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Abstract: The core collection is a small subset that minimizes genetic redundancy while preserving
the maximum genetic diversity of the entire population. Research on the core collection is crucial
for the efficient management and utilization of germplasm resources. In this paper, the concept
of the core collection and the research progress of its construction have briefly been summarized.
Subsequently, some perspectives have been proposed in this research field for the near future. Four
novel opinions have been presented, (1) the effective integration of multiple data types and accurate
phenotyping methods need to be focused on; (2) the sampling strategy and bioinformatics software
should be given attention; (3) the core collection of afforestation tree and bamboo species, with a wide
natural distribution range and a large planting area, need to be carried out as soon as possible; (4) we
should place a high priority on the study of genes discoveries and utilize these with a rapid, precise
and high-throughput pattern based on re-sequencing technology. This paper provides a theoretical
and technological reference for further study and the application of the plant core collection.

Keywords: germplasm resources; core collection; genetic diversity; utilization of core collection;
molecular breeding

1. What Is a Core Collection?

Germplasm resources serve as a crucial material basis for genetic research and help
in the identification and utilization of genes and traits that are of economic and ecological
importance [1]. Therefore, the preservation and utilization of germplasm resources are of
significant importance for the development of new crop varieties, and a large number of
germplasm banks have been established [2]. However, due to their vast amount, diverse
structure and incomplete information on germplasm resources, the available diversity that
has been collected may not be fully and effectively utilized [3–5].

To obtain a germplasm bank that is both practical and representative, Australian
scholars Brown [5] and Frankel [6] proposed the concept of core collection in 1984. Core
collection refers to selecting a part of the entire germplasm resource through certain meth-
ods with the goal of representing the genetic diversity of the entire germplasm resource
with a minimum number of resources. The theoretical basis supporting this concept is the
theory of neutral mutations and the hierarchical structure model of genetic diversity [7].
A good core collection should have the following characteristics: representativeness, low
redundancy, manageability, data completeness, and usability [8]. A core collection provides
more reliable data and samples, makes it easier to optimize genotype/molecular marker-
phenotype association studies, improves the utilization efficiency of the germplasm, and
accelerates the breeding process [9–11]. Recently, with the continuous improvement in
research methods, the concept of the core collection has been extended to the fields of
asexual propagation crops, DNA germplasm banks and the in situ conservation research of
germplasm resources [12].
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2. The Progress of Core Collection

In considering world experience and the formation of core collections that the literature
reveals, we focus on the following questions:

• Have core collections been formed for a diversity of plants?
• How can we effectively construct a representative core collection?
• How well can the core collection be utilized?

Our responses to these questions are summarized below.

2.1. Diversity of Core Collections

Core collections preserve the genetic diversity of the original population as much as
possible, which promotes the effective use and protection of germplasm resources [4–6].
Based on this, many core collection research studies have been conducted both domestically
and internationally. This study summarizes the development and research of core collec-
tions of 146 plant species over the most recent 10 years, which are listed in Table 1 below and
Supplementary Table S1. The table shows that core collections have been developed mainly
in economic crops and fruit trees; meanwhile, forages have been recently exploited for
core collection establishment, including Buchloe dactyloides (Nutt.) [13], Cynodon Rich. [14]
and Bromus inermis Leyss. [15]. However, core collections of endemic afforestation tree
species are still limited, although some have been reported, such as those of Cunninghamia
lanceolata (Lamb.) Hook. [16], Robinia pseudoacacia L. [17], Populus tomentosa Carrière. [18],
Pinus massoniana Lamb. [19], etc. In addition, only a few of these studies have focused on
spice crops, and the core collection that has been constructed is dominated by Santalum
album L. [20].

Table 1. List of plant species that have been core collection-developed in recent years.

Species Category Name

Grain
crops

Cereals maize [21–24], sorghum [25], coix [26], hulless barley [27], rice [28], wheat [9,29], oat [30], buckwheat [31],
pearl millet [32], foxtail millet [33], peanut [34]

Potatos sweet potato [35], cassava [36]

Pulses chickpea [37], Pigeonpea [38], lima bean [39], soybean [40,41], rice bean [42], commom bean [43], faba
bean [44], mung bean [45]

Horticultural
crops

Vegetables

cauliflower [46], rapeseed [47], Cabbage [48], tomato [49,50], spinach [51], amaranth [52], bitter
gourd [53], Jerusalem artichoke [54], yam [55], cucumber [56], pumpkin [57], white gourd [58],
pepper [59], sweet pepper [60], eggplant [61], radish [62], Turnip [63], oyster mushroom [64], perilla [65],
Pyropia haitanensis [66]

