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Abstract: Secondary forests provide essential ecosystem services, especially in helping to mitigate
climate change with the storage of carbon in the aboveground biomass of tree species. In this context,
the present research aimed to analyze the spatial distribution of secondary forests and estimate the
aboveground biomass accumulation of land cover of different ages in the state of Pará. The spatial
patterns of the secondary forests in Pará state were evaluated with hot spot analysis algorithms using
data from the TerraClass project for the 2004–2014 time period. The results showed that the spatial
distribution of the secondary forests did not occur randomly in space, but suggested local geopolitical
influences. The younger secondary forests had the most deforested areas during the study period.
Approximately 5% of Pará had its secondary forests deforested in 2014. In general, the balance of
the secondary forests was positive. The aboveground biomass accumulation differed according to
the secondary forest ages during the study period as evaluated in two pilot areas. It was observed
that the secondary forests > 10 years old in pilot area A had an average of 23% of old-growth forest
aboveground biomass in the same area, while in pilot area B, the secondary forests > 10 years old had
an average of 32.7% of old-growth forest aboveground biomass.

Keywords: secondary forests; Amazon; carbon; aboveground biomass

1. Introduction

Secondary forests have expanded worldwide in recent decades, mainly in regions
with a deforestation history [1]. In the Brazilian Legal Amazon (BLA), the dynamics of
secondary forest growth is strongly correlated with agricultural and pastoral activities,
which is related to the rise of illegal logging in the last decade [2–4]. Furthermore, this
type of forest regenerates in previously deforested areas and is seen as a component of
the landscape, potentially generating ecosystem services, especially for climate change
mitigation [4–7]. Within this context, this study sought to broaden the understanding of
the role of secondary forest regeneration in the current land use and land cover (LULC)
change process in the BLA.

Secondary forests are understood as natural vegetation in regeneration. They feature
tree species densification, which have already suffered total suppression of the native
vegetation since deforestation monitoring began in the Amazon [8,9]. In addition, it is
meaningful to understand the dynamics of secondary forest expansion and how these
forests are spatially distributed according to the official Brazilian monitoring systems in
the Amazon. For this reason, it is helpful to expand the knowledge about the role of the
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dynamics of the gain, remanence and loss of the secondary forests in the current process of
changing the land use and cover in the Brazilian Legal Amazon.

In the BLA, the old-growth forest losses have surpassed the gains for three decades [10].
However, according to the data provided by the Brazilian national land use and land cover
monitoring system (TerraClass), the secondary forest areas accounted for 150,800 km2 in
the BLA in 2008, which highlights secondary forest regeneration as a potential mitigation
for deforestation [9]. As an ecological consequence, the ombrophilous forests are replaced
by savanna vegetation [11], causing a large-scale loss of biodiversity and affecting part of
the local people’s livelihoods [12]. However, these impacts can lead to lost opportunities
for the sustainable use of forests and the production of traditional goods for timber forest
management and sustainable non-timber products [13].

In the current scenario, deforestation has been a major environmental problem in
the Amazon. Until 2020, the accumulated deforestation rates in the BLA corresponded to
457,237 km2, with the state of Pará being the most significant contributor with 157,374 km2

of deforestation [10]. In 2001, Pará registered an old-growth forest deforestation rate of
about 16,728 km2 [10], the highest in the last 20 years for this state. In this context, the
secondary forests emerged from previously deforested areas with different land use.

Recent studies show that secondary forests in the BLA may mitigate climate change
by sequestering carbon up to 20 times faster than old-growth forests [7]. According to
MapBiomas [14], in 2004 the state of Pará had 79.1% of its entire territory covered by forest,
and in 2020 this reduced to 74.91%, representing a loss of around 30,000 km2 of the forest,
including different types of forest formation. Given the importance of monitoring forest
loss and gain, this study selected a land use coverage dataset from the TerraClass project in
the state of Pará in the BLA, to analyze a time series from 2004, 2008, 2012 and 2014.

