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Abstract: The requirement for alternative raw materials for fuel pellets that would enable the use
of readily available low-cost renewable resources and waste materials, such as bark, has always
attracted interest. The aim of the current work was to assess the effect of black pine (Pinus nigra L.)
bark content (0%–100%) as well as densification temperature on the properties of black pine wood
pellets produced in a single pellet die. The quality assessment of the pellets was carried out by the
determination of radial compression strength, density, moisture content, ash content, and surface
roughness. The results showed that adding black pine bark to the pellet feedstock resulted in the
production of substantially smoother and moderately denser pellets, which also exhibited higher
mechanical strength than that of the respective pellets of pure wood. Finally, it was shown that black
pine bark can be a valuable raw material, which can induce improved bonding of biomass particles
and may provide the opportunity to create pellets of favorable characteristics at a lower temperature
compared to those made of pure wood.
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1. Introduction

The feedstock used for wood pellets usually includes low-quality virgin wood, small-
diameter logs of irregular wood structure, logging, and processing residues. The val-
orization of such underutilized waste biomass material is gaining interest for various
applications. In this context, it would be beneficial to search for alternative low-cost raw
materials that have not been extensively utilized so far [1] in order to meet the increasing
raw material requirements of the pellet industry, especially given the concurrent high
demands of the paper industry and particleboard/fiberboard/pulping industry for the
same raw materials.

The need to transform biomass into a dense energy carrier, such as pellets, emerges
from the fact that in its densified form, wooden biomass presents lower volume, consistent
quality and higher energy density properties which facilitate affordable transportation and
storage as well as the lower generation of dust/fines and risk of explosions, lending to its
use as a feedstock in less challenging and expensive energy conversion systems.

Among the most crucial quality factors that should be taken into account when pro-
ducing biomass pellets is the mechanical durability. Mechanical durability refers to pellets’
capacity to tolerate pressure, friction, and shock during handling and transportation, and
constitutes an important parameter that highly affects the proper transport and combustion
of biomass [2,3]. According to standard ISO 17831-1, pellets characterized by mechanical
durability higher than 97.5% are regarded as appropriate for residential application. Dura-
bility is based on strong adhesion forces between particles, which have been attributed to
appropriate densification temperatures and pressure, raw material crystallization, chemical
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reaction, and adhesive or lignin hardening following densification [4,5]. Specifically, me-
chanical durability could be affected by parameters related to the raw material (chemical
composition, moisture content, particle size, and formulation) as well as the pelletizing
process (heating time, pressure time, post-treatments, etc.) [6]. Under the conditions drawn
up during the densification process, lignin (21%–32% of the overall mass) presents glass
transition while extractives (approximately 2%–25%), such as starch and sugars, could
polymerize acting as natural binding agents [7–9]. Furthermore, cellulose crystallinity may
increase, resulting in the further enhancement of the inter-particle adhesion [10,11], while
hemicelluloses may also have a positive effect on biomass pelletization [12]. In addition,
Stelte et al. [13] have reported that wood extractives may reduce the compressive strength
of pellets, while Telmo and Lousada [14] reported their high contribution to the increase in
calorific value.

Various additives have been utilized to enhance the bonding of biomass materials
including brown sugar powder [15], proteinaceous waste [16], bio-oil [17], microalgae [18],
rapeseed flour, coffee meal, pinecones, lignin powder [19], miscanthus, potato starch [20],
cornstarch and molasses [21], and citrus peels [22]. However, only a few studies have been
published on the impact of bark particles on the properties of wood pellets, and research
into the development of pellets using bark proportions is still in its early stages [23,24].

Annually, the amount of bark synthesized varies between 179.557.100 and 359.114.200 m3 [25].
It is a readily available, low-cost, biological, and renewable raw material with valuable prop-
erties [26]. Nevertheless, bark is difficult to be utilized in paper and chipboard industries
due to its high extractives content, dark color, and lower mechanical strength. Additionally,
the high ash, nitrogen, and sulfur content compared to wood [8,23] constitutes a limiting
factor with regard to its energy utilization, especially in small-scale burning systems where
problems related to high ash content are difficult to manage [1]. Vinterback [7] has reported
that purely bark-based pellets may cause the ash components to sinter on the burner walls,
which would not occur in the case of wood–bark mixture-based pellets.