Fruits
pricot [67–70], pear [71,72], jujube [73–75], grape [76], melon [77], watermelon [78], kiwifruit [79],
pomegranate [80], litchi [81,82], olive [83], apple [84–86], peach [87], cherimoya [88], fig [89], sweet
cherry [90], pomelo [91], persimmon [92], sugarcane [93]

Ornamental
plants

Cymbidium ensifolium [94], Chrysanthemum morifolium [95,96], Prunus mume [97], Chimonanthus praecox [98],
Rosa rugosa [99], Lilium brownii [100], Paeonia suffruticosa [101], Lagerstroemia indica [102], Helianthus
annuus [103], Sophora moorcroftiana [104]

Herbs Fallopia multiflora [105], Astragalus [106], Scutellaria baicalensis [107], Angelica biserrata [108], Glycyrrhiza [1],
Cornus officinalis [109], Dalbergia Odorifera [110]

Spice Santalum album [20]
Teas Guizhou tea [111], Chinese tea [112,113]

Beverages Coffee [114], Theobroma cacao [115]
Fibers cotton [116], upland cotton [117], island cotton [118], ramie [119]

Oilseeds safflower [120], sesame [121]
Forages Buchloe dactyloides [13], Cynodon [14], Medicago truncatula [122], Bromus inermis [15]

Trees

Catalpa bungei [123], Catalpa fargesii [124], Saccharum spontaneum [125], Populus deltoides [126], Populus
tomentosa [18], Cinnamomum camphora [127], Phoebe bournei [128], Robinia pseudoacacia [17], Torreya
grandis [129], Tetracentron sinense [130], Xanthoceras sorbifolia [131], schima superba [132], Sapium
sebiferum [133], Fraxinus chinensis [134], Eucommia ulmoides [135], Saccharum arundinaceum [136], Corylus
avellana [137], Juglans regia [138,139], Betula platyphylla [140], Betula luminifera [141], Sinojackia
huangmeiensis [142], Castanopsis hystrix [143], Morus alba [144], Castanea mollissima [145], Castanea
sativa [146], Cunninghamia lanceolata [16], Cryptomeria japonica [147], Eucalyptus cloeziana [148], Eucalyptus
urophylla [149], Ceratonia siliqua [150], Argania spinosa [151], Pinus massoniana [19], Pinus yunnanensis [152],
Ginkgo biloba [153], Akebia trifoliata [154], Camellia oleifera [155], Cornus wilsoniana [156]
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2.2. Procedure of Constructing a Core Collection

The development of the core collection has been extensively studied from various
perspectives, such as sampling strategies, core size determination, and analysis methods,
among others. However, due to the wide variation in the growth habits and reproductive
characteristics of various plants, there is no universal core collection construction method.
Generally, the construction of the core collection mainly includes four steps: the collec-
tion and organization of data, the grouping of accessions, the determination of sampling
strategies and the testing and evaluation of the core set [1,8].

2.2.1. Data Selection for Core Collection

Initially, passport data, phenotypic characteristics (agronomic and morphological
traits), and biochemical traits were used to develop core collections, as these traits can
visually represent plant differences and are straightforward to measure [37,157,158]. Based
on these, core collections have been reported for many crops (Supplementary Table S1),
including Spinacia oleracea L. [51] and Chrysanthemum morifolium Ramat. [95], Helianthus
annuus L. [103], Sorghum bicolor(L.) Moench [25], Solanum lycopersicum L. [49] and Coix
lacryma-jobi L. [26]. Additionally, this core collection method has been applied to many
fruit trees, such as Armeniaca vulgaris Lam. [67], Punica granatum L. [80], Ziziphus mauritiana
Lam. [75], Prunus persica L. Bat sch. [87], etc. Nevertheless, using phenotypic data pro-
duces certain challenges, such as its potential loss, incompleteness, unreliability, and easy
susceptibility to environmental factors [17,124]. As a result, the core collection may not
accurately represent the full genetic diversity of the original group, potentially resulting in
the exclusion of important and valuable germplasms in the core collection [17,159].

