots. This could lead to a higher error of the classification and could thus be a reason
for the lower OA of 2021 with respect to that of 2022. Stratifying the analysis for different
stages of infestation could be interesting. However, in this study, we did not have enough
data to do so (60 infested spots for 2021 and 54 infested spots for 2022), so we left the
attempt to future studies.

Of the infested spots, 70% were small (between 5 and 50 infested trees), followed by
21% that were medium (between 50 and 200 trees) and 9% that were large (more than
200 trees). Previous studies that applied time-series analysis on Sentinel-2 imagery at
10-20 m spatial resolution to detect I. typographus outbreaks, focused on medium to large
infestation spots with homogeneous infestation conditions. Nardi et al. [40] considered
infestation spots to be only those with a surface area greater than 0.1 ha, mapping the
infestation occurrences with a 1 km grid resolution. Fernandez-Carrillo et al. [25] used
records of salvage-cutting and clear-cuts, together with a forest stand map derived from a
forest management plan, as information on damage occurrence for the ground truth dataset.
These data considered the occurrence of damage in the given stand in which their ground
truth point fell, so the model was validated with information representing the mean healthy
conditions of the whole stand, and not on the damage occurrence at the actual position
of the ground truth point, as we did in our study. Indeed, while these authors obtained
overall accuracies of over 90% for the infested (damaged) class, they were focusing their
analysis on regions in which infestations were already widespread.

Fernandez-Carrillo et al. [25] obtained higher accuracies for the class of the most
severely damaged forest, with respect to the non-damaged class (healthy) and for the
moderate and minor damaged classes. This is also supported by Yang [30], who performed
a time-series analysis of Sentinel-2 imagery on small areas (20 × 20 km and 8 × 4 km) in
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Sweden. The author applied a maximum likelihood classification method (MLC) and an
RF classification method, considering various vegetation indices as variables and obtaining
89% and 85% total accuracy, respectively, for the gray phase class (the most severe form
of damage of bark beetle infestations). For the green phase (moderate damage class) the
accuracies were lower and inconsistent, ranging from 50% to 88%. Candotti et al. [14]
also conducted a time-series analysis on Sentinel-2 images collected with a monthly time
step for the summer period (July to September) in the years 2017 to 2020 over a vast area
in Friuli-Venezia Giulia (Italy). The authors assigned forest cover classes to each pixel
and compared four machine-learning methods (RF, k-NN, SVM, and ANN). As reference,
they employed orthophotos provided by the Regional Infrastructure of Environmental
and Territorial Data and used reference polygons of 30 × 30 m (3 × 3 pixels) to train and
test the models. They obtained overall accuracies over 80%, with higher false positives
for the “stressed” class, meaning that not all the pixels classified as “stressed” developed
more severe infestation symptoms (commission errors between 10% and 20%). Indeed,
marginal areas, forest areas with moderate damage, different stressors than bark beetles’
colonization, or even low tree density can create confusion in the classification, causing
more false positives (commission errors). As stated by [25]: “the overall metrics tend to
be lower in those products where complex intermediate classes are more frequent than
extremes that are easier to identify”.

Despite the more complex situations and intermediate classes (moderate and minor
damaged forest) that were the focus of our study, for 2022 we obtained accuracies (com-
missions errors = 23%) similar to those obtained by Nardi et al. [40] (24.10% commission
error for the infestation class) and Fernandez-Carrillo et al. [25] (a mean commission error
of 20% for the minor and the moderate damage class). In terms of PA and CA, we obtained
results (PA of 78% and 89% for the infested class in 2021 and 2022, respectively; CA of
64% and 77% for the infested class in 2021 and 2022, respectively), comparable to those of
Dalponte et al. [28] for the early stages of infestation and moderate severity of symptoms.
The authors obtained PA of 75.0% for the healthy class (CA of 69.5%), 77.0% for the early
stage of infestation (CA of 75.3%) and 85.9% for the late stage of infestation (CA of 87.1%)
for their classification map of bark beetles’ infestation at the single-tree level. This confirms
that the 10 × 10 m resolution of the Sentinel-2 imagery can contain the spectral information
of more than one tree crown, making it more difficult to obtain information on moderate
infestation damages on smaller spots.

The results we obtained are similar to those obtained by Abdullah et al. [31] on I.
typographus infestations in the Bavarian Forest National Park (Germany), who focused
on the detection of green-phase infested trees using Sentinel-2 imagery at a 20 m pixel
resolution and plots of 30 × 30 m as ground truth points. The authors obtained a 67%
accuracy, calculated by dividing the total number of correctly matched pixels by the total
number of ground truth pixels. This also validates our results (showing a higher accuracy)
in the ability to highlight areas that are affected by European spruce bark beetle attack,
even in smaller spots with moderate or mixed damage conditions.

As a result, our finding suggests that remote sensing and Sentinel-2 imagery, in
particular, can also support the monitoring at the early stage of infestations, when a
very small percentage of trees are damaged. On the other hand, remote-sensing-derived
products are subject to multiple classification errors, and more detailed analysis in the field
is needed. However, the maps presented herein can be used to select areas in which to
focus the field analysis, decreasing the associated effort and cost. Parisi et al. [56] employed
a time-series of Sentinel-2 images to monitor biodiversity in a forest environment, using
similar predictors to those used in this study, and they faced the same limitations. Indeed,
while satellite data cannot completely replace field surveys, they can be used at different
spatial and temporal scales to overcome fieldwork limitations.

