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Abstract: The correct estimation of forest aboveground carbon stocks (AGCs) allows for an accurate
assessment of the carbon sequestration potential of forest ecosystems, which is important for in-depth
studies of the regional ecological environment and global climate change. How to estimate forest
AGCs quickly and accurately and realize dynamic monitoring has been a hot topic of research in the
forestry field worldwide. LiDAR and remote sensing optical imagery can be used to monitor forest
resources, enabling the simultaneous acquisition of forest structural properties and spectral informa-
tion. A high-density LiDAR-based point cloud cannot only reveal stand-scale forest parameters but
can also be used to extract single wood-scale forest parameters. However, there are multiple forest
parameter estimation model problems, so it is especially important to choose appropriate variables
and models to estimate forest AGCs. In this study, we used a Duraer coniferous forest as the study
area and combined LiDAR, multispectral images, and measured data to establish multiple linear
regression models and multiple power regression models to estimate forest AGCs. We selected the
best model for accuracy evaluation and mapped the spatial distribution of AGC density. We found
that (1) the highest accuracy of the multiple multiplicative power regression model was obtained for
the estimated AGC (R2 = 0.903, RMSE = 10.91 Pg) based on the LiDAR-estimated DBH; the predicted
AGC values were in the range of 4.1–279.12 kg C. (2) The highest accuracy of the multiple multiplica-
tive power regression model was obtained by combining the normalized vegetation index (NDVI)
with the predicted AGC based on the DBH estimated by LiDAR (R2 = 0.906, RMSE = 10.87 Pg); the
predicted AGC values were in the range of 3.93–449.07 kg C. (3) The LiDAR-predicted AGC values
and the combined LiDAR and optical image-predicted AGC values agreed with the field AGCs.

Keywords: LiDAR; multispectral images; aboveground carbon stocks; multiple regression model

1. Introduction

With the intensification of global warming and the greenhouse effect, the carbon cycle
has become a hot spot in global climate change research [1,2] and forests, as the largest
carbon reservoir in terrestrial ecosystems [3] store more than 80% of carbon [4]. Since
forest aboveground biomass (AGB) is a key biophysical parameter for measuring carbon
and is generally used to quantify the contribution of forests to the global carbon cycle
and the forest aboveground carbon stock (AGC) is an important parameter for assessing
carbon sequestration capacity and carbon balance above the forest soil layer, it is crucial to
understand the role of forests in carbon cycling and climate change.

Forests 2023, 14, 992. https://doi.org/10.3390/f14050992 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14050992
https://doi.org/10.3390/f14050992
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-6177-9124
https://doi.org/10.3390/f14050992
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14050992?type=check_update&version=1


Forests 2023, 14, 992 2 of 17

Forest AGCs have traditionally been measured by field measurements, and although
the traditional field measurement method is highly accurate, it is destructive to forests,
laborious, and excessively expensive, mainly for small samples [5], and is not suitable
for spatially continuous AGC estimation [6]. How to improve the accuracy of spatially
continuous forest AGC estimation is still an active research area [7].

Remote sensing can provide accurate and rapid information on vegetation cover over
large areas and is now widely used to estimate forest AGB and AGCs [8]. The vegetation
indices generated from multispectral images can be used to estimate AGB and AGCs [9].
However, the inability of optical images to penetrate the canopy and provide informa-
tion on the vertical structure of the forest may lead to uncertain estimates in areas with
dense canopies [10,11].

Light detection and ranging (LiDAR) can quickly and accurately acquire 3D infor-
mation on vegetation [12] and horizontal and vertical structural information on the forest
canopy surface and can overcome the optical remote sensing saturation problem, and its
emitted laser beam can penetrate the forest canopy. The acquired point cloud can be used to
accurately estimate tree height, diameter at breast height, canopy size, and other structural
attributes [13,14] and is therefore widely used to estimate AGCs. These LiDAR-derived
structural attributes can be used with field measurements to estimate forest AGB through
different models. Lu et al. [15] used LiDAR data to extract individual tree structural pa-
rameters and input them into an anisotropic growth model to obtain sample-scale AGB.
Chen et al. [16] used a multiple regression model to estimate forest AGB and found that the
accuracy of the nonlinear model was better than that of the linear model. Luo S et al. [17,18]
analyzed the data fusion method of LiDAR and optical images from the perspective of the
three-dimensional structure of forest stands, but it is only applicable to data estimation
in small areas because of the small coverage area, which limits the utilization of remote
sensing data. However, the variables used vary depending on the type of tree species in
the study area; determining the best variables remains challenging, and due to the lack of
forest canopy spectral information, the accuracy of tree species classification from LiDAR
data is limited in complex vegetation conditions [19].