With the increased availability and efficacy of molecular markers in uncovering genetic
diversity, the development of more robust core collections has been made possible [124,139].
These markers include SRAPs for Fallopia multiflora (Thunb.) Nakai [105], Sapium sebiferum
(Linn.) Roxb. [133]; ISSRs for Chimonanthus praecox (L.) Link [98], Tetracentron sinense
Oliv. [130], Cornus officinalis Sieb. et Zucc. [109], Argania spinosa (L.) Skeels [151]; AFLPs for
Ginkgo biloba L. [153], Prunus mume Sieb. et Zucc. J [97]; SSRs for Raphanus sativus L. [62],
Cunninghamia lanceolata (Lamb.) Hook [16], Actinidia chinensis Planch. [79], Astragalus
membranaceus Moench [106], Olea europaea L. [83], Castanea mollissima Bl. [149], Corylus
avellana L. [137], etc. Additionally, SNPs for Amaranthus tricolor L. [52], Brassica napus
L. [47], and Litchi chinensis Sonn. [81], Glycine max (L.) Merr. [41] and Cucumis sativus
L. [56]. Among these various molecular markers, SSR markers are globally used, which
can be attributed to their numerous benefits, including simple operation, high levels of
polymorphism, a co-dominant inheritance, stability and reproducibility [160]. In recent
years, SNP markers have become increasingly important in molecular detection, largely
due to their high abundance in genomes and high-throughput genotyping on automated
platforms [62].

Although molecular markers have several advantages in developing core collections,
they cannot fully embody the genetic diversity of species due to their partial polymorphism
of DNA fragments. Thus, breeders often employ multiple data types to construct a more
robust and reliable core collection, which can greatly prevent the loss of crucial germplasms
and enhance the precision and comprehensiveness of core sets [17,124]. For instance, Peng
et al. [117] used phenotype, genotype and favorable alleles to develop a core collection of
Gossypium hirsutum L. The core set of Carthamus tinctorius L. [120] and Polygonum fagopy-
rum L. [31] were established by molecular, phenotypic, and geographical diversity; Guo
et al. [17] developed the Robinia pseudoacacia L. core collection using a combination of
phenotype, physiology, and genotyping markers. The core collection of Perilla frutescens
L. [65], Catalpa fargesii f. duclouxii (Dode) Gilmour [124], Juglans regia L. [139], Castanopsis
hystrix Hook. f. and Thomson ex A. DC. [143], Pinus yunnanensis Franch. [152], Camellia
oleifera Abel [155], etc., were developed by utilizing a combination of molecular markers
and various phenotypic data.
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2.2.2. Separating the Accessions into Meaningful Groups

To develop core collections effectively, it is crucial to create distinct and internally
consistent groups that ensure representative sampling and reflect differences in genetic
diversity. This can be achieved based on various factors such as plant taxonomy, geograph-
ical origin, ecological zone, phenotypic characteristics, and genetic distance [3,88]. Cluster
analysis is a widely used tool for grouping accessions to construct core collections [161,162].
However, the choice of cluster methods greatly influences the resultant core collection, and
several common cluster methods are available, such as single linkage, the complete method,
the median method, the centroid method, and UPGMA and Ward’s method [161]. Gener-
ally, the UPGMA method is widely used for its moderate nature and monotonicity [163].
Ward’s method is also effective but requires the use of Euclidean distances. In addition
to these commonly used methods, STAT software (StataCorp, College Station, TX, USA)
provides other clustering methods, such as the maximum likelihood hierarchical clustering
method (EML), density estimation method (DEN), and two-stage objective estimation
method (TWO). Of course, the selection of a clustering method must be in combination
with the corresponding sampling methods to improve the accuracy and rationality of the
constructed core collection [163,164].

