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Abstract: Conservation areas are essential for preserving green spaces and biological diversity. Al-
though previous studies have demonstrated that spatial optimization techniques are effective for
balancing the relationship between ecological importance and spatial pattern during conservation
practices, the design of ecological corridors still requires an efficient, intelligent, and flexible workflow.
In addition, functional connectivity information is usually unavailable or very difficult to obtain.
To alleviate these problems, this paper has developed a new spatial optimization-based model that
combines morphological spatial pattern analysis (MSPA) with ecological importance assessment. The
consideration of MSPA can guarantee enough ecological corridors in the conservation plan, while
the regions with higher ecological importance can be discovered through an ecological importance
assessment. This method has been applied to the planning of conservation areas in a highly devel-
oped city. Several experiments have indicated that our proposed model could achieve much better
performance than conventional models in terms of spatial pattern. Therefore, this new model is
expected to assist decision processes during the planning and regulation of green spaces in frag-
mented urban ecosystems. Furthermore, it can be applied to ecological management and planning
in many other aspects because the above-mentioned research gaps are not unique to only Asian or
less-developed countries.
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1. Introduction

With urban areas rapidly expanding throughout the world, urban green spaces (e.g.,
forests, grasslands, wetlands) are substantially shrinking and becoming increasingly frag-
mented [1–4]. Earlier research has shown that conservation areas should be established
to limit the extent of urban sprawl within ecological hotspots [5–7]. The implementation
of conservation areas is of great importance for preventing immoderate urban expansion
and maintaining green space quality [8–10]. Many countries and regions have designed
their own conservation areas over the past few decades [11–13]. For example, the Chinese
government has made great efforts toward the development of “ecological civilization” in
recent years [14–17].

In practical applications, these tasks are mainly accomplished through a combined
use of ecological importance assessment, spatial analysis, and geographical mapping tech-
niques [18–21]. Although such methodological framework has been commonly adopted by
land use planners, spatial pattern is easily neglected during the planning
procedures [22–24]. In fact, it is very difficult to find out the optimal spatial pattern
of conservation areas simply based on manual methods. A disintegrated configuration will
be obtained if spatial restraint is not considered. Moreover, the objectivity of conservation
area planning is increasingly being questioned in many regions [25–27]. Therefore, in
addition to simply increasing the number and size of conservation areas, decision-makers
also need to pay enough attention to the quality and rationality of planning.
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To tackle the above issues, a number of studies promoted the use of spatial optimiza-
tion techniques, which can simultaneously consider ecological importance and spatial
pattern during conservation planning [28–32]. Multiobjective intelligent algorithms, such
as genetic algorithms, are widely utilized to resolve various mathematical optimization
problems [33–37]. A fundamental part of optimization is the determination of an objec-
tive function, a numerical value to be maximized or minimized under certain constraints.
Therefore, a balance between ecological importance and spatial pattern can be effectively
achieved by defining a suitable objective function [22,38,39]. While the former can be easily
assessed based on ecological importance analysis, the latter is more difficult to characterize.

Some landscape indicators, including edge density and compactness, are regularly
utilized to reflect spatial patterns. Notably, Li et al. [40] proposed an effective conservation
area zoning method by considering landscape shape index and ecological importance.
Lin et al. [38] adopted the compactness metric to characterize the spatial pattern of conser-
vation areas. In addition, some other studies have incorporated connectivity metrics into
conservation area planning. For example, Daigle et al. [41] developed a spatial conservation
planning model that can consider demographic and landscape connectivity. Beger et al. [42]
have incorporated connectivity into spatial decision-making for marine conservation.

However, these traditional indicators could not completely set apart multiple mor-
phological layouts with diverse environmental effects [43,44]. In particular, the connecting
passageways that will enable the efficient movement of species between various habitats
(i.e., ecological corridors) play a prominent part in the conservation of biodiversity [45–48].
Unfortunately, these narrow-shaped components are very difficult to be automatically
generated through spatial optimization techniques [38,49]. This phenomenon will become
even worse within a relatively data-poor context, e.g., functional connectivity information
is usually unavailable or very difficult to obtain.

