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Abstract: This study experiments with different combinations of UAV hyperspectral data and LiDAR
metrics for classifying eight tree species found in a Brazilian Atlantic Forest remnant, the most
degraded Brazilian biome with high fragmentation but with huge structural complexity. The selection
of the species was done based on the number of tree samples, which exist in the plot data and in the
fact the UAV imagery does not acquire information below the forest canopy. Due to the complexity of
the forest, only species that exist in the upper canopy of the remnant were included in the classification.
A combination of hyperspectral UAV images and LiDAR point clouds were in the experiment. The
hyperspectral images were photogrammetric and radiometric processed to obtain orthomosaics with
reflectance factor values. Raw spectra were extracted from the trees, and vegetation indices (VIs) were
calculated. Regarding the LiDAR data, both the point cloud—referred to as Peak Returns (PR)—and
the full-waveform (FWF) LiDAR were included in this study. The point clouds were processed to
normalize the intensities and heights, and different metrics for each data type (PR and FWF) were
extracted. Segmentation was preformed semi-automatically using the superpixel algorithm, followed
with manual correction to ensure precise tree crown delineation before tree species classification.
Thirteen different classification scenarios were tested. The scenarios included spectral features and
LiDAR metrics either combined or not. The best result was obtained with all features transformed
with principal component analysis with an accuracy of 76%, which did not differ significantly from
the scenarios using the raw spectra or VIs with PR or FWF LiDAR metrics. The combination of
spectral data with geometric information from LiDAR improved the classification of tree species in a
complex tropical forest, and these results can serve to inform management and conservation practices
of these forest remnants.

Keywords: Brazilian Atlantic Forest; tree species mapping; LiDAR; hyperspectral imaging;
superpixel segmentation

1. Introduction

Tropical forests are very complex ecosystems due to the high biodiversity of fauna
and flora. They also play an important role in carbon sequestration and the carbon cycle for
climate regulation [1–3]. The discrimination of tree species is essential for forest ecology, as it
supports monitoring the biodiversity and invasive species, sustainable forest management,
and conservation practices, floristic and phytosociological forest inventory and wildlife
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habitat mapping [4,5]. However, tree species classification for tropical forests has not been
very exploited due to their complexity. Many layers are present within the forest; there
is a large number of tree species, the tree heights and canopies are very heterogeneous,
and the distribution of tree individuals significantly varies across the different strata of
the forest. Thus, many tree species classification workflows were developed for temperate
forests [4,6].

The continuous advancement of remote sensing technologies aims to tackle the clas-
sifications and identification of the tree species problem. In this paper, two important
advancements in remote sensing that support species classifications are investigated: hy-
perspectral imagery and LiDAR data. The hyperspectral sensors are narrowband sensors
and can acquire nearly continuous reflectance spectra in many narrow bands for each
pixel. These spectra can be used for detailed quantitative analyses and, consequently, can
increase the separability of tree species, which absorb and reflect light differently along
the spectrum. Classifications in native tropical forests, though, is even more challenging
when using only spectral data due to the increased number of spectral differences that
need to be identified to classify the increased number of species while the same species
with a different age also have different spectral reflectance, making the separation between
species more complicated and increasing errors in the classification [7–9]. Furthermore,
hyperspectral sensors are not suitable to derive structural parameters of the forest, such as
tree height, canopy volume and density, or the number of strata in the forest, since only the
reflectance of the tops of the objects is recorded [10].

LiDAR (Light Detection and Ranging) systems can provide three-dimensional infor-
mation about the vegetation, thus allowing a better understanding of the geometry and the
intensities of the vertical structure of forests [11,12]. This geometric/structural information
of vegetation can provide important information to improve the separability between
species in complex forests.

In this paper, we refer to LiDAR data as either peak returns (PR) and full-waveform
(FWF). Traditionally, discrete LiDAR used to record multiple returns per emitted pulse [13]
when there was an intense return signal to the sensor and there was an offset between each
recorded return. The first and intermediate returns are indicated to extract information from
partially penetrable objects, such as tree canopies and the structures present below, and the
last return is often indicated to obtain information from non-penetrable surfaces like the
terrain [13–15]. Full-waveform LiDAR systems record and digitize the entire amount of
energy returned to the sensor after being backscattered by objects present on the scanned
area [16,17]. More information is recorded in full-waveform data than by using discrete
return systems. The waveform contains the properties of all elements intercepting the path
of the emitted beam, and its analysis allows a better interpretation of the physical structure
and geometric backscatter properties of the intercepted objects, which can improve the
representation of the forest structure, including its vertical structure, canopy volume,
understory, and terrain [13,17–19]. In this paper, we do not use the term “discrete LiDAR”
since the system used to collect the LiDAR points cloud is a waveform sensor and the point
clouds return peaks exported from waveform data either in real-time by the system or in
post-processing [20].

The fusion of features obtained from multisource remote sensing data, such as hy-
perspectral images with LiDAR metrics has been used to complement sources and obtain
high-quality estimations [21]. The complementary data provided by spectral information
and LiDAR geometric/structural features can provide a more comprehensive interpretation
for mapping tree species [22].

Among the existing biomes in Brazil, the Atlantic Forest domain is the most degraded
with approximately only 11.6% of the original forest cover, and the remaining areas are small
and very fragmented [23–25]. The current forest remnants are insufficient to preserve the
biodiversity; thus, many efforts have been taken to restore these areas ecologically [26,27]. Due
to their high ecological importance, studies are required for understanding the composition
and spatial distribution of the species present in these small remnants [28]. This could support
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the monitoring of changes in the forest canopy, a response to deforestation and climate change,
and proposals for conservation and ecological restoration of tree species [8,29].

The aim of this study was to combine remote sensing data from different sources and
determine which combination of data is the best while classifying eight tree species that
exist in the upper canopy of a remnant of Brazilian Atlantic Forest. This is particularly
important considering the high floristic diversity in tropical forests at it confers difficulties
in separating different species and the lack of knowledge about species composition and
distribution. The spectral data from hyperspectral images obtained from a lightweight
camera onboard of a UAV (unmanned aerial vehicle) and the structural information from
both peak return and full waveform LiDAR data were investigated. Spectral and structural
information were either combined or not into 13 unique scenarios used for classifying the
tree species. These scenarios were evaluated. Before the classification processes, we tested
a semi-automatic method for tree crown segmentation to demonstrate the challenge of
delineating crowns in complex and heterogeneous forests.

Studies related to the classification of tropical forest species, mainly in other Brazilian
forest typologies other than the Amazon Forest, are scarce, and thus, the methodology
and results obtained in this study will serve as a guide for future studies involving the
composition of species in Brazilian forests and other tropical forest remnants. In addition,
the methodologies were all performed with well-established algorithms and open-source
software, allowing any user to apply the methodology to their dataset and obtain results
that can help in conservation practices of tropical forests.

2. Materials and Methods
2.1. Study Area and Inventory Data

The study area is located in southeastern Brazil. It is a remnant of Atlantic Forest,
protected by federal environmental laws, called Ponte Branca (Figure 1). It has a high
ecological importance because it is a transition zone between the Brazilian Savannah and
one of the few remnants of semideciduous seasonal forest (inland Atlantic Forest) in the
state of São Paulo. A detailed description of the vegetation and ecological succession that
occurred in the Ponte Branca Forest remnant can be found in [30–33].
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The forest inventory was performed in 15 plots [33], covering the different successional
stages found in Ponte Branca Forest remnant. All trees with DBH (diameter at breast height)
greater than 3.5 cm were measured, counted, and identified by species by a specialist based
on the APG VI system (Angiosperm Phylogeny Group) [34].

In total, 3181 trees from 64 different species were measured. However, only some of
these trees/species were selected as samples for automatic classification. Tropical forests
have a heterogeneous structure with several layers, and many species are present in the
understory and middle canopy of the forest while few species and individuals reach the
upper canopy. Thus, it is impracticable to classify species that are in the lower layers, below
the crowns of the tallest trees, and is mainly done using passive sensors (e.g., images from
UAVs (unmanned aerial vehicles)). In addition, smaller trees in the lower and middle
stratum of the forest have the presence of lianas and vines, which can significantly modify
the spectral response of these trees [35].