2.2.3. Sampling Strategies of Core Collection

The construction of core collection requires the careful consideration of sampling
strategies to ensure maximal diversity and the minimal redundancy of selected acces-
sions [4,16]. Sampling methods can be roughly divided into simple random sampling and
stratification cluster sampling [4,8]: the former treats all germplasm materials equally, with
a random selection of core accessions, ignoring the uneven distribution of genetic diversity
and the frequency of different alleles in the entire genetic resource. Hence, this method
may overlook certain accessions with low frequency but high variability in the entire group.
By contrast, the stratification cluster sampling method, which is based on grouping and
preserves the spatial and genetic distribution structure of original populations, is the most
commonly used and effective method for the construction of core collections. It involves
several steps to create a core collection. The first step is to determine the desired size of
the core collection. Then, accessions can be grouped or stratified based on their character-
istics, such as passport data, phenotypic data and genetic distance. Next various sample
allocation methods, such as proportional (P), logarithmic (L), constant (C), square root
(S), or genetic diversity-dependent allocation (G), are applied to determine the number
of entries that are to be chosen from each group. Finally, one can either randomly select
entries within each group or use a stepwise clustering approach to make the final selec-
tion [28,82,161]. Hu et al. [159] proposed a stepwise clustering method for selecting the
final entries, where two materials were chosen at the lowest level of the clustering tree
using random sampling, preferred sampling or deviation sampling. If there is only one
germplasm, it is automatically included in the core set. The remaining materials were
screened using the same method until the desired sampling size was achieved. Each of the
three sampling strategies has unique characteristics [124,159]. Huang et al. [14] reported
that the preferred sampling method was the most effective method for developing a core
collection of Cynodon Rich, with both preferred and deviation sampling appearing more
effective than random sampling in reducing the variance and coefficient of variation in
the core collection [165]. Meanwhile, it is worth noting that cluster methods significantly
affect the representation of core collections developed by three stepwise cluster sampling
strategies [161]. Later, Wang et al. [161] proposed a minimum distance stepwise clustering
strategy (LDSS) for selecting the final materials. This method selected one of two materials
with the smallest genetic distance on the clustering diagram each time, resulting in a more
effective reduction in genetic redundancy compared to other methods [161]. Figure 1 shows
a diagram of the methodology used to establish the core collection.
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In recent years, the maximization (M) strategy, which selects materials with a high al-
lele abundance and low redundancy by maximizing the number of alleles at each locus, has
been widely applied in core collection construction [16,166]. This approach does not rely
on grouping or clustering methods, and the sampling proportion is automatically gener-
ated [166,167]. Currently, there are several software programs available for the construction
of core collection based on the M strategy [16,137]: Power Mstrat [168], Power Core [169],
CoreFinder [170] and Core Hunter [171,172]. Some studies have found that with the same
sampling ratio, PowerCore retained a higher percentage of alleles and genetic diversity
compared to other software programs [1,119]. However, Chen et al. [173] compared the
PowerCore and the CoreFinder algorithms and showed that the core collection developed
by CoreFinder was more suitable for NARO rapeseed (Brassica napus L.). While the M
strategy often selects poorly representative germplasm due to the need to maximize allelic
diversity, the distance-based method selects materials with good representativeness but
may not be ideal in terms of allelic retention. To address this issue, Core Hunter software
(Department of Computer Science, University of British Columbia, Vancouver, Canada)
optimized genetic distance and allelic diversity simultaneously by weighting the modi-
fied Rogers distance and Shannon diversity index differently based on two optimization
criteria [172].

Figure 2 and Supplementary Table S1 provide an overview of the sampling strategies
used to develop core collections, which show that multiple cluster sampling based on a
genetic structure is the most widely used, followed by the M strategy. I think that the
optimal core collection should exhibit two characteristics: maximum genetic distance and
maximum genetic diversity. The M strategy focuses on selecting diverse loci, while the
genetic distance method aims to select diverse germplasm. Combining both approaches
may lead to the best results. Of course, different plants are suitable for different sampling
methods, and the strategy to be adopted can usually be determined by the purpose of the
core collection [16,137].
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Figure 2. Statistical results of data collection and sampling strategies for core collection construction
of 146 plant species. (a) Data collection; (b) Sampling strategies. Here, R random sampling, CD
Multiple cluster deviation sampling, CP Multiple clusters preferred sampling, CR Multiple cluster
random sampling, LDSS Least distance stepwise sampling, MLST Maximum length sub-tree method,
MM M strategy algorithm of MSTRAT, MP M strategy algorithm of PowerCore(National Institute
of Agricultural Biotechnology, Suwon, South Korea), MC M strategy algorithm of CoreFinder, CH
Core Hunter method, GC GenoCore method, SAGD Simulated annealing algorithm based on the
maximizing genetic diversity, SANA Simulated annealing algorithm based on maximizing allelic
richness, CM Multiple cluster most representative sampling, GD Genetic diversity based on Genetic
Subsetter, CP and CH Multiple clusters preferred sampling combined with Core Hunter method,
and MC and R M strategy algorithm of Core Finder combined with Random sampling method
are represented.

2.2.4. Sampling Proportion of Core Collection

A suitable sampling ratio is another critical factor to consider in the process of con-
structing core collections. A high sampling ratio may result in the inclusion of redundant
samples in the core collection, while a low sampling ratio may lead to the loss of key
materials [17]. Brown et al. [4] proposed that a sampling ratio of 10% could represent 70%
of the genetic diversity in the original collection when the number of original collection
samples was no less than 3000. Van Hintum et al. [3] argued that sampling proportions
should range from 5 to 20%. Yonezawa et al. [174] suggested that a sample proportion of
20%–30% would be appropriate. In addition, germplasm with excellent traits, as well as
backbone parents or varieties that have played a significant role in production, should be
directly selected into the core collection to avoid the loss of excellent germplasm or genes.

However, Supplementary Table S1 shows that the sampling proportion for forming
a core collection is generally about 1.70%–66.46% of the original collection, and the size
of core collections can vary significantly, with some consisting of as few as 12 samples
while others include up to 1956 samples. Clearly, the sampling ratio is not fixed but varies
depending on the characteristics of the plant. The optimal fraction depends largely upon
the original germplasm size, germplasm accessibility, germplasm similarity, and sampling
strategy [7]. Under any circumstances, the preservation of a significant proportion of
germplasm diversity should be the main consideration when determining the optimal
fraction [148].