To further improve the accuracy of forest AGB and AGC estimation, a data fusion
method of optical images and LiDAR data was proposed [7], which not only provides
spectral information but also forest structure information and therefore can improve the
accuracy of forest AGC estimation [20,21]. Popescu, S. et al. [22,23] showed that adding a
large number of field measurements for modeling based on data fusion can also improve
the estimation of forest AGB and AGC. Kim et al. [24] indicated that combining spectral
information with attributes derived from LiDAR data is more suitable for assessing AGB
and AGC estimates than using optical images or LiDAR data alone. The above study
was based on a large amount of field measurement data, and the variables were entered
into the regression model to estimate the accuracy. However, there are challenges in
finding a method to build a regression model to accurately estimate forest AGCs with
relatively few field measurements. We hypothesized that forest-related attributes (tree
height, diameter at breast height) combined with remote sensing spectral indices through
anisotropic relationships could be used to accurately estimate forest AGCs at the sample
plot scale with fewer field measurements.

In this study, we aim to develop a new method for forest AGC estimation by combining
forest structural properties and spectral information using the anisotropic relationship
assumed above. To improve the estimation of forest AGCs, in this study, we added
horizontal structure variables from multispectral images to the measured data and vertical
structure variables from LiDAR data to establish a multiple regression model and to
explore the effect of combining multisource remote sensing variables on model accuracy.
The accuracy was evaluated by comparing and analyzing the multivariate linear model
and multivariate power model to estimate the forest AGCs at the sample plot scale. The
spatial distribution of AGC density was mapped. This approach enables a more accurate
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estimation of forest AGCs and provides data support for the carbon cycle and sustainable
forest management.

2. Materials and Methods
2.1. Study Area

The study area (119◦28′–120◦01′ E, 47◦15′–47◦35′ N) is located in the middle section
of the Daxingan Mountains in the northwestern part of Xing’an League, Inner Mongolia
Autonomous Region, and is a comprehensive forestry site integrating natural and planted
forests (Figure 1). It borders Mongolia to the west and Hulunbuir to the north and is
an essential natural ecological reserve in China. The total area of the forestry field is
4,981,200,000 m2, of which 334,660,000 m2 is forestry land, accounting for 67% of the whole
area. The forest coverage rate is as high as 61%, and the altitude is mostly 792–1495 m.
The region has a cold-temperate continental monsoon climate with an annual average
temperature of 1.48 ◦C; the coldest monthly average temperature is −25.6 ◦C and the
hottest monthly average temperature is 16.6 ◦C. The mean annual precipitation is 437 mm.
The forest is dominated by Betula platyphylla, Larix gmelinii, and some rare Populus davidiana
and Pinus sylvestris.
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Figure 1. Location of the study area.

2.1.1. Inventory Data

We selected representative sample sites for the field survey in July 2022 based on forest
type, slope position, and slope orientation in the area covered by airborne LiDAR data in
2021. We selected 35 natural forest sample sites in the study area according to different
tree species and stand densities (Figure 2). Each sample plot was set up as a rectangle of
10 m × 40 m with an area of 400 m2. The field survey was conducted in July 2022 using a
random sampling method to measure the sample plots. A laser rangefinder was used to
measure the height of each tree in the sample plot. Trees with a diameter at breast height
greater than 0.05 m were selected and measured at a location 1.2 m from the tree using
a DBH scale. The coordinates of the centroid and the four corners of the sample were
obtained using the differential satellite station technique of the GNSS receiver, which was
used to subsequently crop and register the point cloud data.
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Figure 2. (a) Set up base stations. (b) Tree height measurement. (c) Obtain the coordinates. (d) DBH
measurement and record.

2.1.2. Airborne and Ground-based LiDAR

On 15 July 2021, 6 flight strips (5 strips were used for the survey because the steep
mountainous terrain made it impossible for people to reach the last strip) were designed
with the operating system provided by the long 120 UAV, a long-range six-rotor UAV from
CNOOC. The density of the LiDAR point clouds along this flight path was an average of
70 per square meter. The RIEGL VUX-1 LiDAR sensor with the AP15 (X) inertial navigation
system acquires LiDAR 3D data with a laser pulse frequency of 600 kHz, a flight altitude of
300 m above ground, and a maximum field of view of 330◦.

On 17 July 2022, the LiBackpack DGC50 (Figure 3), a ground-based backpack LiDAR
system, was used for the sample site’s 3D point cloud data acquisition. Its camera image
element is 3840 × 1920, its pixels are 1800 W, the laser’s laser wavelength is 9.03 × 10−7 m,
and the scanning frequency is 300,000 pts/s. The steps for acquiring point cloud data are as
follows: first, a GNSS receiver is used to obtain the absolute coordinates of a point with a
stable GPS signal outside the sample area, and a reference station is established at that point
to acquire static data. Next, an “S”-shaped route is designed, and the surveyor connects the
phone to the LiBackpack to see the number of satellites searched and view the point cloud
on the phone while collecting data in real-time. Data are collected while walking during
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the LiBackpack data acquisition process to avoid obstructions and to ensure high-quality
point cloud data.
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2.1.3. Multispectral Imaging

On 11 July 2021, the Pegasus V300 UAV with the D-CAM2000 sensor acquired multi-
spectral data for six sample bands, i.e., the blue, green, red, red-edge, near-infrared, and
panchromatic bands (see Table 1). The flight operation design altitude was 383 m, the
heading overlap rate was 80%, the side overlap rate was 60%, and the sensor was equipped
with an IMU inertial navigation system to ensure a spatial resolution of 0.02 m.