The infestation spots considered in this study were selected, among those easily
accessible and easily localized, having characteristics as homogeneous as possible (every
infestation spot resulting with red crowns at the end of summer) and trying to avoid single
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trees or spots smaller than 100 m2, as stated in Section 2.2. It is possible, however, that
some of these factors affected the accuracy of the model, especially because of the presence
of healthy trees within the pixels containing the infestation spots. The mismatch between
number of reference spots in the infested and healthy classes (63% infested and 37% healthy
spots for 2021, 71% infested and 29% healthy spots for 2022) could also have affected the
accuracy. Further efforts should be made to gather a more balanced reference dataset.
According to Dalponte et al. [18], Giannetti et al. [23], and Vaglio Laurin et al. [57], other
factors to consider are the location of the spots, especially if distributed along steep slopes,
on north-exposed faces, or on the forest edges near roads and open areas. In addition,
there is the possibility that some of the spots that were infested in 2021 could have been
clear-cut during 2022, changing the land surface condition in the images’ time-series from
infested trees to bare soil and therefore affecting the quality of the 2022 map [22]. Moreover,
all the studies mentioned considered a smaller study area than ours (over 600 ha study
area) and had access to a more extensive reference data, usually from high resolution aerial
photos. In fact, another limitation of our study could be the limited sample of ground
survey points used for training and validation, although they were collected on a vast area.
This could be addressed in further research by employing more people on the territory
and for a longer period of time, to create a bigger reference dataset. This could also allow
specific analyses to be conducted for the detection of different stages of infestation, thus
providing further helpful information for forest management. To improve this method
of detection of pest outbreaks by RS, the acquisition of further and updated auxiliary
data about land cover and forest management practices should be considered. This type
of data, often recorded by forest operators and public bodies, can be a valuable source
for the validation of the results of RS applications [54]. Precise information about forest
categories, the occurrence of different kinds of disturbances, vegetation, and management
practices, such as harvest data, could be really helpful in reducing the noise due to mixed
and inhomogeneous conditions and thus increasing the accuracy of the model. Indeed,
all of the studies mentioned above used supervised classification methods or updated
land-cover auxiliary data to mask the areas not covered by spruce, so that they could
better define their areas of interest and avoid false positives [14,25,28,30,31,40]. In our case,
a similar and reliable land-cover dataset was not available to define the spruce-covered
forest areas. So, the creation of such a solid auxiliary database would be a decisive gain,
providing additional information needed for the development of methods exploiting RS
data for monitoring bark beetle outbreaks [27,58].

The integration of imagery with a higher spatial resolution, such as that acquired by
aircraft or drones, could also increase the detection accuracy, especially if focused on those
areas that are more difficult to access in the field and those for which the satellite imagery
misses information (e.g., north-exposed shadowed areas), or in which there are infestation
spots with a low density of infested trees. This could also compensate for the limited
possibility of collecting a large number of ground survey points evenly on a vast area.

5. Conclusions

On-site surveys to monitor and collect data on infestation spots’ occurrence and
features constitute a valuable and precise source of information, but they are also time- and
cost-consuming, and difficult to conduct extensively on large areas. RS methods provide
objectives and time-efficient measures of forest structure, health, and management that can
be used to support and integrate field-survey information on large regions, reducing efforts
and costs related to field operations [19,25]. This study confirms that Sentinel-2 imagery
can support the identification of infestation hotspots even when having heterogeneous
characteristics and variable conditions of damage, and consequently guide the selection
of areas in which to concentrate field work or, more in general, more detailed monitoring,
thus helping management and salvage operations [29]. While Sentinel-2 data alone are not
sufficient for comprehensive mapping of single damaged trees, the methodology proposed
herein can be considered a valuable tool for the forest operators involved in the field
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monitoring and management of outbreaks, to identify infestation spots or, vice versa,
areas where infestation is very unlikely. Although we did not achieve high accuracy, the
infestation maps produced by exploiting the introduced approach represent a useful tool
for managing forests and promptly reacting in the case of infestation. First, infestation maps
can be updated yearly, which is definitely a main requirement to comprehensively monitor
forest health status. Second, the maps provided information for entire areas of interest,
while ground data can be acquired only for small samples, due to the costs and efforts
associated with field surveys. Although single pixel accuracy can be low, looking at the map
over a large area is helpful in assessing the general situation of the forest and the progress
of the infestation, and also in making comparisons with maps produced for previous years.
Therefore, this implementation of RS data has important implications for monitoring forest
disturbances due to insect outbreaks, increasing the amount of information acquired and
decreasing the level of effort required by in-field operators.

The herein proposed methodology could be improved by obtaining a solid and up-
dated auxiliary dataset about land cover and forest management practices of the areas of
interest. Further studies that integrate both satellite and UAV imagery should be consid-
ered, to improve the detection accuracy. Future studies should also question and determine
which are the main factors that drive the bark beetle expansion, especially after extreme
events, focusing on forest composition and stand densities [17]. Considering these factors
could help to understand the population dynamics after major disturbances in large ar-
eas, allowing us to better classify and manage areas requiring prompt interventions, and
promptly apply the most suitable silvicultural practices to minimize further damage by
bark beetle outbreaks.
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