2.3. Evaluation of Core Collection

While the core collection is constructed based on available data, the important question
remains: does the core set accurately represent the diversity of the original population?

Brown proposed that the core collection should represent 70% or more of the trait
characteristics and genetic variations of the entire germplasm [4]. To validate the effec-
tiveness of the core collection, it should be evaluated from two aspects: firstly, to test



Forests 2023, 14, 926 7 of 21

the representativeness of the genetic diversity of the entire collection and, secondly, to
assess its practicality in production [59]. Generally, at the molecular level, the main genetic
diversity indices include the allele number (Na), effective allele number (Ne), Shannon’s
information index (I), Nei’s genetic diversity index (H), polymorphism information con-
tent (PIC), observed heterozygosity (Ho) and expected heterozygosity (He) [159]; among
these, allelic richness is considered the most relevant indicator. Maximizing allelic richness
means preserving the germplasm resource with the most abundant genetic diversity. At the
phenotypic level, the evaluation parameters include the mean difference percentage (MD),
variance difference percentage (VD), coincidence rate of range (CR) and variation coefficient
changing rate (VR) [8,69,159]. Usually, the core collection is considered representative only
when the MD is less than 20%; the CR is more than 80% [159]. A lower value in MD and
a higher value in VD, CR, and VR could be considered to indicate a more representative
core collection [14,59]. In addition, principal component analysis (PCA) plots have been
widely used to compare the distribution characteristics between the core collection and
the initial population [14]. Moreover, correlation analysis is commonly conducted to infer
whether the inherent relationship between traits in the original collection is well retained in
the core group [14]. Recently, Odong et al. [8] proposed two new criteria based on genetic
distance to evaluate the quality of the core collections. These criteria offer the advantage of
simultaneously considering all variables describing the accessions and provide intuitive
and interpretable results compared to the univariate criteria generally used in core collec-
tion evaluations. Additionally, after establishing a core collection, it is essential to establish
a comprehensive management system for breeding, seed supply, and exchange as soon as
possible to ensure the distribution, sharing, and effective utilization of the core set.

In short, the evaluation criteria of core collection should be variable, and flexible
evaluation methods should be tried according to the new situation. The selection of the
most suitable evaluation method should depend upon the purpose of core collections [8].
Moreover, core collection establishment is a dynamic process [148] that needs to be reg-
ularly updated by the addition of new entries and the removal of duplicates to improve
representativeness and maintain dynamism [120].

3. The Use of Core Collection

The main purpose of constructing core collections is to effectively address the conflict
between a large number of germplasm resources in gene banks and their effective preser-
vation, to improve the utilization rate of excellent germplasm, to promote the exploration
of excellent gene and molecular markers, and to achieve innovation and genetic improve-
ment in crop germplasm [17,175]. Currently, with the development of next-generation
sequencing technology, domestic and foreign research institutions are conducting deep
resequencing of the core collection to accelerate breeding efficiency.

3.1. Genomic Study and Marker Development

Molecular markers are valuable tools in studies such as genotype determination,
genetic diversity analysis, marker-assisted breeding, the fine mapping of QTLs, and phylo-
genetic analysis. Due to the existence of reference genome sequences for various species
and their access to core collections, it is now possible to create a vast number of DNA mark-
ers, such as SNP, insertions/deletion (InDel), cleaved amplified polymorphic sequence
(CAPS), etc. Molecular markers have broad prospects for application in the core collection,
which can promote the protection and utilization of germplasm resources.

3.1.1. Evaluation of Genetic Diversity

Developing molecular markers for core collection is beneficial for evaluating genetic
variation, gaining insights into the genetic background of germplasm resources, and thus
protecting and enhancing genetic diversity. For example, Wu et al. [176] used genotyping-
by-sequencing to identify 4680 high-quality SNPs in a core collection of 150 Chinese Ziziphus
jujuba Mill. accessions, and characterized their genetic diversity, population structure, and
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linkage disequilibrium based on SNPs. Additionally, Lu et al. [177] developed 23 novel
markers using restriction site-associated DNA sequencing to analyze the genetic diversity
of Amomum tsao-ko.

3.1.2. Classification of Species and Varieties

Molecular markers can help identify the species and varieties of core collections that
are difficult to distinguish morphologically. Li et al. [178] designed 134 primers based on cu-
cumber genome re-sequencing, with 116 showing polymorphisms in 16 germplasms, which
were used for the identification and evaluation of cucumber. Similarly, Guo et al. [179]
identified InDels throughout the genome of Capsicum spp. and developed three PCR-based
markers that could distinguish interspecific hybrids of five domesticated Capsicum species
(C. annuum, C. chinense Jacq., C. baccatum, C. pubescens Ruiz and Pavon and C. frutescens).