Land coverage monitoring systems are important for understanding the dynamics
of forest changes and mapping the forest age. For example, in the Amazon, secondary
forest age is the primary driver to estimate aboveground carbon [7]. Within these spatial
information policies, decision makers can take actions to mitigate carbon emissions [15],
forest management planning and change environmental laws for sustainable use.

Several studies have been attempted to map and quantify the area of the forests in
the Amazon for decades, historically based on satellite imagery and monitoring the age
of abandoned areas from land use change [4,16–20]. The aboveground biomass storage
and carbon sequestration specifically encompassing the forest areas were initially studied
using allometric equations and permanent plots [17,21], and later combined with remote
sensing technologies and fieldwork [22,23]. Currently, the secondary forests are expanding
over more than 129,000 km2, the majority represented by ≤60 year old forests [4,24]. The
carbon storage in these forests is about 294 Tg C of storage [7], which represents 45 Mg of
aboveground biomass per hectare (using 0.5 g C as the carbon factor conversion from the
IPCC; 129,361 km2 based on Smith et al., 2020 [24]).

The biomass of tropical forests has been taking an important role in the global carbon
cycle as a source of carbon stock and potential for carbon dioxide emissions in deforested
areas. Secondary forest aboveground biomass has been identified as one of the main factors
in the global carbon cycle due to the high amounts of carbon that it can stocks for forest
successional processes [4,5,25,26]. The aboveground biomass in secondary forests has been
estimated using multi-sensor platforms of remote sensing data [5,27,28]. Some studies have
contributed to the great importance of the age factor in estimating the aboveground biomass
in secondary forests [25,29] but this needs to be further investigated in different regions.

In this context, the present study seeks to answer how the distribution of secondary
forests and deforestation occur in two pilot areas in the state of Pará according to the
estimation of forest age and aboveground biomass. Based on the above, we tested the
hypothesis that Complete Spatial Randomness (CRS) drives the spatial distribution patterns
of the secondary forests. For this, we used the TerraClass dataset in a time series analysis to
understand how secondary forest distribution occurs in the state of Pará and the dynamics
of land use and land cover changes in the region.
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2. Materials and Methods
2.1. Study Area

The state of Pará is located in the northern region of Brazil, with an approximate
area of 1,248,000 km2 [30], located between the parallels of 2◦60′ N and 9◦85′ S and the
meridians of 58◦90′ and 46◦ W (Figure 1). The state of Pará was selected for this study
because it presents a wide variety of vegetation cover and land use, especially secondary
forest, resulting in a formation with great complexity and spatial and temporal variability.
In 2020, around 74.91% of the entire state was covered by forest, 3.3% by non-forest natural
formations, 17.8% by farming, 0.001% by non-vegetated areas and 3.5% by water [14].
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Figure 1. Land use and land cover map of Pará state according to TerraClass for 2014.

Pilot Areas

Two pilot areas were selected for the aboveground biomass estimation, specifically
for secondary forest land cover. The first one, named in this paper as region A, is mostly
located within the municipality of Paragominas (3◦15′ S and 47◦30′ W) (Figure 2). This
municipality is known for its heavy logging activities from sustainable forest practices since
1960. With the decline in logging activity, the agricultural frontier expanded, mainly with
monocultures such as soy and pasture areas. As of 2008, the municipality adopted policies
to reduce the environmental impact of the economic activities, which led to a decline in
deforestation for the first time in the history of Pará [31]. The second, named region B, is
located in the municipality of Belterra (3◦5′ S and 54◦56′ W), near the Tapajós National
Forest (Figure 2). Region B has a history of degradation, logging, anthropic occupation,
pasture and agriculture.

More details about the pilot areas are described in the Supporting Information for
“Aboveground biomass variability across intact and degraded forests in the Brazilian
Amazon” [23].
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2.2. Methodological Approach

Figure 3 shows the general flowchart of the methodological approach developed for
this study.