In fact, core conservation areas and linear corridors could be distinctly set apart via
a morphological spatial pattern analysis (MSPA), which incorporates various geomet-
rical tools that are powerful to characterize land use configuration at a grid-scale [44].
Land-use datasets (conservation area plans) can be categorized into seven morpho-
logical layouts building on size, structure, and connectance [43]. This method has
been successfully employed in various land-use monitoring and assessments. Notably,
Mairota et al. [50] presented a MSPA-based method to monitor conservation areas. Fur-
thermore, Wickham et al. [51] performed a MSPA-based nationwide evaluation of green
space throughout the United States. However, MSPA has not been adopted during
the intelligent planning of conservation areas. In that case, conventional spatial indi-
cators should be replaced by MSPA so that the spatial pattern of conservation can be
described better. That is, the size of corridors can be regarded as an additional criterion
for ecological planning. To sum up, the main objective of our paper is to introduce
a new spatial optimization-based zoning method by combining MSPA and ecological
importance assessment.

2. Materials and Methods

According to previous findings, two fundamental criteria (i.e., ecological importance
and spatial pattern) should be carefully considered during the planning of conservation
areas [22,40]. Firstly, most land-use pixels with significant ecological importance should be
included in the conservation areas. Secondly, high compactness and connectivity degrees
are important to the maintenance of biodiversity and ecological sustainability. Therefore,
we first performed an ecological importance assessment. Then, the best conservation
area plan was determined using an intelligent algorithm (genetic algorithm). Ecological
importance and MSPA result were simultaneously considered during the optimization
processes. Figure 1 displays the flowchart of this study, and more detailed information is
described in the following sections.
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Figure 1. Flowchart of green space conservation planning with MSPA (Red: corridors; Green:
conservation areas; Gray: non-corridors).

2.1. Ecological Importance Assessment

As a fundamental part of conservation area planning, an ecological importance
assessment was performed to reveal the ecological importance at the pixel level. It should
be noted that the meaning of “ecological importance” in this case study draws from the
regulations issued by the local government. Generally speaking, the regions with more
important ecological functions, higher biological diversity, higher agricultural productivity,
and steeper slopes should be protected. According to the findings from previous related
studies, ecological importance can be assessed by using a set of ecological spatial factors as
follows [23,38]:

(1) Net primary productivity (NPP):

NPP refers to the overall amount of organic matter accumulated by vegetation over a
particular area and time period. As an essential element of the carbon cycle, NPP measures
the difference between the carbon absorbed by photosynthesis and the carbon released by
autotrophic respiration. Therefore, NPP has been commonly used to represent the ability
of green plants to fix and convert inorganic carbon into organic carbon;

(2) Habitat heterogeneity (HH):

Habitat heterogeneity can characterize the global configuration of varying environ-
mental situations. Studies have demonstrated that species diversity exhibits a strong
positive relationship with habitat heterogeneity in the landscape [52]. Habitat heterogene-
ity involves three elements: topographic wetness index, aspect, and soil types. Therefore,
two major steps were needed for the calculation of this factor: (1) building a binary tree
that can interpret “habitats” according to the combination of the above three elements;
(2) measuring habitat heterogeneity according to 25 land pixels (30 m × 30 m) that occupy
each grid (150 m × 150 m) using the Shannon-Weaver index [52].

First of all, the topographic wetness index, which combines the water supply from the
upslope catchment area and downslope water drainage for each pixel in a digital elevation
model [53], is usually quantified based on the following formula:

Wetness index = ln
(

Asi
tan β

)
(1)

where Asi means the upslope contributing areas (i.e., the areas that can potentially con-
tribute runoff to the region of interest) [54], and β denotes the slope angle. The output
values of this index were then separated into three different categories according to the
well-accepted Jenks Natural Breaks method.

In addition, aspects were generated from the digital elevation model, and soil type
data were acquired through the department of land use planning. Then, the aspect was
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separated into four categories: west-facing, east-facing, north-facing, and south-facing
slopes, and the study area consists of three major soil types: lateritic soil, waterloggogenic
paddy soil, and salt marsh soil. Therefore, there are 36 (3 × 4 × 3) possible combinations
(i.e., habitats) among the 3 elements. Lastly, habitat heterogeneity is measured, building
upon the Shannon–Weaver index for each grid (150 m × 150 m) [55]:

Habitat heterogeneity = −∑i pi(ln pi) (2)

where p means the proportion (relative abundance) of each habitat with respect to the
total habitats;

(3) Slope:

Topographic situations play an essential role in water-soil protection. Slope, which
quantifies the rise or fall degree of land surface, is a useful metric for ecological importance
assessment. For example, landslides easily occur in areas with steep slopes (usually greater
than 25%). Therefore, although these areas are not “ecologically important”, they should
still be carefully protected to lessen the potential negative impacts of geologic hazards,
such as landslides;

(4) Proximity to aquatic areas (PA):

Aquatic areas are essential parts of ecological conservation areas because water is
a vital nutrient to all living things. In addition to the aquatic areas, which are valuable
to water supply and sanitation, the regions which are closer to aquatic areas should also
be carefully protected since aquatic resources are easily threatened by surrounding socio-
economic activities in densely populated areas;

(5) Soil quality (SQ):

Soil quality can reflect the capability of soil to supply ecological and social benefits,
such as supporting agricultural production and conserving environmental health [56].
The spatial data about soil attributes (i.e., organic carbon, available water storage, and
soil reaction (pH)) were collected through the United Nations’ Food and Agriculture
Organization. Those land use pixels that are very necessary to be protected were assigned a
higher value (closer to 1), while the undesirable pixels were assigned a lower value (closer
to 0). For example, the pixels with a pH between 5.5 and 7.2 were assigned 1, the pixels
with a pH between 4.5 and 5.5 or between 7.2 and 8.5 were assigned 0.5, and the remaining
pixels were assigned 0, according to local field experience. Finally, the average score of the
three elements at pixel level was regarded as the soil quality in this study.

All the above spatial factors were rescaled into the range of [0, 1]. Then, they were
combined as an ecological importance (S) map using a linear weighted formula [23,40,57]:

S = w1 ×NPP + w2 ×HH + w3 × Slope + w4 × PA + w5 × SQ (3)

where wn denotes the weight for each spatial factor, and ∑ w = 1. Therefore, the land use
pixels with different importance scores can be balanced by using this combination method.
The methodological framework is the same if more available spatial data are involved in
other applications.

2.2. MSPA

MSPA is a digital signal processing application designed for the presentation of digital
remote-sensing images [44]. This method incorporates various geometrical tools that are
powerful to characterize land use configuration at a grid-scale, building upon several
computer vision algorithms (e.g., eroding, dilating) [43].

The land use grids within areas of interest (e.g., candidate conservation area schemes)
were considered “foreground”, and the rest grids were considered “background”. The area
of interest was categorized as seven morphological types in line with the morphological
attributes (see Table S1 in the Supplementary Materials). Notably, core ecological habitation
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and narrow linear corridors could be straightforwardly distinguished through MSPA. Full
information about the theory of MSPA was interpreted in the study of Soille and Vogt [44].

2.3. Spatial Optimization Using Genetic Algorithm

As mentioned above, both ecological importance and spatial pattern should be consid-
ered during the planning of conservation areas. To simultaneously achieve these two goals,
we built upon the genetic algorithm (GA)-based spatial optimization model developed by
Lin et al. [38] to figure out the near-optimal plan of the conservation areas. The concept of
GA builds upon Darwin’s principle of “natural selection” and “survival of the fittest” [58].
Furthermore, numerous research studies have demonstrated that GAs are very powerful
for solving many types of mathematical optimization problems [59,60].

The optimization process of GA can be regarded as the process of biological evolution.
First, a number of initial individuals (i.e., candidate solutions) are randomly generated.
Then, each individual is encoded as a binary matrix, in which 1 represents conservation area
pixels, and 0 represents non-conservation area pixels. Next, the new generation of solutions
is obtained through selection, crossover, and mutation operations, and those individuals
with lower fitness are gradually eliminated. Lastly, highly adaptable solutions can be
found after iterative evolution procedures. In fact, the fitness of each individual is assessed
through an objective function, in which ecological importance and spatial pattern can be
considered simultaneously. In particular, the compactness metric has been largely utilized
by much earlier research to reflect the spatial pattern of conservation areas. Therefore, the
objective function of the GA model is formulated as follows [23,38]:

Objective function = Maximize ws × S + wc × 4
√

A/P (4)

where S is mean ecological importance, A is the size of the conservation areas, P is the
perimeter of conservation areas, and w is the weight for each criterion (∑ w = 1). The total
size of conservation areas (namely, the number of protected land use pixels) was regarded
as the constraint of the GA model during the spatial optimization process.