3.1.3. Construction of Genetic Maps

Molecular marker analysis can construct genetic maps of germplasm resources, which
help understand their genetic structure and evolutionary history, providing a basis for
comparative genomics research. For example, Meng et al. [180] aligned the re-sequencing
results of two Brassica campestris accessions, ‘R-O-18’ and ‘L58’, to the genome sequence
of ‘Chiifu-401-42’, and developed 99 InDel markers to construct a genetic linkage map of
Brassica rapa. Yu et al. [181] genotyped 150 recombinant Brassica rapa inbred lines using
genome resequencing and generated a high-density genetic map containing 2209 SNPs.
They observed a high recombination rate of up to 20% for the genetic markers and detected
18 QTLs for the leafy head traits and three candidate genes. In addition, Song et al. [182]
performed resequencing on six non-heading Chinese cabbage variants(Pak-choi, Taitsai,
flowering Chinese cabbage, turnip, Tillering cabbage, and Wutatsai) and analyzed the
distribution and quantity differences of SSRs and SNPs among these variants, which
provided important marker information for the construction of high-density genetic maps
and conducted comparative genomics among non-heading Chinese cabbage variants.

3.1.4. Discovery of Specific Genes

Currently, novel molecular markers derived from functional genes play a crucial
role in improving agronomic characteristics such as yield, quality, disease resistance, and
abiotic stress tolerance. For instance, Kim et al. [183] developed functional markers for Ty-2
and Ty-3 resistance in yellow leaf curl virus-resistant tomato varieties, with two InDels
and three CAPS markers, which were developed for Ty-2 and Ty-3, respectively, to aid in
the integration of Ty-2 and Ty-3 genes into high-performing tomato cultivars. Similarly,
Qing et al. [184] developed the InDel marker “MM28T” for the brown planthopper (BPH)
resistance gene (Bph3) in rice to produce BPH-resistance rice cultivars and reduce damage
caused by BPH. Furthermore, Kroc et al. [185] developed the co-dominant-derived cleavage
amplification polymorphic sequence (dCAPS) marker “iuc_RAP2-7”, utilizing SNPs in
RAP2-7: a candidate gene linked to the seed alkaloid content in narrow-leafed lupin
(Lupinus angustifolius L.) to produce low-alkaloid cultivars. Additionally, Liu et al. [186] and
Wang et al. [187] developed SSR and Indel markers using the whole-genome sequencing
of 9930 and re-sequencing data of 100 or 115 core cucumber germplasms in the primary
mapping region of the black spine color gene or heavy netting gene, respectively. Their
study revealed that the black fruit spine trait and the heavy netting trait were controlled by
one dominant nuclear gene, (B) and (H), respectively, that were located on chromosomes 4
and 5 in cucumber. These findings were crucial for the fine mapping and gene cloning of B
and H genes in cucumbers.

Collectively, these novel molecular markers provide an effective approach for clas-
sifying germplasm resources, conducting genetic research, identifying the specific genes
affecting important traits, and facilitating marker-assisted breeding.
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3.2. Identification of Disease or Pest Resistance

Core collections, which represent the entire genetic diversity of germplasm resources,
have been shown to improve the efficiency of identifying disease or pest-resistant accessions
or genes. In recent years, many researchers have conducted studies on disease or pest
resistance in crop core collections, and a list of some of the more common disease or
pest-resistant QTLs/genes identified is provided in Table 2.

Table 2. Disease and the number of resistant QTLs/genes/resistant samples in representative crop
core collections.

Core Collection No. of Sample Type of Disease No. of QTLs/Genes/
Resistant Samples Reference

rice 150 sheath blight 13 genes [188]
rice 510 bacterial leaf streak 69 QTLs [189]

maize 183 fusarium ear rots 4 genes [190]

wheat 121
tan spot Pt race 1 10 QTLs

[191]tan spot Pt race 5 5 QTLs
stagonospora nodorum blotch 5 QTLs

wheat 331 leaf rust 11 QTLs [192]

barley 159

powdery mildew 58 resistant accessions

[193]
leaf rust 42 resistant accessions

net blotch 2 resistant accessions
mild mosaic virus 13 resistant accessions

yellow dwarf virus 32 resistant accessions
sorghum 318 anthracnose 4 QTLs [194]

sorghum 242

anthracnose 13 resistant accessions

[195]
leaf blight 27 resistant accessions
leaf rust 6 resistant accessions

anthracnose, leaf blight, leaf rust 3 resistant accessions
common bean 211 powdery mildew 4 genes [196]
common bean 315 cyst nematode HG Type 0 11 SNPs [197]
common bean 168 bacterial wilt 14 genes [198]