Table 1. Multispectral image band parameters.

Band Band Name Wavelength Wave Width Spatial
Resolution (m)

Band 1 Visible Blue Light 475 20 0.2
Band 2 Visible Green Light 560 20 0.2
Band 3 Visible Red Light 668 10 0.2
Band 4 Red 840 40 0.2
Band 5 NIR 717 10 0.2
Band 6 Panchromatic Band - - -

2.2. Data Processing Approach

Ground-based forestry preprocessing, such as denoising, ground point classification,
data elevation model (DEM) generation, normalization, and single wood segmentation
was performed on LiDAR point cloud data, and variables such as tree location, tree height,
DBH, crown diameter, crown area, and crown volume were obtained from the single wood
segmentation. Five vegetation indices, including the normalized difference vegetation
index (NDVI), ratio vegetation index (RVI), enhanced vegetation index (EVI), difference
vegetation index (DVI), and adjusted soil brightness vegetation index (SAVI), were calcu-
lated after preprocessing the multispectral images with cropping, atmospheric correction,
radiometric calibration, and band synthesis. The point cloud data and multispectral image
data are then filtered for variables. The measured AGC was the dependent variable, and
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the LiDAR structural attributes (tree height, DBH) were used as independent variables for
linear and nonlinear modeling to estimate the LiDAR AGC. Similarly, the measured AGC
was used as the dependent variable. The multispectral index (NDVI), diameter at breast
height based on LiDAR data, and tree height were used as independent variables for linear
and nonlinear multisource remote sensing AGC estimation modeling. The optimal model
was selected to verify the accuracy and produce a spatial distribution of the AGC density.
The technical route is shown in Figure 4.

Forests 2023, 14, x FOR PEER REVIEW 6 of 19 

 

 

Ground-based forestry preprocessing, such as denoising, ground point classification, 
data elevation model (DEM) generation, normalization, and single wood segmentation 
was performed on LiDAR point cloud data, and variables such as tree location, tree height, 
DBH, crown diameter, crown area, and crown volume were obtained from the single 
wood segmentation. Five vegetation indices, including the normalized difference vegeta-
tion index (NDVI), ratio vegetation index (RVI), enhanced vegetation index (EVI), differ-
ence vegetation index (DVI), and adjusted soil brightness vegetation index (SAVI), were 
calculated after preprocessing the multispectral images with cropping, atmospheric cor-
rection, radiometric calibration, and band synthesis. The point cloud data and multispec-
tral image data are then filtered for variables. The measured AGC was the dependent var-
iable, and the LiDAR structural attributes (tree height, DBH) were used as independent 
variables for linear and nonlinear modeling to estimate the LiDAR AGC. Similarly, the 
measured AGC was used as the dependent variable. The multispectral index (NDVI), di-
ameter at breast height based on LiDAR data, and tree height were used as independent 
variables for linear and nonlinear multisource remote sensing AGC estimation modeling. 
The optimal model was selected to verify the accuracy and produce a spatial distribution 
of the AGC density. The technical route is shown in Figure 4. 

 
Figure 4. Data processing workflow. 

2.2.1. Field Inventory 
The anisotropic growth equation is the basis for calculating the biomass of tree organs 

and vegetation carbon stocks and for estimating the rate and potential of carbon seques-
tration by trees [25]. Currently, most forest biomass estimation studies are based on the 
selection of existing allometric growth equations or allometric growth equations fitted 
from resolved wood data according to the study area [26]. In this study, we estimated the 
AGC of L. gmelinii in the Dural forest based on the allometric growth equation [27] of 
dominant tree species in Inner Mongolian forests (Table 2). The total AGB of the forest in 
the study area is shown in Equation (1). 

Stem Branch Leaf BarkAGB=B +B +B +B  (1)

where AGB is the total aboveground biomass; BStem is the trunk biomass; BBranch is the 
branch biomass; BLeaf is the leaf biomass; BBark is the bark biomass. 

In this study, aboveground biomass was converted to carbon stock using the default 
value of 0.5 provided by the IPCC [28], as shown in Equation (2). 

Figure 4. Data processing workflow.