The difference between our proposed method and the above traditional method lies
in the indicators of spatial patterns. While traditional methods usually adopted com-
mon spatial metrics, we distinguished ecological corridors and core areas using MSPA to
characterize the spatial pattern of conservation areas better. Specifically, the size of cores
and corridors (both bridges and loops) are considered in the objective function of the GA
model. Therefore, ecological importance and spatial pattern were combined using a linear
weighted equation, and the improved objective function of the GA model is formulated
as follows:

Objective function = Maximize ws × S + wc1 ×
Acore

A
+ wc2 ×

Acorridor
A

(5)

where Acore denotes the size of cores, Acorridor denotes the size of corridors, and w denotes
the weight for each criterion (∑ w = 1). Acore and Acorridor are two equally important criteria.
The consideration of Acore can maintain the integrity and compactness of conservation
areas, while the consideration of Acorridor can guarantee the connectivity degree.

Next, this objective function was utilized to measure the fitness of every candidate
solution in each generation. It is expected that the best solution will achieve the largest
scores for both mean ecological importance and spatial pattern metrics. Therefore, we
employed an “elitism” strategy that directly replicates the current optimal solution to
upcoming generations. Such a strategy could ensure that the eventual optimal outcome
will not be worse than the best individual ever found.

The GA-based optimization model can discover the optimal conservation area plan by
following the objective function after iterative runs of selection, crossover, and mutation
processes. To this end, the fitness proportionate selection method was used to select parents
for mating and propagating their features to the next generation. Every individual can
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become a parent with a chance that is proportional to their fitness value (objective function).
In addition, a patch-based crossover and mutation strategy was adopted so the parents
could produce compact conservation area plans. More details on this strategy can be found
in Lin et al. [38] and Cao et al. [61]. The new objective (Formula (5)) can also be achieved
by using other multiobjective optimization algorithms.

3. Implementation and Results
3.1. Case Study

Shenzhen, a highly developed megalopolis in Asia, was chosen as the case study
region. Shenzhen has developed as an international city after the reform and opening-
up policies of China. However, a large amount of ecological space has been encroached
upon during the remarkable economic and urban growth. The vegetation coverage rate
in Shenzhen is merely 39.2%. Zoning conservation areas in this big city is an urgent need
for conserving ecosystem services and biodiversity. Therefore, Shenzhen is a suitable
study area through which we could examine the proposed model. In fact, such ecological
problems frequently happen in many other countries and regions because an increasing
number of residents become permanently concentrated in relatively small, urbanized areas.
The United Nations predicted that over two-thirds (about 68%) of the global population
will live and work in urbanized areas by 2050. In that case, an effective method designed
for conservation area planning is key to the sustainable development of our natural world.

As introduced in Section 2.1, several fundamental ecological factors were utilized for
ecological importance assessment. First, we obtained the NPP datasets (MOD17A3H) via
the National Aeronautics and Space Administration. Additionally, soil attribute information
was collected through the United Nations Food and Agriculture Organization. Lastly, the
digital elevation model and ground-truth land-use dataset were collected through the
Chinese Academy of Sciences. The ground-truth land-use dataset has been categorized
into six types, namely, cropland, forest, grassland, aquatic area, built-up area, and unused
area. All these spatial factors have been resampled into a spatial resolution of 1000 m so
that the computational burden can be reduced (Figure 2a–e and Table 1).
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Table 1. Data source and description in this study.

Data Resolution Year Source

NPP 500 m 2018 National Aeronautics and Space Administration
Soil attribute ~1000 m - United Nations Food and Agriculture Organization

Soil type 1:1 million scale 2015 Department of land use planning
Digital elevation model 30 m 2018 Chinese Academy of Sciences
Ground-truth land use 30 m 2018

3.2. Implementation

First, we assessed the ecological importance throughout Shenzhen, building upon a set
of ecological spatial factors. The weights for these factors (Formula (3)) were determined
based on experts’ experiences and domain knowledge. It should be noted that the experts
in this study were selected based on their profession and familiarity with the study area.
After their group discussion, the pairwise comparison matrix and the resultant weights are
presented in Tables 2 and 3, respectively [38]. Figure 2f displays the combined ecological
importance result.