Bark extractives, mainly tannins, exhibit adhesive properties [27]; wood bonding
without any binder is technically feasible even through bark self-bonding is attributed
mainly to the development of physical bonds and the polymerization of bark extractives
under suitable conditions of temperature, pressure, and time [28,29]. Self-bonding can be
facilitated by high temperatures since they induce the thermal–chemical degradation of
bark and the production of compounds that are ready to react with bark extractives and
lignin [30]. Moreover, the granulometry and the share of bark particles are critical factors
affecting self-bonding [29].

Szyszlak-Bargłowicz et al. [31] reported the low calorific value of bark pellets due to
the high ash content and loss of volatiles during drying, while other researchers [10,32–35]
reported higher calorific values for bark than for wood. Generally, the calorific value of dry
bark amounts to 17,000–22,000 kJ kg−1 (4.7–6.1 kWhkg−1) and is comparable to that of dry
wood [36]. Kamperidou et al. [35] reported that the incorporation of bark of some fast-growing
hardwood species (pseudoacacia, poplar, ailanthus, and paulownia) to the feedstock of the
same species of wood material significantly increased the calorific value of the produced
biofuels and that optimized wood–bark ratios could result in biofuels of low ash content and
adequate quality for both commercial (residential and industrial) applications.

Bark pellets produced in lab-scale experiments have demonstrated satisfying mechani-
cal durability [1,7,31]. A study of the effect of pine bark on the quality of pellets containing
0, 5, 10, 30, and 100% bark showed that among the tested combinations, pellets made of
100% bark demonstrated the highest mechanical durability. Wistara et al. [6] reported
similar results with palm tree bark and wood. A bark proportion of 10% has been found
to be optimal since it corresponds to an improvement of important technical properties
without exceeding the ash content requirement (less than 0.7%) [1,23,37]. Lehtikangas [10]
reported the excellent resistance of bark pellets to moisture fluctuations and dimensional
changes, as well as higher density, compared to those made of wood raw material.
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Surface roughness has been acknowledged as a quality indicator of pellets, although
it still has not been extensively studied [8,38–40]. Within the above context, it would be
interesting to assess the effects of bark presence on the quality of wood pellets in terms
of their density and mechanical durability, as well as on the surface roughness, as this
could provide a potential tool for the in-line non-destructive assessment of pellet quality
within the production process or as a selection criterion prior to consumption. Therefore,
the aim of the current study was to determine the effects of bark content, as well as that
of densification temperature, on the physical and mechanical properties of wood pellets
made of black pine wood.

2. Materials and Methods

For the purposes of this research, a 25-year black pine (Pinus nigra L.) trunk that
originated from a Greek forest (Pindos region) was used. Wood and bark were manually
separated. Representative, defect-free wood specimens were sampled from several different
regions of the trunk (different heights from 30–130 cm and different areas in the direction
from pith to cambium zone). Wood and bark were crushed using a hammer mill (Laizhou
Chengda Machinery Co., Ltd., Yantai, China) and sieved to acquire particle dimensions of
0.5–1 mm. Afterward, the materials were conditioned in a climate chamber at 20 ± 0.1 ◦C,
65 ± 1% RH until constant weight. Prior to densification, the mean moisture content of
the used materials was determined according to EN14774-3:2009 [41] and was found to be
11.22% for wood and 12.99% for bark. The ash content of the materials was determined
according to ASTM D1102-2001 [42] averaging four replicates. Specifically, samples of
at least 1 g were weighed to the nearest 0.1 mg in dry, clean, and pre-weighed porcelain
crucibles and then transferred to a cold muffle furnace (Heraeus MR 170, Leipzig, Germany)
with a ventilation rate of about 5 changes per minute. The samples were heated to 250 ◦C
within 50 min and the temperature was kept constant for 60 min. In the next step, the
temperature was increased to 580 ◦C within 60 min and was maintained at that level for
2 h. Afterwards, the crucibles were transferred to an empty desiccator without a lid for
5 min, followed by 15 min with a closed lid, and then weighed.

In order to study the effect of bark content on the quality of wood pellets, various bark
to wood mixtures (w:w) were prepared, namely 0:100, 10:90, 20:80, 30:70, 60:40, and 100:0,
respectively. The mixtures were manually homogenized for approximately 10 min/mixture.
The above materials were used for the production of pellets using a laboratory-scale single
die press (Figure 1) with a diameter of 12 mm and adapted to an Amsler hydraulic universal
testing machine with a capacity of 4 t. The use of a single pellet die has been also used
elsewhere for the production of pellets under controlled production parameters [43–45].
In this research, the used pellet press was used at a closing speed of 10 mm/min and
temperatures of 80, 100, 120, 140, and 160 ◦C. The densification load was 4 t.