mungbean 296 dry root rot 29 resistant accessions [199]
cowpea 375 Aphis craccivora Koch pest 3 resistant accessions [200]

pigeonpea 146
fusarium wilt 6 resistant accessions

[201]sterility mosaic 24 resistant accessions
fusarium wilt and sterility mosaic 5 resistant accessions

lentils 188 pea aphid 14 genes and 13 SNPs [202]
groundnut 213 groundnut rosette 32 SNPs [203]

peanut 99 aflatoxin 16 SNPs [204]
upland cotton 419 verticillium wilt 12 resistant accessions [205]

flax 447 powdery mildew 1 gene and 3 QTLs [206]
oilseed rape 166 blackleg 8 QTLs [207]

tomato 171 yellow leaf curl virus 2 genes [183]
apple 176 apple scab 10 genes [208]

watermelon 35 fusarium wilt 1 SRAPs [209]
melon 4 powdery mildew 112 SNPs and 12 InDels [210]

safflower 84 fusarium wilt 3 AFLPs and 1 SSRs [211]

Mini-core collections of various crops have been evaluated to identify sources of resis-
tance against different diseases or pests. For instance, in the mungbean, three accessions
(VI001509AG, VI001400AG, and VI001244AG) were found to be resistant to most isolates of
dry root rot out of 296 evaluated accessions [199]. In pigeonpea, six, twenty-four, and five
accessions were found to be resistant to fusarium wilt and sterility mosaic disease, with
combined resistance, respectively, out of 146 evaluated accessions [203]. In the cowpea,
three genotypes (TVu-6464, TVu-1583, and TVu-15445) were found to be resistant to Aphis
craccivora Koch [200]. In watermelon, Yang et al. [209] analyzed the genetic variation and
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relationships of 35 core collections and identified one SRAP locus that was associated with
fusarium wilt resistance.

Furthermore, GWAS studies have also been conducted to identify novel sources of
disease resistance by exploiting a natural variation in crop core collections. For example,
Fu et al. [188] identified sheath blight disease resistance in Ting’s rice core collection
of 150 varieties and discovered 13 resistance gene-based SNPs from approximately five
million SNPs. A core set of 121 bread wheat accessions were evaluated for their resistance
against the tan spot and the stagonospora nodorum blotch (SNB); then, ten, five, and
five genomic regions were associated with resistance to tan spot race 1, race 5, and SNB,
respectively [191]. In the common bean core collection, Binagwa et al. [196] identified
several SNPs which were responsible for powdery mildew disease resistance, revealing
four putative resistance genes. Shi et al. [197] evaluated 315 accessions for soybean cyst
nematode disease resistance and observed 11 SNPs in HG Type 0 responsive chromosomes.
In the African core groundnut collection, 32 SNPs were associated with the detected
groundnut rosette disease resistance [203], two of which were located on the exons of a
putative TIR-NBS-LRR disease resistance gene.

In conclusion, core collections provide a valuable genetic resource for the identification
of disease-resistant QTLs/genes, which can greatly aid in disease-resistance breeding efforts
and may even lead to gene editing and the introduction of novel alleles for single or multiple
disease resistance in various crops.

3.3. Gene Discovery and Allele Mining

Core collections are valuable genetic resources for the identification of elite genes
and mining alleles. Table 3 provides information on the characteristics of marker-trait
associations in the core collections of representative crops.

Table 3. Marker-trait association using core collections in representative crops.

Core Collection No. of Sample Trait No. of QTLs/Genes Reference

rice 150 salt tolerance 65 QTLs [212]

rice 191
yield and heavy metal content 250 QTLs

[213]agronomic traits 97 QTLs
rice 150 agronomic 32 QTLs [214]
rice 150 cold tolerance 26 QTLs [215]

soybean 224 agronomic 16 QTLs [216]
soybean 189 yield and yield component 19 QTLs [217]

soybean 23
salt tolerance 22 QTLs

[218]low temperature tolerance 15 QTLs

soybean 159
high oil content 6 QTLs

[219]high protein content 1 QTLs
drought tolerance 5 QTLs

soybean 46 low temperature resistant 13 QTLs [220]
wheat 568 yield and yield components 17 QTLs [221]

upland cotton 419 fiber-related 5 genes [222]
leaf heads of cabbage 150 agronomic 18 QTLs [181]

tomato 360 agronomic 2 QTLs [223]
melon 79 fruit quality 241 QTLs [224]

sugarcane 97 yield components and sucrose 56 QTLs [225]