The tree sample selection for classification was done in two steps. First, stratification
was performed to locate trees that belonged to the upper canopy since UAV imagery does
not acquire data from lower canopy structures. Second, at least six trees of each species
existed in the forest inventory.

Due to the complexity of the tropical natural forests, tree height is difficult to be
obtained in the field. For the vertical stratification of the forest, we used the CHM (Canopy
Height Model) obtained from the LiDAR survey. For more information on how CHM
was derived, please refer to Section 2.3. The vertical stratification of vegetation was based
on [36,37], which divided the forest into three strata (lower, middle, and upper), based on
the average height of the trees and the standard deviation of the heights. The lower stratum
comprised trees with heights (Ht) less than the average height (Hm) minus one standard
deviation (1σ); the upper stratum was defined as Ht ≥ (Hm + 1σ), and the middle stratum
comprised trees with (Hm − 1σ) ≤ Ht < (Hm + 1σ).

To avoid including ground points in forest stratification, we considered that only
points above 1 m were vegetation. As a result, the lower stratum comprised trees below
4.8 m, the middle stratum included trees with heights between 4.9 m and 12.3 m, and the
upper stratum comprised trees above 12.4 m (Figure 2). As most trees had a height between
6.4 m and 12.8 m, the middle stratum was more prominent. However, the trees present
in the upper canopy had high ecological importance. These trees contributed the greatest
amount to the forest biomass; they were important as seed carriers and dispersers, the
fruits served as food for fauna, and some tree species had potential timber and non-timber
products [29,33,38,39].

Based on the two criteria for choosing tree samples, a total of 81 individuals of eight
different species were selected. The position of the selected trees was determined by the
distance and azimuth from the centre of the plot to the tree. Due to the closed canopy,
it was necessary to use a dual-frequency GNSS (global navigation satellite system) with
static relative positioning rather than collecting data for a long time to obtain the precise
coordinate of the trees, which would be unfeasible. RGB orthophotos were also used with a
GSD (ground sample distance) of 0.1 m to determine the positions of the trees as a reference
map to correspond to the location in the field and on the map.
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With the samples selected and located, the individual three crowns (ITC) were manu-
ally delineated in the hyperspectral orthophotos of the Rikola camera (Section 2.2) with a
GSD of 0.25 m, and infrared false-colour composition. The manual delineation was also
performed in RGB orthophotos available for the study area with a GSD of 0.10 m (Figure 3).
Both images were collected at the same time and without displacement. To ensure correct
delineation, care was taken to avoid delineating structures that did not belong exclusively
to the crown of the interest tree, such as crowns of other trees and vines. Furthermore, for a
correct delineation of tree crown boundaries, the normalized point cloud obtained with
LiDAR data (Section 2.3) was used to have a three-dimensional view of tree structures,
allowing better accuracy of manual delineation. This ITC delineation served as a ground
reference for semi-automatic segmentation and classification. A summary description of
the selected species, number of samples for each tree species, as well the sum and average
number of pixels for the hyperspectral orthomosaics is presented in Table 1.
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Table 1. Summary of selected species for automatic classification.

ID Tree Species Family ITC T/A 1 Hm(m) 2 Characteristics

AnPe Anadenanthera peregrina Fabaceae–Mimosoidae 9 7641/849 17.64 ± 2.64
Evergreen species, with characteristics from pioneer to early secondary. It is
fast-growing and its uses include urban afforestation, recovery of degraded

areas, and wood for civil construction [40].

ApLe Apuleia leiocarpa Fabaceae–
Caesalpionideae 9 4960/551 14.27 ± 3.46

Deciduous and slow-growing species, with characteristics from pioneer to early
secondary. Its wood is resistant, suitable for construction of external structures.

Furthermore, it can be used in urban afforestation, honey production, and
riparian forest restoration in areas without flooding [40].

AsPo Aspidosperma polyneuron Apocynaceae 9 28,946/3216 22.13 ± 3.62
Evergreen species, late secondary to climax. Long-lived species with very slow
growth. Wood with a high economic value has good mechanical resistance used

in the furniture industry, construction, carpentry, and shipbuilding [40].

CoLa Copaiferalangsdorffii Fabaceae–
Caesalpionideae 9 9984/1109 15.14 ± 2.58

Semi-deciduous tree, with late secondary to climax characteristics. Species with
remarkable plasticity and easy adaptation. Long-lived tree with moderate to
slow growth. High durability wood used in civil construction. However, the

most significant feature of this species is the extraction of its essential oil, used in
the cosmetics, plastics, paints, and resins industry [40].

HeAp Helietta apiculata Rutaceae 10 3549/355 13.41 ± 0.78

Evergreen tree, with early and late secondary characteristics. This species is slow
growing, with dense wood, and is very useful for manufacturing pieces that
require great durability. In addition, this species has a good development in
shallow and rocky soils, indicated for the recovery of degraded areas [41].

HyCo Hymenaeacourbaril Fabaceae–
Caesalpionideae 8 9308/1164 15.49 ± 3.27

Long-lived semi-deciduous tree with late secondary to climax characteristics.
This species presents moderate to slow growth with high-density wood. The
uses are for civil and external construction and carpentry. The resin from this

tree is used to manufacture varnishes and medicinal uses. In addition, this
species can be used for the production of honey [40].

PtPu Pterodon pubescens Fabaceae–Faboideae 6 12,249/2042 15.35 ± 2.89

Deciduous species, with characteristic of initial secondary. It is fast-growing, and
the wood presents high density being used for civil construction. Other uses of

this species include honey production, urban afforestation, and recovery of
degraded areas [42].

SyRo Syagrusromanzoffiana Arecaceae 21 5731/273 13.00± 0.55

Palm tree, with a characteristic of pioneer species, early secondary and late
secondary. This species has great plasticity, occurring in soils of low and high
chemical fertility, drained to flooded. Its growth is slow, and its fruits serve as

food for countless animals [43].
1 Total and average number of pixels for each tree species; 2 Average height of the trees obtained from the CHM followed by the standard deviation.
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2.2. Hyperspectral Imagery Data Acquisition and Processing

The images were acquired by the Rikola hyperspectral frame camera, model DT-0011
(Figure 4), produced by Senop Ltd. [44–46]. The camera was mounted onboard a UAV
(Unmanned Aerial Vehicle) quadcopter.
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Figure 4. (a) Rikola hyperspectral camera. (b) UAV quadcopter with Rikola camera mounted. (Source:
Miyoshi, 2020 [47]).

The Rikola camera is based on the FPI (Fabry-Perrot Interferometer). It consists of
two partially reflective parallel surfaces, separated by air gap. This separation determines
the wavelength transmitted by the interferometer, as the light rays that pass through
the surfaces undergo multiple reflections according to the separation distance. Thus,
changing the separation distance between the surfaces makes it possible to sensitize the
camera sensor at different wavelengths [48–50]. In addition, the camera has two CMOS
sensors that operate simultaneously, with a pixel size of 5.5 µm generating images with
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1017 × 648 pixels. The first sensor collects images at wavelengths between 647–900 nm and
the second sensor between 500–635 nm with a minimum spectral resolution of 10 nm at the
full width at half maximum (FWHM) [44]. These features allow a flexible configuration of
spectral bands [44]. In addition, the Rikola camera has an auxiliary sensor that measures the
irradiance. A GNSS receiver also exists that provides the camera’s latitude and longitude
at the moment of image acquisition.

Regarding the settings used in this study, the camera was set to standalone mode, and
the images were stored in a memory card. The number of acquired spectral bands was
limited to 25 due to the transfer time of the images between the sensor and the memory
card, the acquisition interval between two sequential images, and exposure time of each
image [44,46].

Due to the limited number of bands, the wavelengths were selected according to the
best ones that characterise tree species present in Ponte Branca Forest remnant, as indicated
by [44]. These bands are shown in Table 2.

Table 2. Wavelengths used in the Rikola camera bands and their respective FWHM.

