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Abstract: In recent years, the automatic recognition of tree species based on images taken by digital
cameras has been widely applied. However, many problems still exist, such as insufficient tree species
image acquisition, uneven distribution of image categories, and low recognition accuracy. Tree leaves
can be used to differentiate and classify tree species due to their cognitive signatures in color, vein
texture, shape contour, and edge serration. Moreover, the way the leaves are arranged on the twigs
has strong characteristics. In this study, we first built an image dataset of 21 tree species based on the
features of the twigs and leaves. The tree species feature dataset was divided into the training set and
test set, with a ratio of 8:2. Feature extraction was performed after training the convolutional neural
network (CNN) using the k-fold cross-validation (K-Fold–CV) method, and tree species classification
was performed with classifiers. To improve the accuracy of tree species identification, we combined
three improved CNN models with three classifiers. Evaluation indicators show that the overall
accuracy of the designed composite model was 1.76% to 9.57% higher than other CNN models.
Furthermore, in the MixNet XL CNN model, combined with the K-nearest neighbors (KNN) classifier,
the highest overall accuracy rate was obtained at 99.86%. In the experiment, the Grad-CAM heatmap
was used to analyze the distribution of feature regions that play a key role in classification decisions.
Observation of the Grad-CAM heatmap illustrated that the main observation area of SE-ResNet50
was the most accurately positioned, and was mainly concentrated in the interior of small twigs and
leaflets. Our research showed that modifying the training method and classification module of the
CNN model and combining it with traditional classifiers to form a composite model can effectively
improve the accuracy of tree species recognition.

Keywords: tree species recognition; support vector machine (SVM); attention mechanism;
convolutional neural network (CNN)

1. Introduction

Precise tree species identifications are crucial to forest resource inventory, biodiversity
conservation, and urban forestry planning. The research on intelligent image recognition
of tree species is also a key step in realizing the transition from traditional forestry to
intelligent management and improving public awareness of forest knowledge. Automated
species mapping of forest trees has long been a hot research topic in remote sensing and
forest ecology [1,2]. Accurate tree species recognition based on remote sensing imagery
has a difficult challenge, primarily because of the small between-species differences in the
reflectance spectra, within-image brightness trends caused by atmospheric effects, and a
changing viewing and illumination geometry, alongside an incomplete tree species image
database. Tree species are usually identified using characteristics of the trunk/stem [3],
fruit, bark [3], flowers [4], and leaves [5]. Among them, leaves are the most used feature to
identify tree species because they are easy to collect, have well-defined characteristic infor-
mation, and are relatively stable during tree growth. In addition, the shape contour, edge
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serration, color, number and shape of lobes, vein texture, glossiness, and growth arrange-
ment on the branches of the leaves are all highly discriminatory. Therefore, the twigs and
leaves have strong interspecific characteristics and can be used as identification samples.

Ground, airborne, and satellite remote sensing platforms have been applied for tree
species identification [6,7], although there is the general problem of a low number of
identified tree species owing to large data scales [8]. With the continuous breakthroughs
in microchip technology, mobile smartphones are widely used for their convenience and
accessibility and are, therefore, also used for mobile terminal identification of tree species.
For example, Kumar et al., 2012 [2] proposed a tree retrieval system and developed a
smartphone application, Leafsnap, to retrieve and identify tree species. This application
uses the smartphone’s camera to extract leaf shape images. Samples are usually images
of single leaves taken against a white background. The identified samples are mainly
from many tree species in North America. Many other smartphone applications based on
leaf characteristics have spawned in recent years. However, these mobile applications are
sensitive to the shooting environment, and the recognition accuracy will fluctuate with
the shooting angle and light and shadow changes; thus, the recognition accuracy of the
images acquired in a natural environment cannot be guaranteed. Therefore, there is a need
to develop an automatic tree species recognition that can adapt to natural light and shadow
changes, with background information and multi-foliage situations.

Traditional tree species identification relies on experienced forestry practitioners to
visually identify trees in the field, and identification sites are limited. Further, when the
workload of tree species identification increases, the reliance upon manual identification is
less efficient, and accurate multitree identification is sometimes challenging for professional
practitioners, whereby the identification results are often influenced by the subjective
factors of the observer [9]. Using machine learning and deep learning technology to
realize the automatic recognition of tree images will be one of the important tasks for the
intelligentization of forestry work.

Tree species identification usually uses leaves, bark, canopies, and other common
features as the main objects of photography to build image datasets. Before the machine
learning algorithm completes the identification of the tree species, it is necessary to pre-
process the image to retain key feature information and extract high-level abstract feature
information with recognizability based on this. The classifier learns classification rules
according to the distribution of high-level abstract features, and then, unlearned data for
the classification or prediction. Over the past two decades, significant progress has been
made in the application of various machine learning classifiers to tree species identification.
Sugiarto et al., 2017 [10] collected 4200 images and used the histogram of oriented gradi-
ent (HOG) to extract the important features of these images and compute their gradient
histogram of image pixels, and then, this information was further input into the SVM and
K-nearest neighbors (KNN). The classification accuracy for tree species can reach 94.3%. In
the study of combining machine learning algorithms with tree species identification, Iwata
and Saitoh 2013 [11] automatically extracted leaf regions using a graph cut-based method,
before the shape features, color features, and size features were calculated. The features
were input into a random forest (RF), and the highest accuracy of 96% was obtained in a
dataset of 92 tree species. Lim et al., 2003 [12] applied a hierarchical classification method
to derive tall vegetation point classes and used the mean drift clustering algorithm to parti-
tion them into single canopies, and calculated classification features based on the height
and intensity information of LiDAR points. These features were further input into SVM,
multilayer perceptron (MLP), and RF classifiers to classify the coniferous and broad-leaved
tree species, and the results indicated that the best classification result (83.75%) was from
the RF classifier. Therefore, the machine learning classifier algorithm can be combined with
the traditional tree species identification work to realize the intelligent development of
forestry work.

As a branch of machine learning, deep learning is developed from traditional neural
networks. Deep learning algorithms are widely used in various fields, such as audio data
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processing, natural language processing (NLP), and computer vision processing, and have
achieved good performance [13,14]. The CNN model in deep learning is widely used in
the field of visual images. The first layer of the CNN classification prediction model is
the input image data, and the last layer is the category label. The input feature space is
mapped to the output classification information through multilayer computation. One of
the core ideas of CNN is to perform a dot product operation on each feature map through
the filtering of the convolutional layer and refining of the image from shallow information
to deep feature information [15]. Moreover, after the iterative training of the model, the
weight of the filter is continuously optimized, making it easier for the network to extract
key feature information, so as to complete the prediction task of the corresponding category
according to the distribution law of advanced features.