Forests 2023, 14, x FOR PEER REVIEW  4  of  16 
 

 

 

Figure 2. Pilot study areas in Pará state. 

2.2. Methodological Approach 

Figure 3 shows the general flowchart of the methodological approach developed for 

this study. 

 

Figure 3. Flowchart of the methodological approach [23]. Figure 3. Flowchart of the methodological approach [23].



Forests 2023, 14, 924 5 of 16

2.3. Land Use Change and Secondary Forest Age

Land use and land cover maps were generated for every year under analysis, using the
TerraClass thematic classes. The dataset was derived from medium-resolution Landsat-5
TM and MODIS images through supervised classification [8,9], and it was freely available
on INPE’s website. The global accuracy of TerraClass mapping was 76.64%, with a 21.5%
omission error and a 20.2% commission error for secondary vegetation classes [9]. Then,
we imported and preprocessed land use data from the Google Earth Engine (GEE) platform
into a raster format. Different rasters were then generated for secondary forest age classes
based on previous land use.

Using cartographic modelling [32], rasters with binary values for the absence or
presence of secondary forest in each year were used to classify the age interval per pixel of
secondary forest. The last year in our time series was 2014. Prior to that, we mapped the
2012 LULC, meaning the minimum age interval for secondary forest was 0 to 2 years old
according to the previous LULC. The age classes were based on the difference in the age
interval for each year studied, assigning a range from 1 to 5 to each interval, according to
Equation (1):

SFage = SFyear(a) + SFyear(a+b) ∗ 2 + [. . .] + SFyear(a+b+c+d+e) ∗ 5, (1)

where SFage refers to the secondary forest age class from 1 to 5 for determining the age
interval estimation, and SFyear refers to the mapped permanent year of secondary forest
multiplied by the age class.

An exploratory data analysis was performed using the age classes and the previous
land use for each secondary forest was mapped (Table 1).

Table 1. Classification of secondary forest age in age interval.

Age Interval
(Years) Class 2004 2008 2010 2012 2014

0 to 2 1 Non-Secondary Forest Non-Secondary Forest Non-Secondary Forest Non-Secondary Forest Secondary Forest

2 to 4 2 Non-Secondary Forest Non-Secondary Forest Non-Secondary Forest Secondary Forest Secondary Forest

4 to 6 3 Non-Secondary Forest Non-Secondary Forest Secondary Forest Secondary Forest Secondary Forest

6 to 10 4 Non-Secondary Forest Secondary Forest Secondary Forest Secondary Forest Secondary Forest

>10 5 Secondary Forest Secondary Forest Secondary Forest Secondary Forest Secondary Forest

For each year, every pixel classified as secondary forest was checked against its previous classification to determine
the age interval. According to the previous land use and land cover, the age range of secondary forest was classified
to fit the age range estimation of the forest.

2.4. Aboveground Biomass Estimation Data

The aboveground biomass carbon density (AGBCD) estimation data were collected
from the literature [23]. The data were estimated using airborne LiDAR and calibrated using
forest inventory measurements. For the chosen pilot areas, the estimated AGBCD-selected
LiDAR metrics were collected between 2012 and 2015 using parametric modelling [23]. The
uncertainty of the aboveground carbon density was described for each plot in the pilot
areas in the Supporting Information for “Aboveground biomass variability across intact
and degraded forests in the Brazilian Amazon” [23]. The data were acquired from the
Sustainable Landscapes Brazil project, supported by the Brazilian Agricultural Research
Corporation (EMBRAPA), the US Forest Service, USAID and the US State Department
in nearby areas with characteristics similar to the pilot area. In addition, the old-growth
aboveground biomass data were acquired from plots provided by ForestPlot.net [33].
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2.5. Data Analysis
2.5.1. Hot Spot Analysis of Spatial Distribution of Secondary Forests

The geopolitical influence on the variation in the spatial distribution of secondary
forests was analyzed and mapped using TerraClass. For this, we applied the Optimized Hot
Spot Analysis algorithm from ArcGIS Pro. This algorithm associates an attribute of each
feature to the corresponding neighboring elements by mapping locations with statistically
higher (hot spot) or lower (cold spot) values than the expected value of the attribute for the
total area analyzed [34].