Sensor 2 Sensor 1

Band λ * (nm) FWHM (nm) Band λ * (nm) FWHM (nm)

1 506.22 12.44 11 650.96 14.44
2 519.94 17.38 12 659.72 16.83
3 535.09 16.84 13 669.75 19.80
4 550.39 16.53 14 679.84 20.45
5 565.10 17.26 15 690.28 18.87
6 580.16 15.95 16 700.28 18.94
7 591.90 16.61 17 710.06 19.70
8 609.00 15.08 18 720.17 19.31
9 620.22 16.26 19 729.57 19.01
10 628.75 15.30 20 740.42 17.98

21 750.16 17.97
22 769.89 18.72
23 780.49 17.36
24 790.30 17.39
25 819.66 17.84

* Wavelength.

The integration time was 10 ms, with an interval of 0.061 s between adjacent band
exposures. Thus, each hyperspectral cube with 25 bands took 0.899 s to be acquired. Due to
the misalignment between the two sensors of the Rikola camera and the UAV displacement
during acquisition, the spectral bands of the hyperspectral cubes showed a slight difference
in orientation and position. These misalignments were corrected with orthorectification of
all hyperspectral image bands [44,51].

Four flight campaigns were needed to obtain images of the 15 surveyed plots in
the Ponte Branca Forest remnant. The flight campaigns were carried out in 2016 and
2017 (Table 3) in the same season (winter) and under the same clear day conditions with
few clouds and wind to avoid differences of solar angle and illumination. The same
characteristics were also maintained in different years to avoid phenological differences
between the various trees of the same species. On each flight, image blocks were acquired
with a longitudinal overlap of at least 70% and lateral overlap of at least 50%.

Table 3. Summary of flight campaigns for images acquisition.

Plot Date Time (UTC–3h)

P4, P5, P6 9 August 2016 11h46
P1, P3 10 August 2016 13h05

P8 to P15 1 July 2017 10h11
P2, P7 1 July 2017 12h19
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On each flight campaign, signalized Ground Control Points (GCP) and radiometric
targets were placed close to the study site to be used as reference bundle block adjustment
and radiometric calibration (Figure 5). GCP coordinates were determined with a dual-
frequency GNSS receiver. The radiometric targets were produced with EVA (ethylene
vinyl acetate) with approximated dimensions of 0.90 m × 0.90 m in three colours: black,
dark grey, and light grey. On these targets, reflectance measurements were taken with
a FieldSpec® Handheld spectroradiometer, manufactured by ASD [52], to transform the
images’ DN (digital numbers) into physical values of reflectance factor.
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The images obtained by the Rikola hyperspectral camera required some processing
to produce the orthomosaic and to correct the anisotropy factor and possible illumination
variations during image acquisition [44,48,53]. The processing flow of hyperspectral images
is shown in Figure 6. This process was applied for each flight campaign.

The hyperspectral images processing was performed using the same methodology as
described in [35,44,48,51,54,55]. First, the images were corrected of dark current using an
image with the camera lens obstructed by an opaque low-reflectance object to remove the
electronic noise from the camera [53].

The geometric processing was performed using the Agisoft PhotoScan software (Ag-
isoft LLC, St. Petersburg, Russia). To optimize processing time, image orientations were
estimated for four bands of the Rikola camera, two from each sensor (bands 1: 506.22 nm
and 10: 628.75 nm from sensor two; bands 11: 650.96 nm and 25: 819.66 nm from sensor
one) in a simultaneous bundle adjustment. The IOPs (interior orientation parameters) and
EOPs (exterior orientation parameters) were estimated using self-calibrating BBA (Bundle
Block Adjustment). The IOPs were estimated with individual sets for each sensor. The
EOPs were estimated using the camera’s GNSS positions as initial values and refined in the
BBA and with the GCPs. From the generated point cloud, the estimated parameters were
optimized with the manual removal of outliers and using gradual selection of tie points to
verify the projection error. After these procedures, calibrated IOPs and EOPs and a sparse
point cloud were generated, then a dense point cloud, a DSM (digital surface model) with
a GSD of 0.25 cm, and a resampled DSM with GSD of 5 m [47,53,56].
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After this initial geometric processing, further photogrammetric techniques and radio-
metric processing were applied based on the methodology developed by [48,55,57]. The
EOPs for the remaining bands were computed with spatial resection using the sparse point
cloud as a source of control. However, due to the anisotropic characteristics of vegetation
reflectance, quality of the sensor system, stability and atmospheric conditions, illumination
changes caused by the clouds, and solar position, the same object did not present the same
DN in different images. While the reflectance anisotropy is modelled by the bidirectional
reflectance distribution function (BRDF), the relative differences in the overlapped images
must be estimated in radiometric block adjustment [55].

The radiometric block adjustment assumes that the same object must provide a similar
DN in all the images in which it appears. This method uses DN values of radiometric
tie points, which are obtained from the resampled DSM in the overlapped images. This
information determines the parameters of the radiometric model describing the differences
between the DNs in the different images using the principle of weighted least squares.
The DN values in the radiometric tie points were determined from a search window of
predefined size (5 m × 5 m). Relative correction parameters were determined in relation to
a reference image obtained in the nadir to correct the differences in illumination between
the images, and a linear BRDF model was applied (Equation (1)).

DNjk = arelj

(
aabs · Rjk(θi, θr, ϕ) + babs

)
(1)

where DNjk was the digital number of pixel k in image j; Rjk(θi, θr, ϕ) was the reflectance
factor with respect to the zenith angle of incident light θi and reflected light θr and with
respect to the relative azimuthal angle ϕ(ϕr − ϕi) related to the incident ϕi and reflected ϕr
azimuthal angle (further details about this model see [48]); and arelj is the relative correction
factor of different illumination with respect to the reference image. Miyoshi et al. (2018) [44],
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working in the same study area, defined the optimal value for arelj as 1; aabs and babs were
the parameters defined by the empirical line [58].

In the radiometric block adjustment step, orthorectification of each image band was
also performed. A DSM with the same GSD of the final orthomosaic was used (0.25 m).
Furthermore, the bands’ misalignments were also corrected in this process of orthorectifica-
tion. At the end of this process, an orthomosaic for each dataset with 25 spectral bands and
corrected of illumination and anisotropy variations was produced.

The empirical line method was applied in the orthomosaics from the data obtained
with the spectroradiometer in the radiometric reference targets for each flight campaign
(Table 3, Figure 5). The objective was to calculate the relation between the values obtained
in the Rikola images and the reflectance of the targets in the field from a linear regression.
The values of gain and offset were estimated, transforming the DN into physical values of
reflectance factor [58,59].

The spectroradiometer used to collect spectra information from the radiometric tar-
gets had a range between 325 nm and 1075 nm with a resolution of 1 nm. Thus, it was
necessary to adjust the wavelength ranges to match the settings of the Rikola camera
bands. Radiometric targets spectra were simulated according to the spectral ranges of the
camera bands, adopting the Gaussian curve for spectral sensitivity [53]. This simulation
allowed for evaluating the adherence of the spectral response of the targets obtained with
the bands of any camera with the spectral response obtained with the spectroradiometer,
which had a more refined spectral resolution [56]. With the physical values of reflectance
factor, it was possible to characterize the targets spectrally (i.e., characterize different tree
species), compare data from different sensors, and obtain vegetation indices [60,61]. For
more information related to this process, refer to Section 2.5.1.

2.3. LiDAR Data Acquisition and Processing

LiDAR data were collected with the RIEGL LMS-Q680i full-waveform sensor, which
used the multiple time around (MTA) technique to operate with a high repetition frequency.
This unit acquired pulses that arrived after a delay of more than one pulse repetition interval,
allowing measurements with a range beyond the unambiguous maximum measuring
range [20]. Data were collected at a flight height of 900 m, and the waveforms were
processed in post-processing mode; thus, the point clouds—traditionally called discrete
LiDAR—were delivered as the peak returns (PR) of the waveforms and as a full-waveform
(FWF) with a density of 19.8 points·m−2 [62].

Different processing was performed for each type of LiDAR data. For PR LiDAR
data, the objective was to normalize the point cloud intensities and heights to extract
metrics related to height distribution, pulse return, and intensity statistics. In addition to
digital models needed for the segmentation step (Section 2.4). The objective of FWF LiDAR
data was the extraction of metrics related to the distribution of voxels that were or not
intercepted by a wave sample, as well as the signal intensity. Both metrics (PR and FWF)
were used as attributes for classifying tree species. The flowchart with the LiDAR point
cloud processing steps is shown in Figure 7.