In recent years, convolutional neural networks (CNNs) in deep learning have been
more widely adopted because they can integrate three-dimensional or even multidimen-
sional leaf features more efficiently and CNNs are more efficient and semantically rich.
CNNs methods can automatically extract features, simplify data preprocessing, and have
local attention mechanisms to use leaf features extracted from receptive fields. Using
convolutional kernels as a parameter sharing mechanism for sliding windows on images,
features are extracted with the same preference mechanism in different regions, with good
translation invariance, and using pooling layers–for example, to reduce feature dimension-
ality, extract key features, and speed up model fitting [16]. Indeed, Tan and Le 2019 [17]
introduced a CNN method (EfficientNet) with faster training convergence and more ef-
ficient operation compared to previous models. Therefore, CNN can complete efficient
recognition tasks.

Combining tree species recognition with CNN technology will effectively improve
the recognition accuracy. Homan and du Preez 2021 [18] applied the EfficientNet B0 as the
backbone framework and used unlabeled data combined with the SSL (semi-supervised
learning) method to augment the FixMatch, and the results indicated that the leaf and bark
recognition accuracy reached 94.04% and 83.04%, respectively. Based on LiDAR images,
Kim et al., 2022 [19] cut the original images into pieces, then selected the images randomly,
and enhanced the images. The VGG16 and EfficientNet models were applied to classify
tree species. During the classification process, they changed the last fully connected layer
and used the softmax function to activate the classification. The classification accuracy can
reach 90.7% and 91%, respectively, for the two models. Therefore, the CNN model can be
used to deal with complex tree species identification tasks.

Most of the studies for tree species recognition used either traditional classifiers or
CNN. For these methods, the classifier algorithm requires complex data preprocessing to
extract features to bring into the classifier for training. Although the use of CNN reduces
the manual feature extraction process, low classification accuracy was often reported in
many previous studies [20,21]. The application of traditional classifiers in combination
with CNN for automatic recognition of tree species images has been less studied.

In this study, we applied three commonly used CNN methods and refined their final
classification modules, and then, combined them with KNN, SVM, and RF classifiers. The
CNN network is used as the feature extractor, and the extracted abstract features are further
input into the KNN, SVM, and RF classifiers for recognition. Our goals are (1) to capture
leafy images in natural scenes to enrich datasets and resource distributions for tree species
identification. (2) Establish a tree species automatic identification framework based on
CNN feature extraction and classifier prediction. (3) Evaluate the predictive performance of
the composite model based on multiple accuracy indicators; (4) analyze the reasons for the
change in the classification performance of the composite model. Our proposed method can
effectively improve the overall accuracy of tree species identification in mobile terminals.
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2. Materials and Methods
2.1. The Study Area

As shown in Figure 1, the selected sampling area is the Zhejiang A&F University
campus (30◦15′23.88′′ N, 119◦43′41.61′′ E), which is located in Lin’an District, Hangzhou
City, Zhejiang Province, China. The study area has a subtropical monsoon climate with
abundant light and rainfall. The average annual precipitation is 1613.9 mm, and the average
annual temperature is 16.4 ◦C.
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Figure 1. Study site. Picture (A) is the urban distribution map of Zhejiang Province, China, and
the location of Hangzhou City, Zhejiang Province; picture (B) is Lin’an District; picture (C) is the
sampling area, and the red dots represent the sampling points, indicating a total of 21 tree species
sampling points.

2.2. The Workflow

The experimental process was divided into four steps: (1) Data processing: use mobile
terminal equipment to capture images and perform data enhancement on the images
while realizing data expansion to generate tree species recognition datasets. (2) Feature
extraction: Load the pretrained CNN model, improve the model, and complete the fitting
training, using the CNN model for advanced abstract feature extraction. (3) Tree species
identification: Bring abstract features into the classifier for training and use the classifier
to identify tree species on the unlearned test set. (4) Results analysis: multiple indicators
were used to evaluate the performance of the composite model, and the main focus areas
of each CNN experimental model were analyzed. The specific experimental flow is shown
in Figure 2.
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and classifier.

2.3. Image Acquisition and Processing

The sample trees were mainly focused on street tree species on campus, including
local native species. The sample design in the study was different from the traditional
image acquisition ideas of previous researchers: the image acquisition was mainly single
leaves. The main body of this experiment involved branches with many leaves and twigs,
which retain more characteristics of leaf arrangement and twigs growth shape, and at the
same time increase the diversity and complexity of the image, which was more in line
with the needs of actual application scenarios. As the morphological characteristics of the
leaves and branches tend to be perfect in summer, the experimental collection time was
concentrated on the first ten days of July, so the appearance of the collected samples was
representative to a certain extent, and the samples were collected from a total of 142 sample
trees. The shooting equipment used many smart mobile phones of Apple, Huawei, and
other brands, and the running memory and hard disk capacities were higher than 3 GB
and 64 GB, respectively. Due to the tallness of the sample trees, this study used a high
branch shear tool to collect samples, measured the diameter at breast height (DBH) of
the sample trees as the difference, and randomly cut branches from around the sample
trees, according to different canopies, growth states, and light conditions, and used multi-
leaf twigs, which were immediately laid on the asphalt pavement for filming, thereby
preserving the background information of the road surface and noise of light and dark
changes. At the same time, randomly switched the shooting angles. The captured sample
images are shown in Figure 3.

The original image size of 4608 × 3456 pixels was obtained, and the uncompressed
original image was divided into training and test sets in a ratio of 80% to 20%. The original
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image was reduced isometrically using bilinear interpolation. The feature image size was
reduced to 658 × 493 pixels. Enhanced and expanded data with random rotation cropping,
brightness, and saturation adjustment. The expanded data volume was five times the
original data. We scaled the expanded image size to 224 × 224 pixels, then performed
vertical, horizontal, random flips, small amplitude random scaling, and normalization
operations to complete the secondary data enhancement of the image, enriching the data
distribution of the training set, and improving the generalization ability and robustness of
the model.
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Figure 3. The leaf sample images of the 21 selected tree species listed in Table 1.