Many genes that affect agronomic traits have been discovered in rice core collec-
tions [226–229]; these include Rc, waxy, and GS3 genes, which were found to be associ-
ated with grain color, amylose content, and grain length, respectively [230]. In addition,
65 QTLs and four candidate genes (LOC_Os06g47720, LOC_Os06g47820, LOC_Os06g47850,
LOC_Os06g47970) were identified for salt tolerance [212]. Soybean core collections have
also been genotyped using SNP markers to study linkage disequilibrium and associations
with agronomic, yield and yield components; 12 genes, 19 SNPs, and five haplotypes were
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identified and linked to these traits [216,217]. QTLs in relation to low temperature, salt
tolerance, and drought stress were also identified [218–220]. Additionally, genes that influ-
enced upland cotton fiber quality, such as, GhCIP1 and GhUCE for days to flowering, GhFL1
and GhFL2 for fiber length, and Gh_A07G1769 for fiber strength, were discovered [222]. In
vegetable and fruit core collections, various genes controlling key fruit traits have been
identified. For example, Qi et al. [231] conducted deep resequencing on 115 cucumber
accessions to generate a genetic map and revealed the domestication and diversity of
cucumbers; they identified ~3.6 million variants, including a natural genetic variant in a
β-carotene hydroxylase gene that could improve the nutritional value of cucumbers. Lin
et al. [223] constructed a genetic map of tomato genome variation based on the genome
sequences of 360 core accessions and discovered two independent QTLs (fw2. 2 and lcn2.
1), which resulted in modern tomato fruits that were 100 times larger than their wild
counterparts. They also identified a key causative variant site in the promoter region of
the SlMYB12 gene that conferred the pink fruit color. Moreover, studies on melons have
identified a candidate white-flesh gene (CmPPR1) that affects fruit flesh color and a ThAT
gene (CmThAT1) that mediates thioester production [224]. In Louisiana, sugarcane core
collection analysis has discovered 56 markers to be consistent with cane yield components
and sucrose traits [226]. Guo et al. [232] reported a high-quality draft genome sequence of
the east Asia watermelon cultivar ‘97103’ and resequenced 20 accessions of watermelon
from three different subspecies(lanatus, Mucosospermus and vulgaris), revealing the loss of
many disease resistance genes during domestication and identifying several genes that
were related to valuable fruit-quality traits, including sugar accumulation and citrulline.

In summary, functional genes or markers can improve the efficiency and precision
of selecting desirable traits and aid in accumulating favorable alleles for high-yield crop
breeding. Further work is necessary to mine more underlying genes, manipulating the
desired traits.

4. Conclusions and Perspectives

Considering the current status of core cultivation, the following aspects deserve
attention.

4.1. Effective Data Integration and Accurate Phenotyping Methods

The use of molecular markers in conjunction with phenotypic and passport data are be-
coming increasingly common in the establishment of core sets, but how to scientifically and
effectively integrate these multiple types of data is still a problem faced by the construction
of core collection, which needs more attention. In addition, phenotyping is the key to core
collection success construction, as phenotypes are regarded as the most reliable indicators
for genotypes. Therefore, it is necessary to improve phenotyping tools to enhance the
efficiency of phenotyping.

4.2. Appropriate Sampling Strategy and Software

Optimizing the sampling strategy is crucial for constructing a core collection that
is both representative and effective. Moreover, the successful construction of the core
collection has been accompanied by the development of different software Hence, on the
basis of mastering multiple types of data, the type of sampling strategies and software to
use has become a hot spot and focus of future core collection research.

4.3. Broaden the Scope of Core Collection

Currently, as the number of endangered tree species and low-quality tree species
gradually increases, there is an urgent need to collect and establish a core collection for the
protection and effective utilization of germplasm resources. However, core collections are
mainly concentrated on grain crops or horticultural plants. Few studies have focused on
afforestation and endangered tree species: this is especially true for bamboo species. The
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development of core collections for timber trees and bamboo, especially those native and
special species in China, is a top priority for the near future.

4.4. Identify Abundant Functional Genes and Markers

The core collection is essentially the gene bank of a species, and one of the most
important goals in constructing core sets is to explore and utilize high-quality genes, such
as those for high yield, good quality, resistance to disease and pests and stress tolerance.
Currently, the widespread application of second-generation sequencing technologies has
made it possible to re-sequence every resource in the core collection. Considering the wide
variety and rich genetic diversity of plants that exist, in the future, we should make full use
of genome sequencing information to develop large-sample, low-abundance genotyping
methods and technologies and aim to improve the efficiency of molecular markers and
gene discovery based on the core collection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14050926/s1, Table S1: Core collection construction of partial
plant species.
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