The detailed description of the PR LiDAR data processing for the same dataset is
in [62]. The point cloud was classified into ground and vegetation points using LAStools
software [63]. The ground points were rasterized using the TIN (triangular irregular
network), producing a DTM (digital terrain model) with a GSD of 0.50 m. The next
processing steps were performed in the R environment [64] with the lidR package [65]. First,
the point cloud had the intensity values normalized based on the range method [66,67]
since the distance between the laser beam and the target is not constant throughout the
LiDAR survey, in addition there are other intensities distortions caused by topography,
equipment and atmospheric effects, for example, not faithfully representing the target
radiometry [68].
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Once normalized, it was possible to use LiDAR metrics related to intensities as at-
tributes for classification. The next step was to normalize the heights of the point cloud
subtracting the DTM, resulting in a point cloud with vegetation points mapped on flat
terrain. Outliers’ were removed from the point cloud using the statistical outlier’s removal
algorithm. For each point, the average distance to all k-nearest neighbours was calculated.
If the points are further than a threshold, this point will be considered noise. This threshold
is empirically defined by the user as the average distance plus the standard deviation mul-
tiplied by a scale shift. We used the default values provided by the lidR package [65]. Then,
the normalized point cloud was rasterized using the point-to-raster algorithm (p2r) [69]
to produce the CHM (canopy height model) that contained the height value of the trees
for each pixel with a GSD of 0.50 m. The CHM was necessary for vegetation stratification
and tree crown segmentation. In addition, the point cloud with normalized intensities and
heights was used to extract PR LiDAR metrics that describe the vegetation structure and
will be explained in Section 2.5.2.

The process of intensity normalization of the FWF point clouds was the same as
for the PR point cloud. The other processing steps were performed in the open-source
software DASOS (forest in Greek) developed by [70,71]. The FWF data (i.e., the waveform
samples) were voxelized by DASOS, which creates a 3D discrete density volume, such
as a 3D grayscale image, by accumulating intensities of multiple pulses. First, 3D space
was divided into voxels (i.e., 3D pixels), and the waveform samples were inserted into this
voxelized space. The intensity values of each voxel were averaged resulting into the size of
the pulse width associated with each voxel to be consistent [72]. Even though an intensity
value is preserved into the voxels, the majority of the metrics exported by DASOS focus
on structural elements and consider whether the voxels are either empty or not (e.g., it
measures distribution of non-empty voxels).

Denoising is a necessary step when using FWF data, as the sensor records low ampli-
tude signals that are not real vegetation returns. The DASOS software performs low-level
filtering. A threshold is selected by the user, and waveform samples amplitudes below
the selected threshold are eliminated. For our data, some tests with different thresholds
were performed. The best result was obtained using the average of the wave samples plus
one standard deviation, which implied that all wave samples with amplitude less than
20 were eliminated. Voxel size was also selected based on preliminary tests. Large voxels
sizes can aggregate information from several trees within the same voxel, which made the
separability analysis for tree species difficult. Small voxel sizes greatly increase processing
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time, and it can be difficult to find patterns across species due to the high level of detail.
The chosen voxel size was 1 m × 1 m × 1 m with the subsequent extraction of 2D FWF
metrics from the voxelized 3D data. In this strategy, each pixel contains information related
to the column of voxels intercepted by the waveform samples. The extracted metrics are
explained in Section 2.5.2, and these metrics show promising potential for tree species
classification and biophysical properties estimation at the tree level [72]. During the vox-
elization process, the DTM produced with the PR LiDAR data was used to normalize the
heights of the voxel columns.

2.4. Tree Crowns Segmentation

Segmentation or ITC delineation is a crucial step when classifying tree species in
individual trees. This is because it increases the accuracy of the classification and enables
the production of maps that depict the distribution of various tree species [8,29,73,74]. Trees
in tropical forests have a wide range of heights and heterogeneous crown shapes and are
usually overlapping with neighbouring individuals. This makes the ITC delineation a
challenging task itself [29,75].

Among the methods available for segmentation, we used the superpixel method with
an adaptation of SLIC (simple linear iterative clustering) algorithm [76]. Within Brazilian
tropical forests, the SLIC method has been successfully used for classification of different
successional stages and their evolution [31], as well as for the classification of emerging tree
species [47]. The adaptation of the SLIC algorithm was developed by [77] and is available in
the supercells package for the R environment [64]. Although the SLIC method necessitates
conversion of the data into a false-colour RGB image, the adaptation approach is more
regarding the data structure, as it eliminates the need for such conversion. This allows for
the usage of a more specific distance measure, using a custom function for mean values
of cluster centres. The adapted SLIC method starts with regularly located cluster centres
spaced by the interval of S. Then the distance between a cluster centre and each cell in its
2S × 2S region is calculated. Superpixels are created by assigning each cell to the centre of
the cluster with the smallest overall distance. While SLIC uses the average distance, the
adapted method allows for the use of measurements from any distance to calculate the
distance from the data. It also allows any function (not just arithmetic mean) to be used as
average values of cluster centres. Then, the centres of the clusters are updated to values
equal to the adopted distance measure of all the cells belonging to their respective clusters.
The algorithm works iteratively, repeating the above process until reaching the expected
number of iterations [77].

The ITC semi-automatic delineation was composed of the following steps:

(i) For the segmentation using superpixels, the following parameters were defined by
the user: the number of superpixels to be generated (k); compactness, which defines
the shape of the superpixels, with higher values resulting in more regular superpixels
(square grid) while lower values of compactness will create more spatially adapted
superpixels but with irregular shape; and the distance measure (dist_fun) to be
adopted. We used the CHM raster as input data to create the superpixels. Two k
values were tested: 100,000 and 200,000, compactness equal to 1 and dist_fun was
Euclidean (Figure 8).

(ii) Due the small displacement between the LiDAR data and the hyperspectral ortho-
mosaics, they needed to be co-registered. The images were registered based on the
LiDAR point cloud, which had better geometry, using homologous points between the
two data sources. The co-registration was done using the Nearest Neighbor method to
preserve the original value of the image pixels, and a first-order affine transformation
was applied. The error achieved in the co-registration process was less than one pixel
for all hyperspectral orthomosaics.

(iii) The value of 200,000 superpixels generated the best results for the segmentation,
preventing the inclusion of more than one tree crown in just one segment (under-
segmentation). Thus, oversegmentation (i.e., several segments representing one tree
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crown) occurred, and it was necessary to merge these segments. We used a com-
bined method for automatic merging and manual editing. The automatic method
for merging the superpixels was an adaptation of the methodology described in [47].
We considered the maximum height of each segment, the standard deviation of the
heights and the Jeffreys–Matusita spectral distance (JM) [78] for each tree species.
Three height classes were created based on the heights of selected trees, and the
standard deviations were selected for each of the classes (Table 4). Due to the differ-
ent number of pixels in each ITC, we used the same amount of pixels to extract the
reflectance factor of each ITC. The number of pixels was based on the smallest delin-
eated ITC (252 pixels) [79], and the average of the 10 brightest pixels was extracted.
Then, the JM distance was calculated for each pairwise combination of tree species
for the 25 hyperspectral bands of the orthomosaic from the Rikola camera. If a given
superpixel was contained in a height class with a standard deviation smaller than the
threshold and the JM was less than the minimum difference for species separability,
the superpixel was merged (Table 4).

(iv) Finally, due to the low number of samples, superpixels that did not accurately corre-
spond to the tree crown were edited manually, ensuring that 100% of the trees were
correctly delineated (Figure 9).
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Figure 9. The selected superpixels are depicted in blue and were derived based on the criteria present
in Table 4. The merged superpixels are depicted with yellow9 while the white colour shows the
comparison of the superpixels with the reference ITC. Regarding the case of SyRo, manual corrections
was performed on the merged superpixels since an excessive number of cells were selected.

Table 4. Criteria for merging the superpixels.

Criteria Max. Height Class (m) Standart Deviaton (m) JM Distance

1 12.4–18.3 ≥1.5
≥0.002152 18.4–24.1 ≥2.5

3 24.2–29.9 ≥3.5

From the delineated segments, it was possible to extract attributes from the three data
sets analysed; raw spectra and vegetation indices from the hyperspectral images, metrics
from the PR LiDAR data and their reduction using the principal component analysis, and
metrics extracted from DASOS using the FWF LIDAR with some additional processing.
These steps are detailed in the following section.