Table 1. The parameters of the sampled trees. D_Min and D_Max represent the minimum DBH and
maximum DBH of all sample trees from these tree species. The last three columns represent the number
of original images and the number of training and test samples after data enhancement and expansion.

ID Species D_Min D_Max Original Train Test

1 Acer buergerianum 13 21.8 254 1015 255
2 Albizia julibrissin 15.5 23.4 218 870 220
3 Acer palmatum f. atropurpureum 7 9.6 242 965 245
4 Castanopsis eyrei 11.2 17 252 1005 255
5 Choerospondias axillaris 12.9 24.4 219 875 220
6 Cinnamomum camphora 19.5 24.7 232 925 235
7 Elaeocarpus glabripetalus 16.9 29.5 228 910 230
8 Ginkgo biloba 19.3 27.1 220 880 220
9 Ilex chinensis 18.6 23.7 229 915 230
10 Ilex integra 6.7 11.5 206 820 210
11 Liquidambar formosana 11.6 15.2 206 820 210
12 Liriodendron chinense 21.2 29.8 224 895 225
13 Magnolia biondii 17.5 24.1 254 1015 255
14 Magnolia denudata 21 30 223 890 225
15 Michelia chapensis 22.6 27.3 286 1140 290
16 Sapindus mukorossi 14.2 24 201 800 205
17 Taxodium ascendens 24.4 34.8 203 810 205
18 Taxodium distichum 31.2 34.9 220 880 220
19 Prunus cerasifera f. atropurpurea 7 9.6 222 885 225
20 Koelreuteria bipinnata var. integrifoliola 12.9 24.4 211 840 215
21 Cerasus serrulata var. lannesiana 18.8 28.5 234 935 235

Total 4784 19,090 4830
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2.4. Optimization Algorithms in CNN

In this study, the CrossEntropyLoss function was chosen as a parameter for model
optimization and calculation of gradients. Its basis is the softmax function [22]. The
function can be expressed as Equation (1).

softmax(xk) =
exk

∑N
j=1 exj

(1)

where xk denotes the predicted value of the k label, and N is the total number of label
categories. Additionally, the e function normalizes the predicted value of the corresponding
category to between (0 and 1), and the softmax output results in the predicted probability
of the category.

The CrossEntropyLoss function formula is defined as Equation (2) [23]:

Loss(x, class) = − log(softmax(xclass)) (2)

where class is the real label and xclass is the predicted value of the real label. Softmax
function, which calculates the predicted probability of xclass, where softmax(xclass) ∈ [0, 1],
the closer the output of softmax(xclass) is to 1, the closer the output of Loss(x, class) is to 0.

The LeakyReLU activation function is added to the model in the SE-ResNet50 and
MixNet XL models [24]. Unlike the ReLU function [25], which sets all negative values
to zero, this activation function retains negative information, regulates the zero-gradient
problem of the negative values, and expands the range of the ReLU function, which is
defined as Equation (3) [25].

LeakyReLU(x) = max(αx, x) =

{
αx if x < 0
x if x > 0

(3)

where α denotes the weight, i.e., the reduction ratio corresponding to negative numbers,
and the parameter is set to 0.01.

The EfficientNet B2 model differs from other models in that it uses SiLU as the
activation function, and SiLU has continuous, smooth, and non-monotonic properties
that offer significant advantages in deep neural networks, the calculation formula is as
Equation (4) [26]:

f(x) = x ∗ σ(x) (4)

σ is the sigmoid function [27], which is defined as Equation (5).

σ(x) =
1

1 + e−x (5)

In the experiments, the K-Fold–CV method is used to train the recognition ability of
the model, which is different from the common model training method that divides the
training dataset into a training dataset and validation dataset. It can effectively prevent
the overfitting of the training set and cope with the problem of poor generalization ability
caused by the insufficient amount of data. The model training sets the parameter k = 5, and
each k subset is used as the validation set and the remaining k − 1 subsets as the training
set [28]. The validation set is independent of the learned training set, and its accuracy and
error provide a good validation of the model’s ability to generalize to both the training
and test sets. Each divided training set has different feature distributions and using k
models to extract features can balance the way of feature extraction under different feature
distributions and increase the generalization ability of the model [29]. The hardware and
software environment configurations for dataset construction, model fitting, and testing
are shown in Table 2.
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Table 2. Hardware and software environments.

Soft Hardware Configuration

Programming Environment Python3.7.2 + Pytorch1.11.0 + Cuda11.6
RAM 16G DDR5

System Windows 11 64bit
CPU AMD Ryzen 7 6800H 3.20 GHz
GPU NVIDIA GeForce RTX 3060 6G

2.5. The Descriptions of Classifiers

In this study, the SVM classifier was used in combination with the SE-ResNet50 model.
The SVM classifier uses a small number of key samples as support vectors, i.e., the sample
points closest to the hyperplane, to construct the hyperplane and distinguish the sample
classes. It also maximizes the distance between the hyperplane, reduces the interference of
the samples to the model, increases the robustness of the model, and reduces the model
error [30,31].

The KNN algorithm was used as a classifier to learn the key features extracted by the
MixNet XL model. The KNN algorithm is one of the supervised learning methods that use
the Euclidean distance algorithm to calculate the distance between the dataset samples and
the predicted samples and incrementally rank them [32]. The nearest sample point to the
prediction sample was found. The number of categories of k samples was counted and the
majority voting method was used to decide the prediction sample categories [33,34].

RF was used as a classifier for the feature extractor of the EfficientNet B2 model. RF
builds datasets for multiple decision trees in a random and playback manner so that each
tree gets a different distribution of training data and uses feature random sampling to
randomly select some features for decision training [35]. The decision trees obtained by com-
bining the different distributions of samples and features are diverse, and the predictions
of the combined multiple decision trees present the final prediction results and improve
the generalization ability and robustness of the model to new sample predictions [36].

2.6. Convolutional Neural Network

In this study, we used migration learning to initialize the model when training the
convolutional neural network. Transferring the knowledge learned in different domains to
the new task through transfer learning can improve the model performance [37,38]. We use
a pretrained network to apply the knowledge learned from the ImageNet dataset training to
a new task, i.e., the tree species recognition task [39], to improve the initial learning ability
of the model, to fine-tune the parameters of the model to achieve the desired recognition
effect during the learning process of the new task, and to improve the model structure to
increase the final tree species recognition accuracy of the model [40].