The secondary forest fragments of each age class in raster format with 30 m of the
spatial resolution were converted into points to enable the fragment area measurement
based on the projected coordinate system South America Albers Equal Area Conic. Each
point was assigned the area of its respective polygons given the municipal boundaries.
This dataset was used as an input file in the first hot spot analysis, which considered the
incidence (density of points) and forest fragment (ha) area with 90, 95 and 99% confidence
levels by spatial location on the map. In addition, according to the secondary forest
fragments, descriptive statistics for the secondary forest fragments were used to consider
the number and area of polygons within every age class.

2.5.2. Hot Spot Analysis of Spatial Distribution of Deforestation in Secondary Forests

To map deforestation, To map deforestation, we subtract the secondary forest area
in two different periods along the time series to detect the loss of secondary forest. Then,
we applied the Optimized Hot Spot Analysis algorithm using the area of secondary forest
deforestation as input for each year in the time series. We considered the area of secondary
forest deforestation (ha) with 90, 95 and 99% confidence levels by spatial location on the
map, including areas where the deforestation occurred more than once.

2.5.3. Secondary Forest Net Balance

We selected the secondary forest incidence and deforestation areas to calculate the
balance in the study period. Then, the data were analyzed in pairs to verify the cumulative
secondary forest (accumulated SF mapped in the final year of analysis), the gain (new
secondary forest mapped), the remaining (permanent SF), the loss (remain subtracted from
the previous cumulative year) and the net balance (total secondary forest mapped: Remain
+ Gain − Loss).

2.5.4. Aboveground Biomass Estimation for Different Secondary Forest Age Classes

To estimate the aboveground carbon density, we selected the secondary forest frag-
ments for each plot with the aboveground biomass estimation data collected from the
literature. Then, after applying the method described to estimate the age interval for
the time series we interpolated the aboveground biomass data with the secondary forest
fragments. The old-growth aboveground biomass data for the nearby regions were then
considered to compare the aboveground biomass accumulation results. According to the
secondary forest fragments, a descriptive statistic was also used to collect information
the interpolation of the aboveground biomass data for every age class. We applied a
Kolmogorov–Smirnov test to check the normality of the data and computed a two-way
analysis of variance (ANOVA) for unbalanced designs to test the null hypothesis that
the mean aboveground biomass for different age intervals in the secondary forest had no
difference in the two pilot areas. Finally, we applied a Tukey multiple comparisons test
at a 95% family-wise confidence level to verify which classes differed in aboveground
biomass accumulation.
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3. Results
3.1. Secondary Forest Spatial Distribution Patterns

Using hot spot analysis, we detected the hot and cold spots for secondary forest
incidence in Pará state, according to the age classes (Figure 4). In general, the spatial
distribution of the secondary forests in Pará presented a hot spot pattern in the northeast
region of the state, and also along the main highways and harbor areas of the state. The
oldest mapped secondary forests in Pará state (Figure 4A,B) presented similar patterns
of cold and hot spots. These areas of hot spots were regions with long historic LULC
changes. Compared with the other age intervals, the secondary forests of 4 to 6 years in age
(Figure 4C) had very defined locations across the state. On the other hand, the youngest
mapped secondary forest incidence connected the eastern side of the state with the Baixo
Amazonas mesoregion (Figure 4D,E). To summarize the incidence of the secondary forests,
Figure 4F grouped the entire time series representing hot spot and cold spot areas.
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The same analysis was performed for secondary forest deforestation (Figure 5). A
specific age interval could not define the pattern of deforestation for the study area. The
regions with the highest incidence of secondary forests presented the hottest spot areas for
deforestation. On the other hand, the map showed a few parts where deforestation occurred
more than once in the time series. Further, the cold spot areas were primarily located in the
protected areas, highlighting the importance of environmental protection laws.