2.5. Feature Extraction

The features were extracted using the segments generated by the superpixels. Due
to the variant segment sizes, the segment with the lowest number of pixels was used as a
parameter to extract the features in each dataset.

2.5.1. Hyperspectral Images Features

Many hyperspectral features were included in the classifier. Some of them were
directly derived from the band reflectance’s and others by combining multiple bands. The
features extracted from the hyperspectral orthomosaics were the spectral signature of each
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tree, which is also referred to as the reflectance factor of each tree. We used the average of
the 10 brightest pixels from each ITC. Due to the different ITC size, we used the segment
with the smallest number of pixels as parameter, and we called it the raw spectrum. The raw
spectrum was used as a feature for classification. A spectral average curve was calculated
for each tree species as well.

The extracted spectra were visually analysed, and those wavelengths that best dif-
ferentiated the species were verified. Then, vegetation indices (VI) derived from these
wavelengths were calculated. These VIs related to structure, leaf pigments, and plant physi-
ology (Table 5) and were included in the classification. All VIs were adapted to the spectral
bands of the Rikola hyperspectral camera. The spectral bands closest to the wavelength of
a specific VI were adopted as a choice criterion.

Table 5. Vegetation indices (VIs) calculated from hyperspectral orthomosaics.

ID Vegetation Index Equation Rikola Bands

NDVI Normalized Difference Vegetation
Index [80]

ρ750−ρ650
ρ750+ρ650

B21−B11
B21+B11

ND Normalized Difference 682/553
[81,82]

ρ682−ρ553
ρ682+ρ553

B14−B4
B14+B4

NDVIh Normalized Difference 780/550
Green NDVI hyper [83,84]

ρ780−ρ550
ρ780+ρ550

B23−B4
B23+B4

MCARI Modified Chlorophyll Absorption
in Reflectance Index [85] (ρ700 − ρ670)− 0.2(ρ700 − ρ550)

(
ρ700
ρ670

)
(B16 − B13)− 0.2(B16 − B4)

(
B16
B13

)
PRI Photochemical Reflectance

Index [86]
ρ535−ρ565
ρ535+ρ565

B3−B5
B3+B5

PSRI Plant Senescence Reflectance
Index [87]

ρ679−ρ506
ρ750

B14−B1
B21

PSSR Pigment Specific Simple Ratio [88] ρ819
ρ679

B25
B14

RE Red edge [89] ρ670−ρ780
2

B13−B23
2

REP Red edge position [89–91] 700 + 40 ρrededge−ρ700
ρ740−ρ700

700 + 40 ρrededge−B16
B20−B16

RENDVI Red Edge Normalized Difference
Vegetation Index [83]

ρ753−ρ700
ρ753+ρ700

B21−B16
B21+B16

SIPI Structure Insensitive Pigment
reflectance index [92]

ρ800−ρ500
ρ800+ρ680

B24−B1
B24+B1

Thus, from the hyperspectral images orthomosaics, two sets of attributes were ex-
tracted and used for the classification of tree species: the reflectance factor of each tree in
the 25 bands from the orthomosaics of the Rikola camera and 11 vegetation indices.

2.5.2. LiDAR Features

After the processing performed in the point clouds (Section 2.3, Figure 7), 53 PR
LiDAR metrics were extracted for each tree from 1 m off the ground to avoid ground
points. A description of the metrics extracted from the lidR package [65] is available in [62],
and it is related to statistics of the distribution of heights, intensities, and pulse returns
(e.g., measures of central tendency, cumulative percentage, and percentiles).

As PR LiDAR metrics were highly correlated, applying some attribute selection
method was necessary. We used PCA (Principal Components Analysis), available in
FactoMineR [93] package for R, to transform the metrics into a new set of uncorrelated
orthogonal metrics [94]. Based on the Kaiser criterion [95], the first five PC (principal
components) explained 76.5% of the data variability.

Thus, from PR LiDAR metrics, two sets of attributes were extracted for tree species
classification: 53 metrics and the transformation of the same set into five PC.

From the FWF LiDAR data, 2D metrics were extracted (i.e., in raster format by the
software DASOS) of the information contained in each voxel column intercepted or not by
the wave sample. The set of extracted metrics can be seen in Table 6.



Forests 2023, 14, 945 17 of 32

Table 6. Raster metrics extracted from LiDAR FWF data (Source: Miltiadou et al., 2019 [72]).

Metric Description

Height Distance between the lower boundaries of the FW voxelized
space and the top of non-empty voxel of the column.

Thickness Distance between the first and last non-empty voxel for each
column.

Density It is a ratio of the number of non-empty voxels and the Thickness
of each column.

First Patch Finds the first non-empty voxel of the column and counts
downward how many adjacent non-empty voxels exist.

Last Patch Finds the last non-empty voxel of the column and counts upward
how many adjacent non-empty voxels exist.

Average Height Difference
It is a laplacian edge detector. Once the height difference between

a given column and each adjacent column is calculated, the
average difference of its adjacent columns is taken.

Lowest Return The voxel length multiplied by the nymber of voxels that exist
after the lowest non-empty voxel of the column.

Maximum Intensity The maximum intensity of each column.
Average Intensity The average intensity of each column.

After extracting the metrics, a “salt and pepper” effect was observed in the images,
which was caused by the absence of a pulse passing through the corresponding column
of the voxelized space. This effect was removed with a 3 × 3 median filter. Subsequently,
using the number of pixels of the smallest ITC, the average of each of the metrics for each
ITC was extracted, totalling nine features for the LiDAR FWF data.

2.6. Automatic Classification and Performance Assessment

The sets of features extracted from the different datasets, hyperspectral images, and PR
and FWF LiDAR point cloud were used either independently or combined as training and
testing data for the tree species classifier targeting tropical forests. We investigated whether
or not the classification accuracy improved when spectral and structural attributes were
combined. Thirteen different scenarios were tested (Table 7). We decided to merge all the
extracted features into a single classification feature vector contain the combination of all
metrics (spectra, VIs, PR LiDAR, FWF LiDAR) and their respective transformation by PCA as
well. The data were transformed in the same way, and criteria are explained in Section 2.5.2.
The first 10 components explained 84.8% of the data variability. For that reason, the 10 PC
were used as a new set of non-correlated and orthogonally transformed metrics.

Table 7. Different scenarios tested for each dataset with the number of features used in each test.

Scenario Datasets Number of Features

S1 Tree Spectra 25
S2 Vis 11
S3 PR LiDAR 53
S4 PR LiDAR PCA 6
S5 FWF LiDAR 9
S6 Tree Spectra + PR LiDAR 78
S7 Tree Spectra + PR LiDAR PCA 31
S8 Tree Spectra + FWF LiDAR 34
S9 VIs + PR LiDAR 64
S10 VIs + PR LiDAR PCA 17
S11 VIs + FWF LiDAR 20
S12 All Features (Tree Spectra + Vis + PR LiDAR + FWF LiDAR) 98
S13 All_PCA 10

The algorithm used for the classification of tree species was RF (random forest), which
consists of several decision trees, with the class of a given sample being determined with
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the most frequent vote among the decision trees [96]. The algorithm randomly creates
new training sets with substitution and resampling of the original data, many times the
number of samples [97]. The classification was performed in R environment [64] using
the randomForest package [98]. The following parameters were selected: number of trees
built (ntree = 1000) and number of candidate variables in each tree node (mtry), defined as
the square root of the number of input data in each of the tested scenarios (Table 7). With
RF, it was possible to obtain the degree of importance of each one of the features used as
input for the classification of tree species. Moreover, this algorithm handles data with high
dimensionality in classification problems [99,100].

Of the 81 tree samples, 60% were used for training and 40% for validating the clas-
sification. Due the low number of samples, the LOOCV (leave-one-out cross-validation)
method was used for validation. According to [47,79,101], the LOOCV technique presented
successful when working with less than ten samples per class or for an unbalanced number
of samples per class.

The classification evaluation was performed with the results obtained in the LOOCV
process. Then, the following statistics were calculated: confidence interval for overall
accuracy (OA) at 95% probability and Cohen’s Kappa index (κ) [102] for each tested
scenario. For the best scenario, the confusion matrix was generated with producer accuracy
(PA) and user accuracy (UA). The relative importance of the features that best separated
the tree species was also analyzed. A map with the distribution of tree species classified by
the best scenario was also produced.