Immediately after the production of each pellet, its diameter, thickness, and weight were
measured using a digital caliper with a resolution of 0.01 mm (Mitutoyo 500-196-30) and a
balance with a resolution of 0.001 mg. Using the above measurements, the pellet density
was also calculated and the results were expressed in kilograms per cubic meter (kg/m3).
The produced pellets were conditioned in a climate chamber at 20 ± 0.1 ◦C, 65 ± 1% RH
and their MC was determined according to EN ISO 18134-1 [46]. After conditioning, the
dimensions (diameter, thickness, and weight) were measured again in order to assess any
dimensional changes after the conditioning.

Mechanical durability is considered one of the most important parameters for assessing
pellet quality since it is the optimal indication of the risk of pellet deterioration and fines
production during transport and handling [23]. In the case of single pellet production,
mechanical durability is usually indirectly assessed throughout the determination of the
quasi-static radial compression strength of pellets [47]. In this research, the radial compression
strength was determined using the above-mentioned testing machine (Figure 2). Up to
10 pellets for each variable were tested. Each pellet was radially loaded under constant
velocity of the loading head and the maximum compressive load was recorded for each test.
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completion of the testing process.

The surface roughness of all produced pellets was determined using a Mitutoyo
Surftest SJ-301 stylus-type profilometer according to ISO 21920-2:2021 [48]. The measure-
ment speed, pin diameter, and top angle of the pin tool were 10 mm/min, 4 µm, and 90◦,
respectively. The sampling length was 1.8 mm. For each specimen, 4 measurements were
carried out along the thickness of the specimens on the curved surfaces of cylinder-shaped
pellets (Figure 3) and were averaged. Among the typically determined roughness parame-
ters, the mean arithmetic deviation of profile (Ra) is considered the most appropriate for
similar materials and for this reason, it was used in this study [49]. Prior to the measure-
ments, the apparatus was calibrated using a Mitutoyo 178-601 surface roughness standard
protocol. All roughness measurements were carried out after careful conditioning of the
specimens at 20 ± 0.1 ◦C and 65 ± 1% RH.

Statistical analysis was carried out using SPSS Statistics, which was used to determine
statistically significant differences between the property values of the prepared pellets of
the different categories, while the 3D graphs were created by using Statistica.
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3. Results and Discussion

According to the results (Table 1 and Figure 4), the density of pellets seems to increase
upon increase in the bark content. This increase seems to be enhanced by the simultaneous
increase in temperature in the range of 80 to 160 ◦C. Therefore, the bark material seems
to have high potential for the manufacture of higher density biomass materials (solid
biofuels, bio-based products, etc.). Specifically, among the studied material types, pellets
made of 100% bark under a densification temperature of 160 ◦C demonstrated the highest
density, while the lowest density values were recorded by pellets made of pure wood at
the lowest temperatures (80 and 100 ◦C). Increased density in pelletized materials usually
corresponds to a high number of particles that are in close proximity to one another. The
bark’s components, including tannins, hemicelluloses, lignin, and cellulose nanofibers, are
those contributing to the closer proximity and stronger adhesion between the particles [50].
Furthermore, Lehtikangas [10] reported that bark is more sensitive to temperature and
pressure than wood because of the comparatively large amount of amorphous chemicals,
lignin, and extractives contributing to higher pelletized materials densities. It should also
be considered that bark usually has slightly higher moisture content than wood due to the
differences in chemical composition of these materials (in this study, the moisture contents
of black pine wood and bark were11.22% and 12.99%, respectively) and it is well accepted
that moisture improves binding of pelletized materials [51–53] due to its influence on the
glass transition temperature of lignin.

Table 1. Properties of pellets made from different material categories (mean values, standard devia-
tion values—SD, and the number of examined specimens—N).

Temperature (◦C) 80 100 120 140 160

Bark Content (%) 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 0 40

Compression
strength

(kg)

mean 5.73 4.74 5.75 6.13 6.82 7.33 6.33 4.68 4.78 5.52 5.98 6.65 9.09 9.66 10.58 7.69 6.80 6.57 8.45 9.93 10.08 8.53 10.20

N 12 10 13 6 6 6 9 12 11 6 4 6 10 11 4 8 4 6 11 9 5 12 5

SD 1.11 0.68 1.39 1.23 1.10 1.54 1.22 1.99 1.00 1.45 0.62 1.92 1.73 0.88 1.24 1.98 2.03 1.20 1.87 2.24 2.61 1.68 3.96

Roughness
Ra

(µm)

mean 3.997 3.508 2.185 2.476 1.952 1.559 3.183 2.741 2.179 1.990 1.728 1.497 3.684 2.265 2.036 1.727 1.489 1.493 4.283 3.214 2.568 4.384 2.868