The total area of secondary forest deforested in 2014 was 64,396.91 km2, which repre-
sented around 5% of Pará’s territory. The youngest age interval of 0–2 years old had the
most deforested area of 23,465.4 km2, which represented the fast changes in land use and
land cover in a short period. The oldest secondary forest (>10 years old) had 16,653.2 km2

deforested in 2014 (Figure 6).
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3.2. Secondary Forest Net Balance

We divided the temporal data into different intervals according to the available data to
extract the area of secondary forest balance mapped for the study period. The cumulative
area did not vary much along the time series; the average for the time interval of analysis
was 65,275.0 km2 of secondary forest (Figure 7A). As shown in the balance (Figure 7B), a
considerable proportion of the area remained growing during the time series, with some
gains (new secondary forest mapped) and losses. Therefore, the secondary forest balance
was still positive with a higher net balance in 2008–2010 (Figure 7C).
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year of analysis; (B) Gain = New secondary forest mapped, Remain = Permanent SF, Loss = Remain-
previous cumulative year; (C) Net balance = Total secondary forest mapped (Remain + Gain − Loss).

3.3. Aboveground Biomass Estimation for Different Secondary Forest Age Classes

To point out the deforestation of secondary forests, it was essential to understand how
this has impacted the aboveground biomass recovery over the years. We analyzed the
carbon density in the aboveground biomass (MgC.ha−1) in two municipalities in the state
of Pará (regions A and B). Similar findings were observed in the age classes, where the
accumulation of aboveground biomass in the two municipalities was different over time.
Over the years, the secondary forests stored different amounts of carbon per hectare/year
according to their age classes. It was observed that the secondary forests > 10 years old in
pilot area A had an aboveground biomass average of 23% of old-growth forest in the same
region, while the secondary forests > 10 years old in pilot area B had an average of 32.7% of
old-growth forest aboveground biomass (Figure 8).
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Figure 8. Distribution of aboveground biomass carbon density by secondary forest age class group.

The lowest aboveground biomass estimates by age group occurred in the 0−2 years old
interval with a mean and standard deviation of 27.10 ± 20.98 and 17.18 ± 19.67 MgC.ha−1

for region A and region B, respectively. On the other hand, the age class that grouped
the secondary forests over 10 years old had the highest mean aboveground biomass with
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66 ± 37 and 77.01 ± 39.22 MgC.ha−1 (Table 2). Region A presented a higher aboveground
biomass in the early age groups (0−4 years old), while region B presented a higher mean
as the secondary forest aged (≥4 years old).

Table 2. Descriptive statistics for aboveground biomass carbon density (MgC.ha−1).

Age Interval (Years)
Region A Region B

−
X σ σ2 N

−
X σ σ2 N

0 to 2 27.11 20.98 439 2326 17.18 19.67 387 155
2 to 4 43.48 38.67 1492 545 38.17 31.46 990 478
4 to 6 45.96 40.67 1654 1333 46.18 32.57 1061 141
6 to 10 43.97 24.03 576 1835 75.86 43.72 1911 284

>10 66.00 37.00 1369 4508 77.01 39.22 1538 2828
Old-growth forest 287.07 95.50 9120 13 235.50 41.78 1745 29

−
X = mean; σ = standard deviation; σ2 = variance; N = number of observations.

Using a two-way analysis of variance (Table 3), we verified that there was a significant
accumulation of aboveground biomass (p < 0.001) over time in the age classes of the
secondary forests. Moreover, it could be stated that there was a significant difference
(p < 0.001) between the aboveground biomass in the two regions (A and B) related to
the accumulation of aboveground biomass in the period studied, denoting that regional
variations (quality of the site) might influence the recovery of the aboveground biomass.

Table 3. Analysis of variance test (ANOVA).