There are many CNN models. In this study, we chose the SE-ResNet50, MixNet XL,
and EfficientNet B2 models to extract the leaf features. The SE-ResNet50 model adds the
Squeeze-and-Excitation (SE) attention module, applies the learned channel weights to the
original features to represent the relevance of the channel features to the key information,
enhances the importance of the key channel features, and suppresses the channel features
with the lesser role [41]. Combined with the jump link of the residual module to cope
with the degradation problem of gradient disappearance arising from continuing learning
after the accuracy reaches saturation as the depth of the model increases, the mapping
of input information to output retains the integrity of information, reduces the difficulty
of optimizing residual mapping, and achieves high recognition accuracy, even when the
depth of the model increases [42]. The output dimension is changed by convolutional layer
operations to ensure that the original input x is summed with F(x) calculated through a
series of convolutional layers [43], activation layers, etc., to yield H(x), i.e., the residual
result, The residual equation is as Equation (6).

H(x) = F(x) + x (6)
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Using the lightweight MixNet XL model instead of a single-sized convolution kernel
to compute the features of all the channels in the convolution layer operation, multiple
channels are grouped and brought into different-sized convolution kernels for convolution
computation, while local perceptual fields of different sizes are used to obtain high-level
abstract features. It changes the operational limitation of normal convolution kernels, which
is the degradation of accuracy in later stages due to the large size of convolution kernels.
The use of mixed depth-separated convolution (MixConv) allows the use of convolution
kernels of different sizes to achieve a balance between computational workload and high
resolution and effectively reduce computational effort [44].

The upper part of Figure 4 represents the normal convolution operation, where all
channel features use the same height and width convolution kernels and kin. Figure 4
indicates the scale of the convolution kernel. The lower part of Figure 4 is divided into
mixed convolution kernel computation flow, where groups are combinations of multiple
channels and each group uses a different size of convolution kernel, and Concat connects
the feature maps output from different groups as the input features of the upper layer.
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The EfficientNet B2 model was designed based on the MBConv module and used
balanced composite coefficients to scale the model to get the improvement of accuracy and
efficiency [17]. The composite coefficients include w, d, and r. Here, w is the number of
channels and increasing w makes the model training easier; d is the depth of the model and
higher d values indicate more complex and diverse acquired features; r is the resolution
size and the larger r values denote higher image resolutions.

2.7. Model Framework

The three CNN networks (SE-ResNet50, MixNet XL, and EfficientNet B2) were com-
bined with classical classifiers KNN, SVM, and RF. The hyperparameter settings used
to build all CNN models are shown in Table 3, where the learning rate of the VGG16
model is 1 × 10−4. The SE-ResNet50 model was combined with a residual network and
attention mechanism and SVM was used to distinguish sample categories by classification
hyperplane. MixNet XL models use mixed convolution kernels to extract abstract features
with different resolutions and concatenate them to solve the accuracy optimization problem
caused by the increase in the convolution kernel size. Finally, the KNN algorithm calculates
the distance between the samples by Euclidean distance, and then, the tree species distribu-
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tion of the nearest K samples was calculated, and the majority voting method was used for
the predictions. EfficientNet B2 improves the accuracy and speed by tuning and balancing
the depth, width, and resolution of the model. EfficientNet B2 combines random forest (RF)
to integrate multiple decision trees, and some features are randomly selected for training
after multiple training sets are formed [45]. The RF design simplifies data interdependence
and enhances model generalization.

Table 3. Model hyperparameter settings.

Hyperparameter Value

optimizer AdamW
batch size 16
Initial lr 1 × 10−3

weight decay 1 × 10−5

K number 5
epoch number 20

For the EfficientNet B2 model, the BatchNorm layer, Dropout layer, and fully connected
layer (FC) were added after removing the final classification module. In the MixNet XL
and SE-ResNet50 models, the last fully connected layer was removed and changed to
the LeakReLU layer, Dropout layer, and fully connected layer. At the end of the training,
the last fully connected layer of all models was removed and used as a feature extractor.
The extracted high-level abstract features were brought into the classifier for training and
testing to complete the final recognition task.

MixNet XL used KNN (nearest neighbors) classifier; EfficientNet B2 used RF (random
forest) classifier; SE-Resnet50 used an SVM classifier. The composite model framework of
CNN combined with each classifier is shown in Figure 5.
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Figure 5. Composite framework for CNNs and classifiers. MP and AP denote the maximum and
average pooling layers, respectively, and SEM and REM denote SE Attention Module and Residual
Module, respectively. SD denotes Stochastic Depth, and LyReLU denotes the activation layer based
on the LeakyReLU algorithm.

2.8. Accuracy Evaluation Metrics

Four commonly used metrics including overall accuracy (OA), precision, recall, and F1-
score were selected to evaluate the training algorithms and model predictive capability [46].
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The F1-score considers both the accuracy and recall of the prediction results and is a
reconciled average of the accuracy and recall. The four categories of parameters used in
the calculation are true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN) [47]. In the experiment, the macro average method was used to calculate
the mean value of a single category index as the overall index of the model. The specific
calculations of the above indicators are represented in Equations (7)–(11).

Overall_Accuracy =
1
n

n

∑
i=1

Ai (7)

Macro_Precison =
1
n

n

∑
i=1

Pi (8)

Macro_Recall =
1
n

n

∑
i=1

Ri (9)

Macro_F1 =
2∗Macro_Precison ∗Macro_Recall
Macro_Precison + Macro_Recall

(10)

Ai =
TPi + TNi

TPi + FPi + FNi + TNi
Pi =

TPi

TPi + FPi
Ri =

TPi

TPi + FNi
(11)

where i is the corresponding category and n is the total number of categories.
Overall accuracy (OA) represents the ratio of the number of correctly predicted sam-

ples to the total number of predicted samples. Macro_Precison represents the ratio of
correctly predicted positive sample numbers to the total predicted positive sample num-
bers. Macro_Recall represents the ratio of correctly predicted positive sample numbers
to the true positive total sample numbers. The Macro_F1 is a combined indication for
Macro_Precison and Macro_ Recall, which is an overall index for the performance evalua-
tion. Macro indicates that the indicator is the average of all categories of indicators.