N 20 20 21 10 9 10 20 20 18 10 7 9 21 20 9 12 7 10 20 20 10 20 9

SD 0.919 0.660 0.330 0.354 0.351 0.221 0.701 0.642 0.425 0.422 0.177 0.191 0.508 0.461 0.261 0.163 0.251 0.129 0.854 0.513 0.414 0.664 0.398

Density

(kg/m3)

mean 946 962 1002 998 1014 1077 903 934 990 983 1028 1016 955 1028 1023 1051 1074 1109 930 1013 1055 926 1008

N 20 20 21 10 10 10 20 20 18 10 7 10 21 20 9 12 7 10 20 20 10 20 9

SD 42.4 62.2 31.7 21.5 31.6 38.9 44.0 58.6 68.6 62.5 35.8 39.8 34.8 35.9 23.5 42.0 59.6 33.0 63.1 49.2 55.0 33.8 43.8
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The radial compression strength of the produced pellets (Table 1 and Figure 5) was
positively affected by the presence of bark. The increase in the bark ratio up to 40% re-
sulted in higher radial compression strength, though further increase seems to contribute
to a deterioration of pellet strength. This result complies with the results published by
Wistara et al. [6] who reported that the highest pellet durability resulted from densification
at 130 ◦C and a bark ratio of 30%. Additionally, Lehtikangas [10] reported that pellets made
of bark demonstrated the highest durability, whereas sawdust pellets showed the lowest
one, but without statistically significant differences among them. Terzopoulou et al. [52]
reported that an increase in the bark content from 0% to 7% in pellets feedstock material had
a beneficial effect on the mechanical durability of cypress species (Cupressus arizonica and
Cupressus sempervirens) fuel pellets of conventional dimensions, which corresponds to a me-
chanical durability improvement that ranges between 1.62 and 2.3%. Lerma-Arce et al. [54]
also confirmed that an increase in the bark content increases the mechanical durability of
pellets. This increase could be attributed to the higher lignin and extractives concentration
of bark compared to wood material exhibiting a positive effect on the cohesion mechanism
during the densification process [10,55].
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Consequently, these essential findings of previous and current research work reveal a
high potential for bark utilization in solid biofuels and other densified biomass materials.
Additionally, bark presence in pellet feedstock could provide the opportunity for pellets of
satisfying properties to be produced at lower temperatures than those made of pure wood,
in this way reducing the required energy consumption and production cost.

Additionally, densification temperature seems the most important factor influencing
mechanical durability. Densification temperatures up to 100 ◦C resulted in the lowest radial
compression strength values among the tested variables without statistically significant
differences between 80 ◦C and 100 ◦C. An increase in temperature to 120 ◦C induced
improved bonding, which was evident by the increased radial compression strength of the
produced pellets. Nevertheless, further increases at the level of 140 ◦C and 160 ◦C did not
correspond to an additional increase in radial strength. This indicates that the beneficial
effect of temperatures up to 120 ◦C upon softening of the densified materials is probably
balanced by the thermal degradation of the material that occurs at higher temperatures.
The level of pressure applied during densification is a factor of significant influence on
the mechanical durability of the pellets [54]; however, in the present study, the pressure
applied during densification of all pellets was constant (4 tons) in order to allow the other
factors to be compared (densification temperature and bark percentage). According to
previous studies, the mechanical durability of pellets appears to be strongly correlated to
their density [38,52]. Nevertheless, in this research, the linear correlation between these
two variables was not found to be strong (Figure 6).
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Regarding the surface roughness of pellets, the use of black pine bark resulted in
Ra mean and standard deviation decrease (Table 1 and Figure 7). The highest mean
roughness value was presented by pellets made of 100% wood material, whereas the
lowest value was recorded by pellets made of 100% bark. Furthermore, the effect of the
densification temperature factor on pellet roughness seems to be less strong than bark
content, though still there is an effect that corresponds to the respective effects regarding
radial compression strength: the increase in the densification temperature up to 120 ◦C
resulted in the decrease in roughness, while a further increase to levels higher than 120 ◦C
resulted in an increase in pellet roughness. This fact indicates that the lower temperatures
(below 120 ◦C) are not high enough to trigger various beneficial chemical reactions on the
surface of the densified products, such as migration of extractives, surface modification,
and glass transition of lignin, which would result in a smooth surface. Accordingly,
higher temperatures (above 120 ◦C) are likely to exceed the range of positive impact
of heat, since thermal degradation/oxidation, etc., reactions may take place, leading to
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an increase in the surface porosity of the pellet and resulting increased roughness. A
thorough characterization of the chemical composition in the surface layer of pellets,
as well as a structural analysis, would probably contribute to the interpretation of the
abovementioned results.
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The above results regarding mean Ra values are further validated by the respective
standard deviation values of the same parameter (Figure 6, right). The increase in the
bark content, as well as temperature, results in a more homogeneous surface in terms
of roughness. The few relevant studies in the literature reveal that the high roughness
of pellet surface is correlated with lower quality of wooden pellets, more specifically to
lower mechanical durability, higher ash content, and lower calorific values, at least for
fuel pellets sold in the market [8]. Despite the above results regarding the clear positive
effect of bark content on the radial compression strength as well as surface smoothness
of produced pellets, Figure 7 as well as Figure 8 suggest that there is no clear correlation
between surface roughness and the mechanical durability of pellets. This finding can lead
to the conclusion that the mechanical properties of pellets are a result of multiple factors
that should be systematically assessed, in order to deeply understand the fundamentals of
the bonding mechanisms during densification. Furthermore, the weak correlation of Ra
against the density values of the produced pellets (Figure 9) validates the above conclusion.
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According to the findings of the current study, the ash content of wood was 0.24%,
while the corresponding value of bark was 5.21%. Furthermore, the mixtures of bark and
wood materials exhibited corresponding ash content values, as expected (Table 2). Bark
content and ash content seem to be strongly correlated.