3. Results

From the hyperspectral orthomosaics it was possible to extract the reflectance factor
spectrum of each tree and understand the wavelengths that are more suitable for the
separability of tree species, as well as the possible confusion between some species due to
spectral similarity. The average spectra for each tree species are shown in Figure 10. The
species AnPe and AsPo presented spectra with different shapes when compared to the
other species. While AnPe has a low reflectance factor in the visible wavelengths (506.22 nm
to 700.28 nm), AsPo has a high reflectance factor not only in the visible range, but also in
the near infrared wavelengths (700.28 nm to 819.66 nm). The other tree species showed
similar behaviour along the spectrum with a subtle difference between the tree species
in the visible wavelengths, with the difference gradually increasing in the near infrared
wavelengths. However, the tree species AnPe, ApLe, and HyCo showed small differences
in their spectral responses, mainly between 720.17 nm and 819.66 nm, which made it
difficult to differentiate and classify these species using solely the spectral information.

In Figure S1 of the Supplementary Material, the spectra of all samples of trees of each
species are present. Some inferences can be made, such as the tree’s level of development,
crown transparency, leaf distribution, leaf senescence, and whether the tree is under biotic
and abiotic stress conditions. Explaining the reasons for the changes in the spectral response
of the species requires further studies. The physiological condition of the trees at the time
of the acquisition of the images and during different seasons should be observed and
compared, according to [35]. However, this kind of study is very challenging in tropical
forests, and it is recommended for future studies.

From the 13 classification scenarios tested (Table 7), the S3 to S5 scenarios, using only
LiDAR metrics for classification (PR LiDAR, PR LiDAR PCA, and FWF LiDAR), resulted in
the lowest classification accuracy, with an average OA between 33% and 36% and a Kappa
index between 0.22 and 0.24. For the studied tropical forest, the LiDAR metrics containing
forest structural information only were not effective enough for the classification of tree
species.
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Regarding the spectral information, an average OA of 55% (S1) was achieved. Even
though it solely used the raw spectra and the classifier better differentiated the tree species
in comparison to using only the LiDAR metrics, it was still not very effective in classifying
the tropical tree species. It is further worth noting that no significant difference was
observed in the classification results when using the raw spectra and when using the VIs
(S2) as input data.

The scenarios that combine spectral data with LiDAR metrics showed improved
classification accuracy, with an OA above 64%, except for S7 and S10, which had an
accuracy close to using spectral information only (i.e., 55% and 58%, respectively). Both
scenarios used PR LiDAR metrics transformed by PCA; in other words, even combined
with spectral information and VIs, the PR LiDAR metrics (derived from lidR package [65])
transformation was not as effective in differentiating and classifying tree species.

However, when all the features we included (raw spectra, VIs, and PR and FWF LiDAR
metrics) were combined and transformed by PCA (S13), the best classification results were
achieved with an average OA of 76% and kappa index of 0.71. This could be explained
because the PR and FWF metrics extracted were different types of metrics, and they could
supplement each other. Nevertheless, the results of S11 that contains only the FWF features
(extracted from DASOS) and VI metrics are very close to S13 that contains all the metrics,
and this could indicate that cleaner but fewer metrics—reduced dimensionality—can confer
great results. In Figure 11, there is a summary of the overall accuracy confidence interval
and kappa index for all tested scenarios. It is possible to verify that the confidence intervals
for scenarios S6, S11, and S12 do not differ from the best scenario, S13.

The confusion matrix for the two best scenarios (S11 and S13) is depicted Figure 12.
The AnPe and AsPo tree species had a UA of 100% for both scenarios. The ApLe and HeAp
species showed 100% of UA only for S13 and the CoLa species only for S11. For Scenario
11, the PtPu species did not have any tree correctly classified, which was confusing with
the HeAp and SyRo species. Most likely, the crowns of these trees were very close to each
other, causing confusion mainly in the spectral response.
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The species HyCo was not classified in the S13. There was confusion with the CoLa
species, which are from the same botanical family (Fabaceae—Caesalpionideae, Table 1).
Thus, depending on the developmental stage and phenology, the trees of these two species
may present a similar spectral response and structure. There was also confusion between
the HyCo and SyRo species. SyRo is prominent in the Ponte Branca Forest remnant, and as
a palm tree, this tree crown has a star shaped structure (Figure 3) that can intertwine with
the crowns of other trees and interfere in the spectral response and structure of a given tree.

The features importance for the best classification scenarios (S11 e S13) obtained by
the RF classifier, in terms of MDA (mean decrease accuracy), is shown in Figure 13. The
reflectance factor at the red edge position, obtained from hyperspectral orthomosaics, was
the variable that mostly contributed to the separability of tree species in S11, followed by
VIs MCARI and ND_682_553 (Table 7). For S13, the fourth and first PCs were the variables
that contributed most to the classification of tree species. The contribution of each spectral
feature, VIs, and LiDAR metric in the PC is shown in Figure 14.
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Analysing the features importance, the raw spectra and VIs used for classifying
tree species were not as effective when used independently (Figure 11). However, when
combined with FWF LiDAR metrics, their potential in classifying tree species in tropical
forests was increased. Regarding the PCs (Figure 14), we can see the raw spectra have a
high contribution to the first component and the VIs have a high contribution to the fourth
component. Together with these features, the FWF LiDAR metrics, such as lowest return,
average height difference, thickness, non-empty voxels, and maximum intensity, proved
to be very effective in classification for both scenarios. The PR LiDAR metrics showed a
similar degree of contribution on each PC.

In respect to visualization, Figure S2 of the Supplementary Materials shows the distri-
bution of the classified tree species by the best scenario. As the superpixel segmentation
was done semi-automatically, implying that the generated segments were corrected to
ensure precise delineation, the produced distribution maps are reliable. Species that were
not classified correctly have the edge of the segment with the colorization of the correct
tree species.
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4. Discussion
4.1. ITC Deliniation

The delineation of individual tree crowns was performed in the CHM using the
superpixel method. Since the main focus of the study is to investigate which combination
of hyperspectral and LiDAR metrics better classify tree species and the superpixel method
leads to over-segmentation, the over-segmentation was corrected in a semi-automated way.
At first, small segments created by the superpixel algorithm were merged according to
the predefined criteria (Table 4). After this automatic step, the merged superpixels were
checked, and the quality of the segmentation was improved using vector editing tools.
This method ensured that all trees were correctly delineated, and no samples were left out.
However, this worked for this study with a small sample of trees, but more robust methods
of delineating tree crowns in tropical forests are needed.

It was shown that the superpixel approach was superior to the watershed algorithm for
delineating tree crowns from the CHM at Ponte Branca Forest remnant [47]. A segmentation
accuracy of 62% was achieved. However, at [47], the presence of a SyRo palm tree whose
crown is not circular was reported, making the automatic process challenging. It required
smaller superpixels to distinguish palm tree crowns (star-shaped, Figure 9), but it conferred
over-segmentation to the other species within the tropical forest that have wider and more
circular-like shape crowns. The same problem was found in our study, and the segments
referring to the SyRo palm tree species had to be manually corrected in most cases.
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In Brazilian Amazon forest, ref. [103] tested some ITC delineation algorithms using
the CHM from LiDAR available in lidR package for R [65]. The best result was obtained by
the method developed by [104], which is based on seeds and Voronoi tessellation, with an
accuracy of 65%. The authors mentioned that raster CHM-based methods are ineffective to
detect trees present in lower strata.

In another inland Atlantic Forest remnant in Brazil, ref. [105] tested a new automatic
method for delineating ITC using high-resolution multispectral satellite images. The
method encompasses several steps, namely pre-processing, selection of forest pixels, en-
hancement and detection of pixels in the crown borders, correction of shade in large trees,
and segmentation of the tree crowns. The accuracy of the method was 79%, showing
it to be an effective method for large tree crowns; however, the method is ineffective in
detecting trees in the understory and trees located in shadowed areas due to other trees or
terrain shade.