Source of Variation Df Sum Sq Fvalue Pr (>F)

(Intercept) 1 1,709,123 1454.573 <2.2 × 10−16 ***
Age class 5 32,15,260 547.279 <2.2 × 10−16 ***
Region 1 14,319 12.187 0.0004828 ***
Age class + Region 5 282,406 48.069 <2.2 × 10−16 ***
Residuals 14,469 16,995,190

Signif. codes: 0 ‘***’.

Furthermore, we applied a Tukey test at a 95% family-wise confidence level and found
that for both regions in the same age interval, class 2 (2–4 years old) and 3 (4–6 years old) did
not show a significant difference in the aboveground biomass accumulation (Table 4). The
results showed that, in general, region B (western Pará) presented a higher aboveground
biomass accumulation as the secondary forests aged when compared with region A, except
for class 4 (4–6 years old) in region B, which did not show the mean difference with class
3 (4–6 years old) in region A.

Table 4. Tukey multiple comparisons of mean test at 95% family-wise confidence level.

Interaction diff lwr upr p adj

B−A 8.311 7.054 9.569 0.000
A−1−A−2 16.374 11.042 21.706 0.000
A−1−A−3 18.855 15.007 22.703 0.000
A−1−A−4 16.862 13.364 20.360 0.000
A−1−A−5 38.895 36.034 41.755 0.000
A−1−A−7 259.966 228.805 291.127 0.000
B−1−A−1 −9.927 −19.221 −0.632 0.024
B−1−A−2 11.067 5.440 16.693 0.000
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Table 4. Cont.

Interaction diff lwr upr p adj

B−1−A−3 19.071 9.354 28.789 0.000
B−1−A−4 48.757 41.715 55.800 0.000
B−1−A−5 49.899 46.763 53.035 0.000
B−1−A−7 208.398 187.463 229.333 0.000
A−2−A−3 2.481 −3.215 8.177 0.959
A−2−A−4 0.488 −4.977 5.954 1.000
A−2−A−5 22.521 17.440 27.602 0.000
A−2−A−7 243.592 212.149 275.035 0.000
B−2−A−1 −26.300 −36.499 −16.101 0.000
B−2−A−2 −5.307 −12.328 1.714 0.359
B−2−A−3 2.698 −7.888 13.284 1.000
B−2−A−4 32.384 24.184 40.583 0.000
B−2−A−5 33.525 28.284 38.767 0.000
B−2−A−7 192.024 170.673 213.376 0.000
A−3−A−4 −1.993 −6.024 2.039 0.904
A−3−A−5 20.040 16.548 23.532 0.000
A−3−A−7 241.111 209.886 272.337 0.000
B−3−A−1 −28.781 −38.289 −19.274 0.000
B−3−A−2 −7.788 −13.761 −1.816 0.001
B−3−A−3 0.217 −9.705 10.138 1.000
B−3−A−4 29.903 22.581 37.225 0.000
B−3−A−5 31.045 27.323 34.766 0.000
B−3−A−7 189.543 168.513 210.574 0.000
A−4−A−5 22.033 18.930 25.135 0.000
A−4−A−7 243.104 211.920 274.288 0.000
B−4−A−1 −26.789 −36.160 −17.417 0.000
B−4−A−2 −5.795 −11.549 −0.042 0.046
B−4−A−3 2.209 −7.582 12.001 1.000
B−4−A−4 31.895 24.751 39.040 0.000
B−4−A−5 33.037 29.679 36.396 0.000
B−4−A−7 191.536 170.567 212.505 0.000
A−5−A−7 221.071 189.952 252.190 0.000
B−5−A−1 −48.821 −57.974 −39.669 0.000
B−5−A−2 −27.828 −33.217 −22.439 0.000
B−5−A−3 −19.823 −29.405 −10.241 0.000
B−5−A−4 9.863 3.008 16.717 0.000
B−5−A−5 11.005 8.317 13.692 0.000
B−5−A−7 169.503 148.631 190.375 0.000
B−7−A−1 −269.892 −302.244 −237.541 0.000
B−7−A−2 −248.899 −280.393 −217.405 0.000
B−7−A−3 −240.894 −273.370 −208.419 0.000
B−7−A−4 −211.209 −242.986 −179.431 0.000
B−7−A−5 −210.067 −241.212 −178.921 0.000
B−7−A−7 −51.568 −88.964 −14.172 0.000
B−1−B−2 20.993 10.637 31.349 0.000
B−1−B−3 28.998 15.959 42.037 0.000
B−1−B−4 58.684 47.495 69.873 0.000
B−1−B−5 59.826 50.583 69.068 0.000
B−1−B−7 218.325 195.656 240.993 0.000
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Table 4. Cont.