The receiver operating characteristic (ROC) curve was used as one of the performance
indicators simultaneously for evaluating the performance of the model, and the area
covered by the ROC curve was calculated, resulting in the AUC value. The ROC curve
had two parameters: (1) The true-positive rate (TPR), which was equivalent to the recall
indicator that is the proportion of positive samples correctly classified as positive among all
the positive samples [48,49]. (2) The false-positive rate (FPR), which was the proportion of
all negative samples that are incorrectly classified as positive. The macro-average method
was used to calculate the AUC value. The TPR index was directly proportional to the model
performance, whereas the FPR index was inversely proportional to the model performance.
That is, the closer the ROC curve is to the upper left corner, the higher the AUC value and
the better the performance of the model. The specific calculation of FPR is presented in
Equation (12).

FPRi =
FPi

FPi + TN i
(12)

The AUC calculation method was in the positive and negative sample pairs, the
predicted probability of the positive sample was higher than the ratio of the predicted
probability of the negative sample. The AUC calculation formula is shown by Equation (13).

AUC =
∑ I
(

PPositive sample, PNegative sample

)
M · N (13)

where M and N represent the number of positive samples and negative samples, respec-
tively. PPositive sample and PNegative sample represent the predicted probability of positive
samples and the predicted probability of negative samples, respectively.
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2.9. The Heatmap for Attention Region

To show more clearly the degree of association between different pairs of regions of
the input image and the predicted categories, a gradient-weighted class activation map
(Grad-CAM) was used in the experiments to draw the heatmap, which is more general than
the CAM, without modifying and retraining the network structure [50]. The heatmap was
observed to analyze the main image regions that the model focuses on when predicting
the categories. The gradient information was obtained by back-propagation calculations of
the output from the last convolution layer with the predicted values of class c. Moreover,
the gradient information of each channel concerning the predicted value of category c was
averaged to indicate the importance of that channel to the prediction of category c, i.e., the
weight. The weight calculation formula of each channel is as Equation (14) [51].

αc
k =

1
Z∑

i
∑

j

∂yc

∂Ak
ij

(14)

where k denotes the kth channel and ij denotes the width and height, i.e., pixel values. yc is
the predicted value of category c, and Z is the width × height. Ak

ij is the value of ij pixels in
the k channel.

The average value of the predicted value of class c and the gradient information of
each element of the k channel is the weight of the k channel. The weight of each channel
was weighted and summed with the corresponding channel value of the final convolutional
layer output, and the ReLU function was used to calculate the Grad-CAM. The specific
calculation formula of Grad-CAM is shown by Equation (15).

Lc
Grad−CAM =ReLU(∑

k
αc

kAk) (15)

where αc
k represents the weight of class c predicted values and class k channels, and Ak is

the k channel value output by the final convolutional layer.

3. Results
3.1. The Accuracy Evaluation Based on Confusion Matrix

Figure 6 shows the three composite models and the confusion matrix for prediction
on the test set using the majority voting method. Among them, the highest recognition
error was the prediction of Sapindus mukorossi as Choerospondias axillaris, accounting for
2.4% of the total number of Sapindus mukorossi, with a total of 20 errors for the 4 confusion
matrices. Next, Ilex chinensis was predicted as Ilex integra (both belong to the genus Ilex),
with a cumulative total of 9 errors across the 4 confusion matrices. SE-ResNet50 combined
with the SVM classifier incorrectly predicted Choerospondias axillaris as Koelreuteria bipinnata
var. integrifoliolaf four times. The above three types of prediction errors accounted for 50%,
22.5%, and 10% of the total errors of the four confusion matrices, respectively. MixNet XL
model combined with KNN classifier and majority voting produced the highest prediction
results with the same total recognition accuracy of 99.86%. The classification result of
the majority vote was composed of the prediction results of the three composite models,
meaning the classification error was concentrated on the above two main classification
errors. MixNet XL combined with RF confused the otherwise incorrect classification results.

Figure 7 shows the two tree species with the highest frequency of misclassification. The
leaves of both Sapindus mukorossi and Choerospondias axillaris have an opposite arrangement
pattern, and the profiles of the leaf veins and leaf edge are also similar. These resulted in
highly similar leaf traits. Similarly, the Ilex chinensis and Ilex integra tree species belong
to the same genus, and the leaf arrangement pattern, veins, shapes, and edges are quite
similar. The major difference was in the leaf top shapes. The Ilex chinensis has an acerate
top, while the Ilex integra has a relatively round top, which is the major leaf trait that
helps differentiate these two species with fewer errors than the Sapindus mukorossi and
Choerospondias axillaris species.
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3.2. Accuracy Evaluation for Tree Species Using F1-Score

Using the F1-score as an evaluation index, we compared the difference in predictive
ability between composite and original models for each tree species. The F1-score for
most tree species based on the composite models was greater than those based on the
original models. The F1-score for the composite models ranged from 0.978 to 1.0, while
the original models ranged from 0.858 to 1.0. The lowest F1-score based on the composite
models occurred for Sapindus mukorossi (0.978), followed by Choerospondias axillaris (0.982).
As inferred from Figure 8, the lowest F1-score for Sapindus mukorossi was because it can
be easily misinterpreted as Choerospondias axillaris, while the Choerospondias axillaris can
be easily misinterpreted as Koelreuteria bipinnata var. integrifoliola. In contrast, the lowest
F1-score based on the original models occurred for Magnolia biondii (0.858), followed by Ilex
chinensis (0.894). Magnolia biondii can be easily misinterpreted as Ilex chinensis or Ilex integra.

Considering that F1-score is the harmonic mean of recall and precision, the composite
models show a double improvement of precision and recall metrics, which enhanced the
sensitivity of the model to positive samples and reduced the generation of high-frequency
misclassification cases for some tree species.
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3.3. Convolutional Layer Output Analysis

Figure 9 shows the output abstract feature maps of the first mixed convolution module
and the first three convolution layers of the MixNet XL experimental model. The mixed
convolution module, which divides the feature maps with the input channel number of
40 into 2 groups, is brought into the convolution kernel with different feature extraction
laws for convolution calculation. Furthermore, the obtained feature maps are concatenated
and brought into the upper layer for computation. In the first convolutional layer in the
abstract feature extraction process, the weight values on the leaf edge, leaf brightness, and
darkness are assigned larger, mainly focusing on the leaf contour and leaf brightness for
feature extraction and enhancement. The weight values of the partial convolution kernels
in the second convolution layer are assigned too small, and the remaining convolution
kernels are more concerned with the background texture of the image. The convolution
kernel of the third convolutional layer is similar to the feature extraction pattern of the
second convolutional layer, with a more uniform distribution of weight values and a focus
on the background granular information of the image.