2.2.1. Field Inventory

The anisotropic growth equation is the basis for calculating the biomass of tree organs
and vegetation carbon stocks and for estimating the rate and potential of carbon seques-
tration by trees [25]. Currently, most forest biomass estimation studies are based on the
selection of existing allometric growth equations or allometric growth equations fitted from
resolved wood data according to the study area [26]. In this study, we estimated the AGC
of L. gmelinii in the Dural forest based on the allometric growth equation [27] of dominant
tree species in Inner Mongolian forests (Table 2). The total AGB of the forest in the study
area is shown in Equation (1).

AGB = BStem+BBranch+BLeaf+BBark (1)

where AGB is the total aboveground biomass; BStem is the trunk biomass; BBranch is the
branch biomass; BLeaf is the leaf biomass; BBark is the bark biomass.

Table 2. Allometric growth equations of Inner Mongolian L. gmelinii.

Organ Allometric Growth Equation of L. gmelinii Reference

Stem BStem = 0.0437 (D2H)0.9781 [27]
Branch BBranch = 0.8813 (D2H)0.2237 [27]
Leaf BLeaf = 0.0317 (D2H)0.4017 [27]
Bark BBark = 0.0593 (D2H)0.4197 [27]

D denotes tree diameter at breast height; H denotes tree height; BStem denotes tree trunk biomass; BBranch denotes
branch biomass; BLeaf denotes leaf biomass; and BBark denotes bark biomass.
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In this study, aboveground biomass was converted to carbon stock using the default
value of 0.5 provided by the IPCC [28], as shown in Equation (2).

AGC = 0.5×AGB (2)

where AGC is the entire aboveground carbon stock.
The final measured AGC was obtained by simplifying Equations (1) and (2), as shown

in Equation (3).

AGCmeasured = 0.0407× (D2H)
0.9083

(3)

where D is the diameter at breast height and H is the tree height.
To verify the feasibility of estimating forest AGC based on LiDAR and multisource

data, measured data and estimates were used as reference values. The coefficient of
determination (R2) and root mean square error (RMSE) were used to assess the model’s
accuracy. The calculation equations are as follows.

R2 = 1− ∑n
i=1
(
yi − ŷi

)2

∑n
i=1
(
yi − yi

)2 (4)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(5)

where n is the number of samples; yi and ŷi are the respective measured AGC and estimated
AGC of the ith sample; and yi is the average AGC of the ith sample.

The summary statistics of the forest parameters obtained from the field measurements
are presented in Table 3.

Table 3. Summary statistics of the field-measured forest parameters.

Parameter Min. Max. Mean Std.

H (m) 3.20 15.5 9.71 2.74
DBH (m) 0.06 0.35 0.15 4.24

AGC (kg C) 2.59 285.48 51.13 37.31

2.2.2. LiDAR

LiDAR data were processed using Insta360studio, LiFuser BP, and LiDAR360. Colors
were attached to the collected sample plots with Insta360studio. The data SLAM-solving
work was performed with LiFuser BP, and LiDAR360 was used to extract the structural
attributes of the trees. First, the original point cloud data and trajectory files and GNSS
static data were imported into LiFUser BP software for trajectory solving to obtain the point
cloud data that contained the absolute geographic location information. Next, the solved
LiBackpack data were imported into LiDAR360 for processing; the point cloud data were
cropped according to the sample range and filtered after redundancy and noise removal,
and then the ground points were classified. Finally, irregular triangular grid interpolation
was used to generate a digital elevation model (DEM). The point cloud was normalized
based on the DEM to eliminate the influence of topography on tree height estimation.
Figure 5 shows the collected sample plots based on elevation and RGB.
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2.2.3. Multispectral Image Processing

The forest spectral information on remote sensing images mainly comes from the
degree of reflection, absorption, and scattering of the solar spectrum by the forest canopy,
and the chlorophyll content of forest vegetation leaves is an important indicator of pho-
tosynthetic capacity and the degree of dry matter accumulation. The spectral difference
between infrared and near-infrared bands of plants can reflect the chlorophyll content
and dry matter accumulation of vegetation, i.e., the biomass of forest vegetation can be
calculated from the spectral information of forest vegetation. The spectral information in
different bands can reflect the growth status and biomass of different vegetation. There-
fore, some vegetation indices obtained by analytical operations in the spectral band can
provide better vegetation growth and biomass. In this study, the UAV remote sensing
multispectral image map of the test area was first preprocessed with cropping, atmospheric
correction, and radiometric calibration. Then, five vegetation indices, i.e., the normalized
vegetation index (NDVI), ratio vegetation index (RVI), enhanced vegetation index (EVI),
differential vegetation index (DVI), and adjusted soil brightness vegetation index (SAVI),
were calculated separately (Table 4).

Table 4. Vegetation indices calculation.