Interaction diff lwr upr p adj

B−2−B−3 8.005 −2.733 18.742 0.381
B−2−B−4 37.691 29.297 46.085 0.000
B−2−B−5 38.833 33.292 44.373 0.000
B−2−B−7 197.331 175.904 218.759 0.000
B−3−B−4 29.686 18.143 41.228 0.000
B−3−B−5 30.828 21.160 40.496 0.000
B−3−B−7 189.327 166.482 212.172 0.000
B−4−B−5 1.142 −5.832 8.116 1.000
B−4−B−7 159.641 137.799 181.482 0.000
B−5−B−7 158.499 137.587 179.410 0.000

Region: A, B; Age classes: 1−5.

4. Discussion

This study proposed using the national land use and land cover system (TerraClass)
to classify secondary forest age and to estimate the aboveground biomass accumulation
in the Amazon region (Pará state). The results emphasized the need for mapping and
understanding the dynamics of secondary forests in the regional carbon balance. The
dynamics of the LULC changes in tropical regions shift the carbon balance. Furthermore,
the knowledge of aboveground biomass dynamics in secondary forests in the context of
changes in LULC has an essential role in the global carbon cycle [5,35,36] and needs to be
further investigated.

Pará’s eastern region has had municipalities with great economic activity in logging
activities and forest management since the 1960s. With the decline in wood activity, the
agricultural frontier expanded, mainly with monocultures such as soy and pasture areas.
As of 2008, a few municipalities adopted policies to reduce the environmental impact of the
economic activities, which led to a decline in deforestation for the first time in the history
of Pará state [31].

According to the biennial report of the Green Municipalities Program 2013−2014 [37],
the reasons for the reduction in deforestation were: (i) the restriction on rural credit, (ii) the
list of embargoed areas, (iii) the list of municipalities that most deforested the Amazon
due to the imposition of various administrative restrictions in these municipalities, (iv) the
accountability in the meat production chain; and, last but not least, (v) the strengthening
inspection operations. However, in 2008 about 45% of the municipality’s natural vegetation
area had already been deforested [38].

We performed the hot spot analysis to test the CRS. The spatial distribution patterns
of the secondary forests did not present CRS, although the occurrence of secondary forests
was mostly along the main roads and harbors, regions where the old-growth forest had his-
torically been deforested. The spatial distribution of secondary forest might be influenced
by climate [7,36], the history of LULC [27,39] and other environmental factors [40,41].

The net balance of the secondary forest demonstrated the need for forest management
improvement. In Pará state, there were municipalities that had already deforested almost
all of their old-growth forests; therefore, they sought resources from other LULC such
as secondary forests. The need to protect secondary forests is something that has to be
discussed in different spheres of society, and its loss can occur for several reasons, even due
to the lack of an official definition of when a forest begins to be considered as secondary
forest [2].

Moreover, the result obtained using the proposed method corroborated with what
was found in the literature [6], where in secondary forests in the neotropical region, dif-
ferent amounts of aboveground biomass accumulated in distinct areas. Secondary forests
sequester carbon as one of its ecological functions. Some studies state that secondary forests
can sequester carbon in tropical regions up to 20 times faster than old-growth forests. These
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studies indicate that the pressures influencing carbon sequestration vary within sites, age,
environmental conditions, and regrowth rates [7,42,43]. These findings show the impor-
tance of monitoring secondary forest sites in the Amazon region. However, the old-growth
forests are still the most important driver in the Brazilian Amazon carbon balance [22,24].