Since the mixed convolution module used two groups of convolution kernels with
different computational rules to extract the features, the feature distribution of the output
abstract feature map was different. The first set of mixed convolution kernels in the
convolution module focused on the extraction of background texture and leaf contour
information, and the second set of mixed convolution kernels focused on the leaf light and
shade changes, and leaf contour information.

With the further calculation of convolutional layers, the number of channels increases,
with the scales of the output feature map decreasing, and the focus of feature extraction
becomes more diversified. Therefore, Figure 9d shows that the hybrid convolution kernel
used receptive fields of different scales to extract features with different emphases without
adding additional calculations. The resulting abstract feature maps have richer semantics,
which can balance calculated amounts while improving accuracy.



Forests 2023, 14, 1083 16 of 25

Forests 2023, 14, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 9. MixNet XL feature map output. 

3.4. ROC Index Evaluation 
Figure 10 shows the ROC curve and AUC area predicted by the generic model, the 

original model, and the composite model. The ROC curves of MixNet XL combined with 
KNN and EfficientNet B2 combined with RF are closest to the upper left corner, meaning 
they have the strongest sensitivity to the positive samples, and the models showed 
stronger generalization and prediction capabilities. The second was SE-ResNet50 
combined with SVM. Compared to the original model, the AUC areas of the above three 
types of composite models increased by 0.013, 0.011, and 0.008, respectively, and increased 
by 0.02–0.05 compared to the generic model. Therefore, the composite model exhibited 
the best predictive performance. In contrast, the VGG16 model curve was closest to the 
diagonal and had the lowest AUC value. Therefore, the classification and ranking ability 
and prediction effect of the composite model proposed in this study were improved 
compared to the original model. 

Figure 9. MixNet XL feature map output.

3.4. ROC Index Evaluation

Figure 10 shows the ROC curve and AUC area predicted by the generic model, the
original model, and the composite model. The ROC curves of MixNet XL combined
with KNN and EfficientNet B2 combined with RF are closest to the upper left corner,
meaning they have the strongest sensitivity to the positive samples, and the models showed
stronger generalization and prediction capabilities. The second was SE-ResNet50 combined
with SVM. Compared to the original model, the AUC areas of the above three types
of composite models increased by 0.013, 0.011, and 0.008, respectively, and increased by
0.02–0.05 compared to the generic model. Therefore, the composite model exhibited the best
predictive performance. In contrast, the VGG16 model curve was closest to the diagonal and
had the lowest AUC value. Therefore, the classification and ranking ability and prediction
effect of the composite model proposed in this study were improved compared to the
original model.

Figure 11 shows the prediction accuracy learning curves for all the models in the test
set. The experimental model curves were generally higher than the other models, and the
initial learning accuracy was higher than the other models, indicating that the initial weight
assignment was more accurate in the sample learning process, and all experimental models
converged to the fitted state in accuracy at epoch = 13. VGG16 had the lowest accuracy of
0.903, and the initial learning accuracy was also lower than the other models. Compared to
the other models, the accuracy of the experimental model was increased by 1.4% to 9.2%;
thus, obtaining a better recognition accuracy for the same recognition task and achieving
the fitted state with fewer iterations.



Forests 2023, 14, 1083 17 of 25
Forests 2023, 14, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 10. ROC curves in each model. 

Figure 11 shows the prediction accuracy learning curves for all the models in the test 
set. The experimental model curves were generally higher than the other models, and the 
initial learning accuracy was higher than the other models, indicating that the initial 
weight assignment was more accurate in the sample learning process, and all 
experimental models converged to the fitted state in accuracy at epoch = 13. VGG16 had 
the lowest accuracy of 0.903, and the initial learning accuracy was also lower than the 
other models. Compared to the other models, the accuracy of the experimental model was 
increased by 1.4% to 9.2%; thus, obtaining a better recognition accuracy for the same 
recognition task and achieving the fitted state with fewer iterations. 

Figure 10. ROC curves in each model.

Forests 2023, 14, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 11. Accuracy of all models on the test set; RE indicates the experimental model. 

3.5. Evaluation of Different Model Metrics 
We further calculated the evaluation metrics, including over accuracy, precision, 

recall, F1-score, and AUC, to compare the predictive results for each model , and the 
specific values are shown in Table 4. The MixNet XL model with the KNN classifier had 
the highest recognition accuracy in all four metrics, followed by the EfficientNet B2 model 
with RF classifier, which was followed by the SE-ResNet50 model combined with the SVM 
classifier. Compared to VGG16, ResNet18, and DenseNet121, MixNet XL combined with 
KNN had increased accuracy, precision, recall, F1-score, and AUC area by 4.1%–9.57%, 
3.73%–8.51%, 4.07%–9.64%, 4.02%–9.73%, and 0.021–0.05, respectively. 

Compared to the original models: the MixNet XL, SE ResNet 50, and EfficientNet B2 
models, the overall accuracy of the composite model was increased by 2.63%, 1.55%, and 
2.21%, respectively, while the F1-score increased by 2.16%–8.53%, and the AUC increased 
by 0.008–0.013; moreover, the recall and precision increased significantly, by 
approximately 2%–10%. Based on the above metrics, the composite model showed 
improvements in overall accuracy, precision, recall, F1-score, and AUC compared to the 
generic and original models, with an overall accuracy improvement of 1.55%–9.57%. 

Table 4. Model metric comparisons. F1-score indicator values converted to percentage display. 

Model Accuracy Precision Recall F1 AUC 
VGG16 90.29% 91.34% 90.20% 90.12% 0.949 

ResNet18 92.26% 92.97% 92.39% 92.45% 0.960 
DenseNet121 95.76% 96.12% 95.77% 95.83% 0.978 
MixNet XL 97.23% 97.30% 97.31% 97.24% 0.986 

SE-ResNet 50 98.10% 98.20% 98.12% 98.11% 0.990 
EfficientNet B2 97.60% 97.69% 97.70% 97.64% 0.988 

MixNet XL_KNN 99.86% 99.85% 99.84% 99.85% 0.999 
SE-ResNet_SVM 99.65% 99.63% 99.63% 99.63% 0.998 

EfficientNet B2_RF 99.81% 99.81% 99.80% 99.80% 0.999 

Figure 11. Accuracy of all models on the test set; RE indicates the experimental model.