Variable Equation Description Reference

R, G, B, NIR B1, B2, B3, B4 Bands -

NDVI (B4 − B3)/(B4 + B3) Normalized difference
vegetation index [29]

RVI B4/B3 Ratio vegetation index [30]
EVI2 2.5 × (B4 − B3)/(B4 + 2.4 × B3 + 1) Enhanced vegetation index2 [31]
DVI B4 − B3 Difference vegetation index [32]
SAVI 1.5 × (B4 − B3)/(B4 + B3 + 0.5) Soil-adjusted vegetation index [33]

3. Results
3.1. Estimation of the AGC Based on LiDAR

The modeling method used a simple regression fitting method to model the LiDAR-
estimated tree height and diameter at breast height with the forest AGC. The model
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accuracy was evaluated using R2 and RMSE. Among the various methods currently used
to invert the aboveground biomass of vegetation based on remote sensing information, the
multiple linear regression method is suitable for the regional scale. It has a high estimation
accuracy [34]. In this study, models were fitted to forest structure variables such as DBH
and tree height with the predicted AGC, and the best-fit model was selected from multiple
models (Table 5).

Table 5. LiDAR-predicted AGC modeling regression analysis.

Argument Model R2 RMSE

DBHLiDAR AGCLiDAR = 0.0661 × DBHLiDAR
2.3896 0.903 10.91

DBHLiDAR AGCLiDAR = 8.1288 × DBHLiDAR − 72.68 0.853 14.29
HLiDAR AGCLiDAR = 6.3525 × HLiDAR

0.8541 0.192 34.13
HLiDAR AGCLiDAR = 5.6161 × HLiDAR − 0.9979 0.244 32.44
DBHLiDAR × HLiDAR AGCLiDAR = 0.1999 (DBHLiDAR × HLiDAR)1.0948 0.660 19.29
DBHLiDAR × HLiDAR AGCLiDAR = 0.4076 (DBHLiDAR × HLiDAR) − 8.5008 0.746 18.82
DBHLiDAR + HLiDAR AGCLiDAR = 0.013 (DBHLiDAR + HLiDAR)2.5381 0.796 13.44
DBHLiDAR + HLiDAR AGCLiDAR = 5.3492 (DBHLiDAR + HLiDAR) − 79.995 0.794 16.94

Table 5 shows that among all of the multivariate linear models and multivariate
power models, the multivariate power model was more accurate than the multivariate
linear model. The LiDAR-estimated tree height (power function) had the lowest AGC fit
(R2 = 0.192, RMSE = 34.13). The DBH (power function) estimated by LiDAR was the best
fit for the predicted AGC (R2 = 0.903, RMSE = 10.91). The combined LiDAR-estimated
diameter at breast height and tree height significantly improved the predicted AGC fit
over the calculated tree height alone. The coefficient of determination (R2) improved from
0.192 to 0.794. However, it was lower than that based on the diameter at breast height alone.
Therefore, we used a simple power function regression model with the LiDAR-estimated
diameter at breast height as a predictor to simulate the predicted AGC, and the predictive
regression model is shown in Equation (6).

AGCLiDAR = 0.0661×DBHLiDAR
2.3896 (6)

As shown in Figure 6, the LiDAR-predicted AGC was significantly correlated with the
measured AGC. The R2 of the LiDAR inversion-predicted AGC was 0.903, and the RMSE
was 10.92.
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Based on the AGC density values from the LiDAR estimation model, the spatial
distribution of the AGC density at the sample scale was plotted in ArcGIS by inverse
distance weight interpolation, as shown in Figure 7. The minimum AGC predicted by
LiDAR was 4 kg C, and the maximum AGC was 280 kg C. These values are consistent with
the measured AGC of 2.6–285 kg C (Table 3).
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3.2. Estimation of the AGC Based on Combined LiDAR and Multispectral Images

LiDAR data have shortcomings, i.e., they are spatially discrete and do not have
imaging capability; therefore, the estimation of forest AGC was achieved by combining
multispectral information based on LiDAR-obtained tree height and diameter at breast
height. The vegetation indices based on spectral information combined with LiDAR in-
version vegetation parameters for modeling estimation can improve the fit and inversion
accuracy of AGC estimation [35]. In this study, based on the previous estimation of forest
AGC using LiDAR data, the inversion model was optimized by combining multispectral
images to complement the vegetation spectral information. The results of the Pearson
correlation analysis between the five vegetation indices and the measured AGC using
the statistical analysis software SPSS are shown in Table 6. The five selected vegetation
indices were positively correlated with the measured AGC. NDVI was significantly posi-
tively correlated with the measured AGC at the 0.01 level with a correlation coefficient of
0.236. Correlation analysis was performed to screen the optimal vegetation indices, which
improved the accuracy of the estimated AGC. This reduces unnecessary computational
processes and brings convenience to biomass inversion modeling. This approach can also
effectively replace the whole vegetation index study, reduce the survey elements, simplify
the relationship between indicators, and make the model calculation more representative.

Table 6. Correlation between vegetation indices and measured AGC.