All the authors cited above mention the difficulty of delineating ITCs in tropical
forests due to the complexity and heterogeneity of forest formations and the difficulty of
performing the segmentation of species in the lower strata, mainly because smaller trees
are below the crowns of larger trees. According to [75], a perfect ITC delineation in tropical
forests is unrealistic. However, partial information that allows the delineation of dominant,
rare, or invasive tree species that could be important ecological indicators is of great value
for better understanding these complex ecosystems.

4.2. Tree Species Classification

In this study, we classified eight tree species in a Brazilian Atlantic Forest remnant
using multisource remote sensing data. Three different datasets were used: hyperspec-
tral images, PR LiDAR, and FWF LiDAR data. These data were used independently or
combined to train and evaluate an RF tree species classifier. Many studies have addressed
the classification of tree species in temperate and subtropical forests using spectral and/or
geometric data (i.e., LiDAR) [4,6,106–114], but few studies have been realized to classify
tree species in Brazilian tropical forests, mainly due to the difficulty in access to these areas,
difficulty in obtaining a sufficient number of samples of each species, great heterogeneity,
and diversity of tree species in these forests. Thus, our discussion will be based on studies
with similar applications for at least tropical and subtropical forests, whenever possible.

To classify eight emerging tree species in the Ponte Branca Forest remnant (same study
area), ref. [35] used hyperspectral data from Rikola camera onboard of UAV, collected
on three different dates, to understand whether multitemporal data can improve the
classification. The variables used were normalized and non-normalized tree species spectra.
The use of temporal spectral information improved classification performance for three of
the eight analysed species. However, for the other species, a difference in environmental
conditions between years influenced flowering and defoliation of the species even in the
same season, thus altering the spectral response, as well as the time of image acquisition.
The best result was obtained with the normalized spectra (OA of 50%). In our study, the OA
was similar (55%) using the raw spectra (Figure 11). The aforementioned authors reported
a difference in spatial position between ITCs over the years, and some neighbouring trees
interfere the spectral response of the tree species to be classified. In our case, there was no
misalignment between the same ITC sample, but for the same species, there were samples
on two different dates (2016 and 2017). Even though the data in different years were
collected in the same season, there was a lag of one year and one month (Table 3). Thus, the
same species can present different physiological and phenological behaviour in different
years, which may explain why the raw spectra and VIs were not effective in differentiating
tree species in the Ponte Branca Forest remnant. The most important features found by [35]
were the wavelengths, mainly from 628.73 nm to 780.49 nm (Band 10 to Band 23), which
coincide with the bands that most contribute to the PC (Figure 14) for the best classification
scenario in our study. This makes sense as band configuration of the camera used in both
studies were the same, and the species chosen for classification were similar, as well.
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In another inland Atlantic Forest remnant in Brazil, [29] classified eight forest species
using airborne hyperspectral images obtained with the AisaEAGLE sensor in the VNIR
spectrum (visible and near-infrared) and the AisaHAWK sensor in the SWIR spectrum
(shortwave-infrared). Various combinations of wavelengths and VIs were tested. Species
discrimination performed best using visible bands (mainly wavelengths located at 550 nm
and 650 nm) and SWIR bands. Vegetation indices contributed positively to the classification
when integrated with VNIR features and should be used if the sensor does not acquire
data in the SWIR wavelengths. The PSRI vegetation index (see Table 5) was one of the
most important for tree species differentiation and, in our case, had the fourth highest
relative importance (see Figure 13) for the second-best classification scenario (S11). The
best classification accuracy obtained by [29] was 90.1%. This result was better than the
result obtained by us, even for the best classification scenario (S13—OA of 76%). One of
the reasons is the sample sufficiency. The forest remnant in [29] study has a larger area
and a better conservation state; consequently, more trees are present in the upper canopy.
A total of 273 samples of eight species were selected while in our study, only 81 samples
of eight species were selected. In addition, the Rikola camera does not collect data in the
SWIR spectrum.

It was possible to verify that data from narrowband sensors (i.e., hyperspectral) are
an important tool in the discrimination of tropical species since it is possible to obtain
specific wavelengths and vegetation indices in parts of the spectrum where it is possible to
differentiate species according to the spectral response. Even the results achieved by us
using only spectral information were not satisfactory; wavelengths in the VIS, Red-edge,
and NIR spectrum proved to be suitable to calculate most of the VIs and for classifying
different tree species until certain level in our study.

It is possible with PR LiDAR data extract information that describe the structure
and geometry of forests, and this information also has the potential to discriminate tree
species, but their isolated use was not effective for classification in our study. The PR
LiDAR metrics and their transformation by PCA showed the lowest classification accuracy
and OA (33% and 36%, respectively). Michalowska and Rapiński (2021) [6] commented
that using only vertical structural features from PR LiDAR (i.e., height distribution) can
decrease classification accuracy. Considering only the structure of the vegetation, it is
not species-specific but more conditioned to the position on ecological succession (e.g., if
the species is pioneer, secondary, or climax) or layer in the forest (e.g., understory, lower,
medium, or upper stratum). Furthermore, tropical forests have multiple layers with smaller
trees below the canopy, and therefore, PR LiDAR height distributions and pulse returns
are ineffective for species separation in lower strata [6,47,113] when used independently
as input for tree species classification. In more complex forests, the spectral differences
are usually more pronounced than structural differences when used independently [110],
which was confirmed in our study when analysing each of these features (hyperspectral
images, PR LiDAR, and FWF LiDAR) separately.

While PR LiDAR metrics can decrease classification accuracy, the isolated use of FWF Li-
DAR metrics have great potential for classification of tree species, as the analysis of the complete
waveform allows a better interpretation of the physical structure and geometric backscatter
properties of the intercepted objects [13,17,115,116]. Some authors, such as [19,117], used metrics
related to the number of waveform peaks, waveform distance, height of median energy, rough-
ness, and return of waveform energy for tree species classification. Hollaus et al. (2009) [118]
used FWF LiDAR metrics related to echo height distributions, mean and standard deviation
of echo widths, mean intensities, and backscatter cross-sections. In China’s subtropical forests,
the OA was 68.6% for classification of six tree species [117]. Reitberger et al. (2008) [19] found
an OA of 79% for the classification of leaf-on tree species and OA of 95% for the classification
of leaf-off tree species in Bavarian Forest National Park in Germany, and in pre-Alps region of
Austria, three species (beech, spruce and larch) were classified with an OA of 85% by [118]. All
these authors used metrics extracted from FWF LiDAR data. However, in our study, using only
FWF LiDAR metrics to classify tree species was unsuccessful (OA of 36%). It is noteworthy that
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none of the cited studies were performed in complex tropical forests; in addition, the DASOS
software provided a different set of FWF metrics that related to the spatial distribution of voxels
that contain or do not contain a waveform sample. It is worth noting that these metrics relating
to the voxel distribution could also be extracted using point clouds, as each waveform sample is
actually a point associated with an intensity.

When used isolated, spectral data from the Rikola camera and the geometric/structural
data from LiDAR were not effective for classification (S1 to S5), LiDAR geometric data,
especially when combined with radiometric data, intensity, and spectral data, provided
valuable information for the classification of tree species in complex forests [4,6].

It is possible to notice that the metrics related to the voxels extracted from the FWF
LiDAR data using DASOS, and the VIs from the Rikola camera were one of the best
combinations for the classification of the eight species of the Ponte Branca Forest remnant,
with an OA of 73%., an improvement of 18% comparing the classification performed with
the spectra and VIs extracted from the Rikola camera, and 36% using the FWF LiDAR
metrics alone. Buddenbaum et al. (2013) [10], to classify two different forest species (Spruce
and Douglas Fir) that were in different age classes, used 122 spectral bands of the HyMap
hyperspectral sensor and normalized intensities of the waveforms that intercepted voxel
columns with dimensions of 0.5 m. Combining these two data sources, the OA was 72.2%,
improving classification accuracy by 16% when compared to using spectral bands only
and 5.5% when using spectral bands and percentile heights of PR LiDAR data that was
isolated. The FWF LiDAR metric related to the intensity of the voxels intercepted by the
waveform samples proved to be an important metric in the differentiation of forest species,
including in our study, in which it was important both for S11 and for S13 (Figure 13).
Liao et al. (2018) [22] also confirmed an improvement in the accuracy of the classification
of seven forest species in the western part of Belgium using different height percentiles
of FWF LiDAR with hyperspectral images. The improvement was 7.7% compared to the
classification using only hyperspectral bands and 24.8% compared to using only raster
LiDAR FWF. It is worth mentioning that the metrics related to height percentiles are
dependent on the point cloud density, which makes it difficult to compare with other study
areas or different acquisition parameters of the point cloud. Thus, a benchmarking data to
test algorithms across different acquisitions and study areas is necessary for understanding
how the tree species classification performs using different types of LiDAR metrics [119].
The DASOS software normalizes the data during voxelization and deals with the irregular
scan pattern, and the extracted metrics are not dependent on the point density [72].