3.5. Evaluation of Different Model Metrics

We further calculated the evaluation metrics, including over accuracy, precision, recall,
F1-score, and AUC, to compare the predictive results for each model, and the specific
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values are shown in Table 4. The MixNet XL model with the KNN classifier had the highest
recognition accuracy in all four metrics, followed by the EfficientNet B2 model with RF
classifier, which was followed by the SE-ResNet50 model combined with the SVM classifier.
Compared to VGG16, ResNet18, and DenseNet121, MixNet XL combined with KNN had
increased accuracy, precision, recall, F1-score, and AUC area by 4.1%–9.57%, 3.73%–8.51%,
4.07%–9.64%, 4.02%–9.73%, and 0.021–0.05, respectively.

Table 4. Model metric comparisons. F1-score indicator values converted to percentage display.

Model Accuracy Precision Recall F1 AUC

VGG16 90.29% 91.34% 90.20% 90.12% 0.949
ResNet18 92.26% 92.97% 92.39% 92.45% 0.960

DenseNet121 95.76% 96.12% 95.77% 95.83% 0.978
MixNet XL 97.23% 97.30% 97.31% 97.24% 0.986

SE-ResNet 50 98.10% 98.20% 98.12% 98.11% 0.990
EfficientNet B2 97.60% 97.69% 97.70% 97.64% 0.988

MixNet XL_KNN 99.86% 99.85% 99.84% 99.85% 0.999
SE-ResNet_SVM 99.65% 99.63% 99.63% 99.63% 0.998

EfficientNet B2_RF 99.81% 99.81% 99.80% 99.80% 0.999
The F1 Score in the table is displayed as a percentage.

Compared to the original models: the MixNet XL, SE ResNet 50, and EfficientNet B2
models, the overall accuracy of the composite model was increased by 2.63%, 1.55%, and
2.21%, respectively, while the F1-score increased by 2.16%–8.53%, and the AUC increased
by 0.008–0.013; moreover, the recall and precision increased significantly, by approximately
2%–10%. Based on the above metrics, the composite model showed improvements in
overall accuracy, precision, recall, F1-score, and AUC compared to the generic and original
models, with an overall accuracy improvement of 1.55%–9.57%.

3.6. F1-Score and Loss Curve

Figure 12 shows the change curves in the F1-scores and loss values of the original
model and experimental models as the number of training iterations increased. The F1-score
and loss values of the experimental models were the average values of the corresponding
metrics of the K-Fold–CV models. The initial F1-score of the experimental models was
higher than the original models. The initial F1-score of the RE-SE-ResNet50 model was
slightly lower than the other experimental models, yet as the iteration numbers increased,
they increased to over 0.97 at epoch = 20, which is an improvement of 2.2%–3.6% compared
to the original models.

The initial losses of the experimental models were all lower than the original models.
The initial losses of the RE-SE-ResNet50 model were greater than the other two experi-
mental models, although the losses gradually decreased as the iterations increased, and
they were 1.124–2.041 lower than the original models at epoch = 20. The losses were all
lower than 0.032 for all experimental models, and the losses were 0.054–0.14 lower than the
original models. The experimental models tended to fit without significant fluctuations at
epoch = 13, and the classification results were better than the original models. Therefore,
the experimental models can achieve better recognition capability with the same number of
training times. It can be seen that the improved experimental model can obtain better fea-
ture extraction performance and provide high-level abstract features for classifier training
and prediction.
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3.7. The Main Attention Regions for Different Recognition Models

To illustrate the important regions of concern in the prediction of different models, we
applied the Gradient-weighted Class Activation Mapping (Grad-CAM) method to generate
the heatmap. Figure 13 indicated that the attention regions of MixNet XL and EfficientNet
B2 models in the final convolutional layer were mixed with different background features,
especially in the MixNet XL K-FOLD1 model, the activation regions near the twigs back-
ground were especially obvious (Figure 12). MixNet XL model had a larger activation area,
which focused on the front and middle positions of multiple leaves; thus, had a larger
range of recognition attention regions. Except for the K-FOLD3 model, other models in the
SE-ResNet50 model could better concentrate on the twigs and dense-leaf region and had
no dispersion in the attention region. The key activation area gradually decreased from the
branches and leaves to the front of the leaves.

The main attention regions in the EfficientNet B2 model were located in the leaf
positions at the smaller regions, thereby mixed with the small background regions. The
key activation regions (red and orange regions) of the EfficientNet B2 model were smaller
and more dispersed than the other models. Therefore, EfficientNet B2 performed main
feature extraction and weight distribution for small-scale areas. The feature output in the
final convolutional layer of the SE-ResNet50 model performed best in locating the main
regions of interest for recognizing objects, and the focus regions were more concentrated.
In contrast, the main attention area of the MixNet XL model was concentrated in the region
of the dense leaves, and the attention area was more dispersed and mixed with some
background features.

In the three models, the weight distribution of each channel of SE-ResNet50 was
more in line with the data distribution law, and the positioning of the important areas was
more accurate.
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4. Discussion

Our proposed method needs less equipment to collect the leaf images and also does
not need to apply complicated and multiple preprocessing jobs compared to classifications
based on satellite images and other tree features, such as wood and barks [21,52]. The leaf
image collection in this study only required the use of high branch shears to collect leaves
and smartphones to capture the leaf images. Compared to the previous samples using
wood texture and single leaves as the main feature information [53,54], the samples used in
this experiment were multiple twigs and multiple leaves, which makes the model fitting
more challenging and discerning. In addition, our method was not affected by common
natural interferences, such as location, viewing angles, and light conditions. Thus, our
method is more appropriate for applications in complex conditions, such as the field survey
for forest resources. Our proposed method can be integrated into plenty of mobile terminal
applications for tree species recognition and can improve recognition accuracy.