Table 2. Mean ash content values of the considered material categories (bark:wood ratios).

Bark:WoodRatio 0:100 20:80 40:60 60:40 80:20 100:0

Ash content (%) 0.24 1.24 2.23 3.22 4.21 5.21

According to EN-Plus (ISO 18122), the ash content threshold values for A1, A2, and B
classes of pellets intended for residential use are 0.7%, 1.2%, and 2%, respectively. Pellets
approved for industrial uses are certified as class I (industrial grade) and the respective
threshold value of ash content is 3%. In this context, only the pellets that are purely made
of black pine wood or those of low (up to 11.3%) bark content could be used as feedstock
for the production of premium quality class (A1) pellets. Pellets made of up to 20%bark
could be classified as A2; to fulfill the requirement for class B, bark contents should be in
the range of 20%–36%. Regarding industrial use, the bark content could be in the range of
36%–56%, while bark ratios higher than 56% cannot be used as feedstock material in the
production of solid biofuels, though could be used in the production of other densified
biomass products, in applications where ash content is not a matter of concern.

In addition, Lerma-Arce et al. [54] reported that it is feasible to obtain high-quality
pellets, in terms of ash content, as well as mechanical durability, bulk density, calorific
value, moisture content, etc., from barked logs and branches of pine species, specifically
of Pinus halepensis and Pinus pinaster, in which bark contents of 8.76% and 11.43% were
recorded, respectively.

The findings of the current work imply that the abundant forest biomass residue of
bark could be transformed into high added-value solid biofuels, especially through the
examination of each species’ properties and potential individually, as well as through the
optimization of the wood-to-bark ratio of solid biofuel feedstocks. In this way, new oppor-
tunities would undoubtedly open for local industries and alternative residual materials
would contribute to the saving of the valuable wood raw material.
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4. Conclusions

The main conclusions that could be drawn from the current work are summarized in
the following:

• The use of black pine bark as a feedstock for the production of wood pellets resulted in
smoother and moderately denser pellets, which also demonstrated higher mechanical
strength than those made of pure wood. In fact, the increased bark ratio resulted
in further improvement of the above properties. Bark presence in pellet feedstock
could provide the opportunity for pellets to satisfy properties to be produced at
lower temperatures than those of pure wood, reducing the energy consumption and
production cost;

• The optimal densification temperature was 120 ◦C while lower or higher temperatures
resulted in inferior properties of the produced properties;

• It can also be concluded that black pine bark could be considered as a raw material or
an additive for the production of solid biofuels or other densified materials, as long
as the other important properties fulfill the corresponding technical requirements for
each application;

• The surface roughness was weakly correlated to the radial compression strength and
density of the produced pellets;

• Low black pine bark contents, of up to 11.3%, 20%, and 36%, could ensure the produc-
tion of fuel pellets that comply with quality requirements of A1, A2, and B classes,
respectively, all of which correspond to residential use.
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