Although the FWF LiDAR metrics performed better when combined with the VIs in
classifying tree species, the difference was small when we looked at the confidence intervals
(Figure 11) for the scenarios that combine both PR LiDAR and FWF LiDAR metrics with the
information spectra and VIs (S8–S9 and S11 to S13). S13 includes all the metrics included in
S11, and a small increase in classification accuracy was observed from including the extra
metrics extracted from the PR data and the spectral data except for the scenarios, whose
combinations were made with the PR LiDAR metrics transformed by PCA (S7 and S10).

As FWF LiDAR data require more computer memory than PR LiDAR data, the data
processing is more time consuming and requires more computational effort, and few
tools are available for processing and extracting information from FWF LiDAR point
clouds [72,120]. In addition, due to the advancement of LiDAR systems, it is possible to
obtain several returns for each emitted pulse. Thus, PR LiDAR metrics can be effective for
tree species classification when FWF LiDAR data are not available and/or it is not possible
to process them.

There are many tools and workflows for processing PR LiDAR point clouds, and
several authors have already proven that the combined use of LiDAR metrics and spec-
tral information from hyperspectral sensors (e.g., raw spectrum and VIs) improve the
classification of tree species in different types of forest. Asner et al. (2008) [121], for the
classification of invasive tree species in Hawaiian tropical forests, found an improvement
in accuracy from 63% to 91% using tree species spectra and LiDAR heights. Shen and
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Cao et al. (2017) [122] found an improvement of approximately 6% in the classification of
five species, and ref. [110] found an increase in classification accuracy of 18 tree species of
approximately 7% using both VIs and LiDAR metrics in Chinese subtropical forests. In our
study area, improvements were 15% when combining raw spectra with LiDAR PR metrics
and 9% when combining VIs with LiDAR PR metrics in classifying eight tree species. This
corroborates the potential that the combination of hyperspectral and geometric data from
LiDAR, mainly related to height percentiles and percentage of returns, have to improve the
accuracy of tree species classifications, including in tropical forests.

Using all features extracted from different data sources for classification (i.e. spectra
and VIs from images of the camera Rikola, PR, and FWF LiDAR metrics), we achieved a
classification OA of 70% (Scenario 12), and transforming all features by PCA, the OA was
76% (Scenario 13), the best result obtained in this study. Using a large set of features as input
data for classification, ref. [110] combined VIs and PCA from hyperspectral images, textural
information from RGB images, and structural metrics from LiDAR, totalling 64 features for
the classification of tree species in Chinese subtropical forests. The OA was 91.8%, a better
result than just using the isolated features or combining them two by two (e.g., LiDAR and
VIs). For the classification of 12 tree species in a Brazilian subtropical forest, ref. [79] tested
several scenarios with different inputs, and one of the scenarios contained 68 features
(e.g., raw spectra and VIs obtained from hyperspectral images, photogrammetric point
cloud metrics, CHM, and textural information). The OA was 70.7% with a difference
of less than 2% obtained for the best scenario that used raw spectra, VIs, and structural
information from the photogrammetric point cloud as input.

When using many features as input data for classification with the RF algorithm, the
features are randomly selected at each node of the tree [123]. If any feature that does
not contribute to species differentiation is selected, the classification performance may
decline [123]. The more features that do not contribute to the separation of tree species
are added in the RF algorithm, the greater the probability of these features being selected
at each node, increasing the algorithm generalization error in addition to generating very
large trees [123,124]. Thus, a pre-selection of features that have the greatest potential to
differentiate species can optimize and improve classification accuracy. However, as trees
are complex structures, different features from different data sources (i.e., different remote
sensors) can be complementary to improve the separability and classification of tree species.
This can be seen in the results obtained in this study, as well as in other studies cited above,
in which the use of many features did not decrease accuracy, but rather, it was similar to or
even improved the classification accuracy when compared with a pre-selection or use of
fewer features as input data for classifying tree species.

The transformation of the PR LiDAR metrics by the PCA and the use of these isolated
features with the spectra or with the VIs were not very effective in the classification.
However, when using all the features extracted from the hyperspectral images and the PR
and FWF LiDAR point clouds transformed by the PCA, it resulted in the best classification
accuracy (OA of 76%). According to [22], the high dimensionality and redundancy when
using hyperspectral data mainly makes it difficult to extract information from moving
windows in raster data. Thus, the transformation by PCA facilitates the extraction of
information using moving windows. In addition to decreasing the correlation between
features that may be redundant, the PCA transformation can improve the classification
accuracy when using small training set sizes [125].

5. Conclusions

In this study, we tested the automatic classification of eight tree species present in the
upper canopy of a remnant of the Brazilian Atlantic Forest. Thirteen different classification
scenarios were tested using remote sensing data from different sources (i.e., hyperspectral
images collected from a UAV and airborne PR (peak return) and FWF (full-waveform
LiDAR) as input data for the classification.
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The segmentation of tree crowns was performed using the superpixels algorithm. Due
to the low number of samples (81 trees), a manual correction of the segments that were
not correctly delineated was made. Despite being effective, the method is time consuming,
especially when working with a large number of samples, and it is recommended to have
more studies on this topic for tropical forests.

Among the tested scenarios, the isolated use of LiDAR metrics for classification
regardless of the type of return and the transformation by PCA (principal component
analysis), was not effective for the classification, resulting in the lowest overall accuracy
(between 33% and 36%). The use of the raw spectra of the hyperspectral images and the
VIs (vegetation indices) had a better accuracy than the use of LiDAR data (55% for both
features). However, the results with this data configuration were still not satisfactory.

When spectral features were combined with LiDAR metrics, there was a considerable
increase in classification accuracy, between 64% and 76%, except when using the com-
bination of raw spectra or VIs with PR LiDAR metrics, transformed by PCA (accuracy
of 55% and 58%, respectively). The use of all features (raw spectra, VIs, PR, and FWF
LiDAR), transformed by PCA, was the best classification scenario (overall accuracy of 76%),
followed by the use of VIs and FWF LiDAR metrics (overall accuracy of 73%). However,
considering the confidence intervals were at 95% probability, there was no significant
difference between the scenarios using PR or FWF LiDAR metrics with the raw spectra
or VIs.

Analysing the results of the overall accuracies obtained in the different classification
scenarios analysed and the most important features for the best scenarios provided by
the RF (random forest) algorithm, it can be concluded that cameras that collect data in
visible, Red-edge, and NIR wavelengths are sufficient to calculate most of the VIs providing
sufficient spectral information. Combined with PR LiDAR metrics (e.g., height percentiles
and number of returns for each emitted pulse), they can achieve satisfactory accuracies in
the classification of tree species in complex forests.

Data acquisition with UAVs can reduce costs and improve usability, but it requires the
development of suitable sensors, such as lightweight multispectral cameras and LiDAR
with the ability to record multiple returns, intensity, and with a greater density of points.
Because UAVs can operate at a lower flight height, they allow greater flexibility for data
collection in different areas and can generate outputs with good accuracy.

Despite the difficulties observed in this study, mainly in relation to the low sampling
sufficiency of the trees, the time lag between the different flight campaigns, and the high
heterogeneity of the forest canopy, the results of the classification were satisfactory for
the complex forest environment studied. These results can serve for management and
conservation practices of these forest remnants, allowing for a better understanding of the
spatial distribution of species with a potential for forest restoration.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f14050945/s1, Figure S1: Spectra obtained from each tree
for each species, from hyperspectral orthomosaics. Figure S2: Distribution of species classified in
the best scenario (S13). The segment colour represents the classification result, and the border colour
refers to the correct field identification.
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