Vegetation Index Correlation

NDVI 0.236 **
RVI 0.095
EVI2 0.093
DVI 0.123
SAVI 0.094

** indicates a significant correlation at the 0.01 level (double-tailed).

This study combined the multispectral index (NDVI) with LiDAR data to model
biomass using multiple linear and nonlinear equations. The optimal model was selected
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from the various models to predict the AGC. As seen in Table 7, the multivariate power
model was more accurate than the multivariate linear model as the regression model for
predicting the AGC from LiDAR data. The prediction of the AGC using NDVI alone was
poor (R2 = 0.056, RMSE = 36.25), and the addition of LiDAR parameters (diameter at breast
height and tree height) significantly increased the AGC prediction with significantly better
modeling accuracy. The highest accuracy (R2 = 0.906, RMSE = 10.87) was obtained for the
AGC model with a simple power function fit of NDVI combined with LiDAR diameter at
breast height prediction; the accuracy was higher than that obtained using only LiDAR
data (Table 5). This result precisely reflects that although the vegetation index can reflect
certain information on the horizontal structure of vegetation cover, it lacks information on
the vertical form of vegetation height and is prone to saturation. However, the inclusion of
LiDAR parameters overcame the saturation problem and improved the estimation accuracy
of the AGC.

Table 7. Regression analysis of NDVI combined with LiDAR parameters to predict biomass.

Argument Models R2 RMSE

NDVI AGCNDVI = 105 × NDVI − 22.04 0.056 36.25
NDVI + HLiDAR AGCNDVI+H(LiDAR) = 5.5279 × (NDVI + HLiDAR) − 4.0316 0.243 32.45
NDVI × HLiDAR AGCNDVI×H(LiDAR) = 6.4484 × (NDVI × HLiDAR) + 8.4591 0.238 32.56
NDVI + DBHLiDAR AGCNDVI+DBH(LiDAR)= 8.1248 × (NDVI + DBHLiDAR) − 78.281 0.857 14.11
NDVI + DBHLiDAR AGCNDVI+DBH(LiDAR) = 0.0419 × (NDVI + DBHLiDAR)2.5139 0.906 10.87
NDVI × DBHLiDAR AGCNDVI×DBH(LiDAR) = 9.7909 × (NDVI × DBHLiDAR) − 53.242 0.830 15.37
NDVI × DBHLiDAR AGCNDVI×DBH(LiDAR) = 0.8306 (NDVI × DBHLiDAR)2.014 0.826 12.81

This study used a simple power function regression model to simulate the AGC using
the NDVI combined with LiDAR inversion of the diameter at breast height as a predictor.
The expected regression model is shown in Equation (7).

AGCNDVI+DBHLiDAR = 0.0419× (NDVI + DBHLiDAR)
2.5139 (7)

The AGC predicted by multispectral information combined with LiDAR data was ob-
tained using Equation (7). As shown in Figure 8, the AGC predicted using the multispectral
information combined with LiDAR data correlated significantly with the measured AGC.
The predicted R2 for AGC was 0.906, and the RMSE was 10.87.

Forests 2023, 14, x FOR PEER REVIEW 13 of 19 

 

 

 
Figure 8. Multispectral information combined with LiDAR data was used to predict the AGC. Cor-
relation between the predicted and measured AGC. 

The spatial distribution of AGC density by inverse distance weight interpolation in 
ArcGIS, combining the estimated model AGC density values from LiDAR and multispec-
tral data, is shown in Figure 9. The minimum AGC predicted by the multisource data was 
3.93 kg C, and the maximum AGC was 449 kg C, which is higher than the measured AGC 
and the AGC predicted by LiDAR. 

 
Figure 9. Predicted AGC spatial distribution map based on a combination of LiDAR and multispec-
tral data. 

Figure 8. Multispectral information combined with LiDAR data was used to predict the AGC.
Correlation between the predicted and measured AGC.



Forests 2023, 14, 992 12 of 17

The spatial distribution of AGC density by inverse distance weight interpolation in
ArcGIS, combining the estimated model AGC density values from LiDAR and multispectral
data, is shown in Figure 9. The minimum AGC predicted by the multisource data was
3.93 kg C, and the maximum AGC was 449 kg C, which is higher than the measured AGC
and the AGC predicted by LiDAR.
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4. Discussion
4.1. Potential of LiDAR and Multispectral Image Synergy for Forest AGC Estimation