In general, region B, located in western Pará, accumulated more aboveground biomass
compared to region A (eastern Pará). A recent study found that young secondary forests
(<20 years old) from the western Amazon regions absorb ~60% higher rates when compared
to the eastern regions [7]. The drivers of the aboveground biomass changes were usually
explained by previous land use [27,39], age [2,15,26] environmental factors [7,40,44] and
mainly the climate, which could influence the occurrence and the quality sites of secondary
forests, and thus impact the aboveground biomass accumulation [7].

In the Amazon, previous land use and land cover may have a negative impact on the
secondary forest aboveground biomass if the area has suffered repeated burning events.
The growth rate can also be affected by the LULC history [39]. The history of LULC also
has an impact on the aboveground biomass estimates. A study conducted in the Amazon
using L-band Synthetic Aperture Radar found that the LULC history information explained
71% of the AGB when used in the input model [27]. Furthermore, the LULC information
is crucial in determining the secondary forest age using cartographic modeling, and for
consideration in discussions of the aboveground biomass accumulation in different sites.

Secondary forest age has been considered as one of the most important variables influ-
encing aboveground carbon in the BLA [2,7]. The age may affect the rates that secondary
forests in tropical regions can accumulate carbon. The younger secondary forests have
higher aboveground biomass rate variation [5,29], but as the forest succession process
occurs these rates are downgraded [25]. Thus, mapping the secondary forest age allows
further investigation into the accumulation of the aboveground biomass. In our study,
the data limitation did not allow us to investigate longer time series and estimate above-
ground biomass for a higher range of secondary forest ages. Therefore, improving LULC
mapping is an important tool to estimate age in the longer time series and to explore more
information about the secondary forests.

Further, as the secondary forests are not officially protected by any specific Brazilian
environmental legislation, national monitoring systems such as TerraClass and MapBiomas
are crucial for surveying the data and beginning new discussions on the environmental
panel. This would also benefit the Brazilian Amazon by reducing the emissions from
deforestation and forest enhancements (REDD+) programs improving forest carbon stocks,
following the Intergovernmental Panel on Climate Change (IPCC) [45–47]. On the other
hand, it is unusual to have dense airborne LiDAR data available in the Amazon region or
repeated acquisitions to monitor the changes in the forest structure, which makes it difficult
to estimate AGB with high spatial resolution and monitoring efforts for REDD+ [48].

New data products and sensors with a high potential to estimate biomass, such as
the Global Ecosystem Dynamics Investigation (GEDI) [49] and the Biomass European
Space Agency’s forest mission [50] with active sensors, are able to measure the structure
of the forest and have a huge potential to monitor the forest carbon and contribute to
the IPCC reports. To attend to the demands of REDD+ with the results based on actions
fully measured, reported and verified (MRV), we need to have a better understanding
of the spatial distribution of the forests and local data to calibrate the estimates. Here,
we presented two pilot areas with restricted data that have the potential to upscale using
orbital sensors and have continuous monitoring if related to temporally continuous data.
These areas can also assist aboveground biomass estimation models for secondary forests.

5. Conclusions

The land use and land cover monitoring system revealed cold and hot spots in the
distribution of the secondary forest in Pará state. Although the balance of the secondary
forests was positive, the gains and losses varied over the period studied. In addition, the
aboveground biomass accumulation differed according to the secondary forest ages during
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the study period as evaluated in the two pilot areas. As the old-growth forest was cleared
in the Brazilian Amazon, the new LULC changes were mostly used for agriculture and
pasture, then after years of exploring these LULC, new secondary forests regenerated from
those areas. For this reason, new environmental legislation and official monitoring systems
are crucial to develop strategies to protect the secondary forests in the Brazilian Amazon.
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