Many previous studies have used traditional classifiers to predict tree species classes,
which require complex data preprocessing and feature extraction work, such as computing
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a histogram of gradients (HOG) [10], computing grayscale co-generation matrix (GLCM)
descriptors, and texture descriptors to represent important features of images [55]. In this
study, we use CNNs instead of the traditional feature extraction step, thereby reducing the
workload involved in image preprocessing and feature extraction.

We used the classifiers as the final decision model to predict the tree species according
to the extracted features by the CNNs. Our method replaced the CNN fully connected layer
for prediction and increased the predictive performance of the model. Compared to the
original models: MixNet XL, SE-ResNet50, and EfficientNet B2, the overall accuracy was
experimental by 2.63%, 1.55%, and 2.21%, respectively. The accuracies of all three composite
models were higher than the recognition accuracies in previous studies [10,11,19], proving
the effectiveness of the experimental method.

The experimental accuracy in this study was due to three reasons. Firstly, the current
CNN model, which possesses better performance, was used as the feature extractor, along-
side the pretrained model. Secondly, the K-Fold–CV method was used for model training
and validation to improve the robustness and generalization of the model and to unify the
feature distribution of the training set. In addition, the classifier was used for tree species
identification instead of the traditional fully connected layer. The error in prediction was
mainly caused by the relatively higher misclassification rates between Sapindus mukorossi
and Choerospondias axillaris, and between Ilex chinensis and Ilex integra, due to their high
interspecific similarity in leaf shape, leaf arrangement order, and vein texture.

In this experiment, the automatic identification of tree species images acquired by
mobile devices was completed by constructing a composite model. Remote sensing-based
methods enable image sampling and forest surveys in areas with complex topography.
Many researchers have tried to apply remote sensing technology to forestry tree species
identification and resource inventory. Large-area images can be obtained at one time by
using satellite remote sensing, which is suitable for large-scale tree species identification.
In the study of applying the CNN model to remote sensing data processing, Huang et al.,
2023 [56] used the DJI Phantom 4 UAV to obtain a total of 1247 forest remote sensing images
as source data for tree species identification. Furthermore, using MobileNetV2 as the
backbone network for feature extraction, a dual-attention residual network (AMDNet) was
proposed, which achieved an accuracy of 93.8% on mIoU (mean intersection over union).
The improved CNN model in this experiment can continue to be applied to the feature
extraction of large-scale remote sensing images to assist in the completion of large-scale
tree species identification tasks. Combining remote sensing technology with deep learning
technology will be one of the powerful ways to improve the traditional large-scale forest
condition survey and forest tree species mapping [15,57].

5. Conclusions

We used the MixNet XL model with mixed convolutional kernels, which uses convolu-
tional kernels of different scales to extract features with different resolutions, improving the
problem of difficulty to optimize accuracy due to the expansion of convolutional kernels.
The SE-ResNet50 model uses the attention mechanism combined with the residual module
to increase the weights of key features and retain the learning information to improve
the gradient disappearance problem caused by the increase in depth. The EfficientNet B2
model modifies the number of channels of the model, the depth of the model, and the
resolution size of the input features by balancing the composite coefficients to achieve
optimization of the model structure and accuracy improvement. Further, the three model
structures are fine-tuned to accelerate the model fitting rate through LeakyReLU, Dropout,
and BatchNorm layers to prevent the overfitting phenomenon and increase the model
generalization ability.

The model was trained and validated by combining the K-Fold–CV methods to balance
the feature distribution of the training set and prevent overfitting. The fully connected
layers of the experimental model were replaced with KNN, SVM, and RF classifiers to
perform category predictions. Grad-CAM heatmaps show important activation areas and
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emphasize the different experimental models. Among them, the activation area positioning
ability of the SE-ResNet50 model was the best, except for the K-Fold3 model.

The overall accuracy of the composite models was higher than the other models. There
was a 1.76%–9.57% improvement in accuracy. The recognition errors mainly occurred
between Sapindus mukorossi and Choerospondias axillaris, and between Ilex chinensis and Ilex
integra. After observing the images, we found that the growth distribution, shape, and
texture of the leaves had a high similarity, which caused a lot of recognition errors.

This study performed image recognition based on 21 classes of tree species with
99.86% recognition accuracy by improving the MixNet XL, SE-ResNet50, and EfficientNet
B2 models combined with KNN, SVM, and RF classifiers. The images in the dataset mainly
show the characteristics of multiple twigs and multiple leaves, which is more in line with
the growth characteristics of trees, meaning that the application range of the model is wider.
It can provide important information for forest resource inventory, urban tree species
configuration planning and design, and the conservation of rare and endangered tree
species. At the same time, the research on automatic recognition of tree species images also
provides technical support and innovative ideas for the intelligent development of forestry.
This experiment uses CNN models as a feature extractor to achieve automated high-level
abstract feature extraction while reducing the workload. Moreover, combining the models
with the classifiers as a decision model, improved the overall classification accuracy and
provided a new modeling idea for the development of related software.

Comparing the fitting accuracy of each CNN model can promote the framework
structures of the MixNet XL and EfficientNet B2 models to become more suitable for
advanced feature extraction of multi-leaf and multi-twig samples, and the extracted abstract
feature distribution became more suitable for this type of recognition task.

Van Horn et al., 2018 developed the iNaturalist application based on the multi-feature
recognition of leaves, flowers, bark, etc., and its recognition accuracy was 67% due to the
impact of category balance [58]. Compared to the former, the number of tree species in
this study was small; however, the accuracy rate was greatly improved due to the use of a
composite model architecture and a more balanced category distribution.

In previous studies, a single CNN model was usually used as a tree species identifica-
tion model [3], yet in this study, a CNN model was used as a feature extractor combined
with a machine learning algorithm as a decision maker to form a composite model. Its
design will help CNN models be used with different feature extraction preferences for
feature extraction and information fusion of different arbor organs, such as leaves and
branches, thereby improving the recognition accuracy and providing new technical support
and innovative ideas for future research.

In order to better handle complex recognition tasks, we need to expand the number of
tree species in the dataset for future research, while increasing the recognition of features
such as bark and flowers. In future application scenarios based on multi-feature recognition
and background noise, in order to ensure the accuracy of recognition, features such as bark
and leaves can be fused, and the final prediction can also be made using the majority voting
method. We need to continuously improve the network structure of the model to ensure
recognition accuracy and training efficiency. We also plan to integrate the composite model
into the mobile terminal to complete the research and development of the tree species
identification APP.
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