Compared to manual surveying, the backpack LiDAR allows for accurate scanning
and real-time data integration while on the move, providing a more flexible and efficient
way to collect data for forest inventory [36]. The backpack LiDAR requires only one sur-
veyor to carry the equipment across the survey site during data acquisition, significantly
reducing time and costs and increasing efficiency [37]. As shown in Table 8, when collecting
point cloud data of 10 m × 40 m samples, the traditional measurement method requires
3–4 people to collect the data at the same time, while the backpack LiDAR only requires
1 person to complete the collection; the traditional manual measurement takes approxi-
mately 36 min to finish measuring a sample area, while the backpack LiDAR only takes
approximately 5 min; the traditional measurement method requires preprocessing of the
collected data (inputting the data on the record sheet into Excel), which takes approximately
14 min, while the backpack LiDAR takes approximately 10 min to preprocess the data. The
time required for preprocessing the collected data (inputting the data on the record sheet
into Excel) is approximately 14 min, while the preprocessing time for the backpack LiDAR
point cloud data is approximately 10 min, and the internal data processing time depends
on the size of the data set and the computer configuration; overall, the time spent by the
backpack LiDAR after collecting a sample plot is approximately 30 min faster than the
traditional measurement method. The above description illustrates the time efficiency of
backpack LiDAR. For optical data, acquiring airborne multispectral images in good weather
conditions improves efficiency and reduces costs to some extent. Thus, the use of combined
optical imagery and LiDAR further reduces the cost of assessing forest abatement. It makes
it possible to map near real-time carbon stocks over large areas [38].
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Table 8. Timing comparison between traditional and backpack LiDAR measurement methods.

Measurement Method Personnel Sample Site (m2)

Time Consumption (min)

Data
Collection

Data
Processing Total

Traditional measurement 3–4 10 × 40 30:16 14:16 44:32
Backpack LiDAR 1 10 × 40 5:42 10:04 15:46

Optical images have been applied in earlier studies to estimate forest AGB and AGC,
but the results show that the penetration of optical signals is weak. Spectral images
mainly record the horizontal structure of the forest and cannot record the vertical structure
information of the woods. However, LiDAR can penetrate the forest canopy and record
the vertical structure information. It is good to make up for the deficiency of optical
images. In this study, there are two main reasons why the improvement with the addition
of multispectral information is slight. The first reason could be that when visible light
from multispectral data is saturated in dense forest areas [39], the accuracy is lower in
complex forest structures, resulting in deviations between the estimated and measured
AGC of NDVI. Another reason could be that LiDAR forest structure properties are strongly
correlated with AGC, and adding multispectral information does not improve much.
Although these improvements are not significant, the novel multisensor earth observation
approach combining satellite-based LiDAR data using machine learning techniques for
optical data has enabled accurate measurements of carbon stocks and provided adequate
data support for forest mitigation [40–43]. For example, Jiao et al. [38] proposed a practical
framework for assessing forest abatement using the fusion of optical satellite images and
spaceborne LiDAR data. Shen et al. combined Landsat TM/ETM + and ALOS l-band SAR
images of Guangdong Province to map AGB data of subtropical forests. The results showed
a good correlation of AGB based on multisensor photos [44]. Our results further suggest
that combining LiDAR data and multispectral data is essential to improve the accuracy of
AGB and AGC estimation.

4.2. Analysis of the Major Challenges and Uncertainties in Estimating Forest AGC

To address the challenges in vegetation biomass and carbon stock estimation (i.e.,
whether the simultaneous acquisition of large-scale forest structural and spectral infor-
mation can improve the analysis of biomass and carbon stocks [14,45]), in this study, we
combined forest structural attributes and spectral data to estimate forest AGC at the sample
plot scale. (1) Although it is difficult to accurately capture changes in forest AGCs using
only structural and spectral information for forest stands with complex structures, our
proposed combined modeling approach with multisource data improved the accuracy
of AGC estimation from 90.29% to 90.6% because the information on canopy spectral
heterogeneity was provided by multispectral images. (2) In addition, we selected the
best regression model to fit the AGC from multiple linear regression models and multiple
power regression models. Multiple power regression models had higher AGC estimation
accuracy than multiple linear regression models (Tables 5 and 7). This suggests that the
L. gmelinii in our study area is consistent with a power anisotropy relationship. The use
of the power anisotropic relationship can improve the accuracy of forest AGC estima-
tion, and this relationship based on forest structural properties and spectral information
is a new approach to improving forest AGC estimation. Based on forest structural at-
tributes and spectral information, this method can be used to explore the relationship
between tree metabolism and biomass [46], and this relationship may be more stable in
similar landscapes [7].

There are still some uncertainties in this study. First, the backpack LiDAR laser beam
cannot penetrate the lower canopy in dense forest structures [47]. Second, the backpack
LiDAR has challenges capturing the tops of trees in the upper canopy due to the shading
caused by trees in the lower canopy, thus leading to significant differences between the
height estimated by LiDAR and the measured height in this study. All the experimental



Forests 2023, 14, 992 14 of 17

results and conclusions of this study are currently valid only for coniferous forests with
relatively simple stand structures, and their validity in broadleaf forests, mixed forests, or
other forest types with more complex stand structures needs to be verified based on more
forest sample plots and remote sensing data.

4.3. Estimating the Late Stage of Forest AGC Research and Outlook

This study focuses on the theme of combining multispectral images and LiDAR data
for estimating regional-scale forest AGC, from field sample measurements to preprocessing
such as atmospheric correction, radiometric correction, and geometric correction of multi-
spectral images and LiDAR data cropping, resampling, denoising, filtering, near-ground
classification, and normalized point clouds, to constructing a forest AGC estimation model
for complex terrain conditions and then performing spatial extension of forest AGC at
the regional scale. However, due to the shortage of measured data and the complexity
of mountainous terrain conditions, the accuracy of regional forest AGC estimation by
combining multisource remote sensing data is not currently accurate. A series of studies
need to be continued.

At the current stage, calibration and validation still require high-quality field real-
world data. Due to the complexity of mountainous terrain conditions, more accessible
locations were selected to collect field inventories, leading to spatial discontinuity and
discrete problems in producing regional forest AGC density spatial distribution maps. In
future studies, we will try to select spatially continuous sample sites to collect data. Due to
time constraints, limited samples were collected, and more minor sample data were only
applicable to single wood or regional forest AGC estimation. It could not represent the
forest AGC stock in the whole Dural Forest.

Poor GPS signals during data acquisition by backpack LiDAR can directly affect the
quality of the track files, leading to point cloud solution failure or point cloud data solution
failure with significant absolute coordinate errors. In addition, acquiring point cloud data
with high-precision absolute coordinates is crucial for localizing individual trees in the
sample area. Therefore, how to efficiently and accurately acquire absolute georeferenced
point cloud data in a dense forest without GPS signals by backpack LiDAR is the focus
of future research. In addition, the L. gmelinii-like ground has dense branches. To avoid
scratching the backpack LiDAR instrument, the branches must be cut off in advance along
the design route to ensure the safe operation of the backpack LiDAR. Therefore, the timing
and quality of backpack LiDAR data acquisition due to forest stands and the accuracy of
image data acquisition need to be further verified in more operating environments. Due
to the small amount of spectral band data acquired from the multispectral data used in
this study, the calculated vegetation spectral indices correlate less with the forest AGC. In
future studies, the ability of UAVs with hyperspectral imagers at different flight altitudes to
acquire regional forest vegetation spectra and combine them with LiDAR data for regional
forest carbon stock inversion needs to be explored.

In general, the combination of LiDAR data and traditional remote sensing data can bet-
ter complement each other’s data sources, which will help the acquisition and classification
of feature information, improve the accuracy of estimating various parameters of ecosys-
tems, and enhance the overall function of ecological monitoring and simulation. How to
effectively combine multiple remote sensing data sources for environmental research is a
hot issue.

5. Conclusions

In this study, based on the measured data, LiDAR vertical structure variables, and
the addition of multispectral image horizontal structure variables to establish a multiple
regression model, the following conclusions were obtained by comparing and analyzing
the multivariate linear model and the multivariate power model to estimate the forest AGC
at the sample scale.
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A multivariate model was developed to predict the AGC and was tested for accuracy
using LiDAR-estimated DBH and tree height as independent variables and the measured
AGC as the dependent variable. The highest accuracy of the estimated AGC was found for
the multiplicative power regression model based on LiDAR-estimated DBH (R2 = 0.903,
RMSE = 10.91 Pg). The AGC values predicted by LiDAR ranged from 4.1–279.12 kg C. The
accuracy of the LiDAR-estimated diameter at breast diameter was much higher than that of
the tree height. This result may be due to the tall vegetation cover in the study area and the
narrow beam of ground-based LiDAR, which makes it very difficult to search for targets
in space due to the influence of occlusions and directly affects the interception probability
and detection efficiency of the targets.

LiDAR data combined with the multispectral estimation of the AGC and determination
of the accuracy showed that the multiplicative power regression model with the highest
accuracy included the DBH-predicted AGC estimated by NDVI combined with LiDAR
data (R2 = 0.906, RMSE = 10.87 Pg); the predicted AGC values were in the range of
3.93–449.07 kg C. The accuracy of AGC inversion using NDVI alone was extremely low
(R2 = 0.056, RMSE = 36.25). This is because multispectral optical image data cannot
accurately reflect vegetation height information, and spatial data effects are lacking.

Multiple regression analysis modeling demonstrated the potential of estimating the
AGC from multisource remote sensing data. The model’s prediction accuracy was high
(R2 = 0.87–0.90) compared to the prediction accuracy in other studies [48,49]. The results
showed that the addition of multispectral image variables to the predictive model for
LiDAR estimation explained the variation in AGC estimation improvement. When LiDAR
data and multispectral data are combined to estimate the AGC, LiDAR data are both
accurate and include the spectral characteristics of multispectral optical images.

In general, the AGC is related not only to the structural features of trees that can be
extracted from LiDAR data but also to the carbon coefficients that can be reflected in the
multispectral information. Therefore, if both LiDAR and multispectral data are available,
the fusion of LiDAR with multispectral data is the best method to accurately estimate forest
AGC. This study could provide a valuable resource for researchers and forest managers to
obtain more accurate AGC values.
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