Table 2. Pairwise comparison matrix for ecological importance assessment.

NPP Habitat Heterogeneity Slope Soil Quality PA

NPP 1 1.20 1.50 2.00 2.50
Habitat heterogeneity 0.83 1 1.20 1.50 2.00

Slope 0.67 0.83 1 1.20 1.50
Soil quality 0.50 0.67 0.83 1 1.20

PA 0.40 0.50 0.67 0.83 1

Table 3. Weights for ecological importance assessment.

NPP Habitat Heterogeneity Slope Proximity to Aquatic Areas Soil Quality

0.2959 0.2375 0.1907 0.1229 0.1531

Next, the GA-based spatial optimization model was used to search for the best plan of
conservation areas based on the ecological importance result. Firstly, several parameters
should be defined before running this model. Generally speaking, the GA model with a
population size ranging from 20 to 200 can provide desirable outcomes [62]. Additionally,
a much longer time is needed for spatial optimization if a larger population size is adopted.
Therefore, considering that the optimization task in this study is not too complicated, a
medium population size (100) was adopted. Finally, we defined the other parameters for
running GA building upon previous relevant research (Table 4) [38]. Specifically, both the
crossover and mutation rates were assigned a larger probability score (0.90) to guarantee
enough newborn individuals through the crossover and mutation procedures. Additionally,
the iteration number was assigned a larger value (10,000) to avoid premature convergence
of the GA model.

Table 4. Parameters for the GA-based optimization model.

Population Size Iteration Number Crossover Rate Mutation Rate ws wc1 wc2 wc

100 10,000 0.90 0.90 0.50 0.10 0.40 0.50

Secondly, the weight for ecological importance assessment (ws) was set as a fixed value
(0.50) to facilitate the comparisons between our method and the conventional method.
Thirdly, the weights for the size of cores and corridors (wc1 and wc2) were determined
through manual tuning (with an interval of 0.05). Lastly, half of the total land area should
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be protected as stated by local land use regulations. After running the GA-based model,
the final optimization result of the conservation areas is shown in Figure 3a.
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For comparison, we also generated another conservation area plan based on a com-
monly used traditional method. That is, instead of Formula (5), Formula (4) was adopted
as the objective function of the GA. The remaining processes were completely the same as
those presented in the above-mentioned spatial optimization model. This traditional result
is presented in Figure 3b.

We found that there exist only a few ecological corridors in the plan generated by the
traditional method, which implies that such a result is already recognized as well-connected
when traditional landscape metrics are used to reflect spatial patterns. This phenomenon
happens because most of the land use pixels will gather into several large habitat patches so
that the compactness score can be maximized. The planning result will also be undesirable
if connectivity indices are adopted since two patches will be considered linked when the
proximity between them is less than an established threshold during the calculation.

Next, we calculated a number of metrics (Formulas (4) and (5)) to quantify the per-
formance of the two plans. The results are compared in Table 5. Although the two results
share very similar average ecological importance, their spatial patterns vary considerably.
Undoubtedly, the pattern produced by the traditional method has a higher compactness
score than that generated by the proposed method. However, more importantly, we found
that the percentage of corridors in the latter is much higher, which suggests that our new ob-
jective has been successfully achieved. The viability of endangered species can be enhanced
through the connection of fragmented core habitats.

Table 5. Ecological suitability and spatial pattern of the two protected area plans.

Average Ecological
Suitability

Compactness
Score

Percentage
of Cores

Percentage
of Corridors

Our method 0.6029 0.1816 46.71% 9.63%
Traditional method 0.6021 0.1982 52.19% 3.07%

For further evaluation, those two planning results were also overlaid with the ground-
truth land use data (Figure 4). As summarized in Table 6, most of the forest, grassland,
and aquatic areas have been included in both results. However, the one generated by
the traditional method contains more built-up areas, which may result in more land-use
conflicts and social inequality.
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Table 6. Land use composition of the planning results.

Farmland Forest Grassland Aquatic Area Built-up Area Unused Area

Our method 2.47% 65.66% 12.56% 3.92% 13.83% 1.55%
Traditional

method 2.72% 65.44% 12.14% 3.96% 14.18% 1.55%

3.3. Discussion and Policy Implications
3.3.1. Further Comparisons with Other Methods and Results

To further evaluate the proposed method, we also compared our result with the
result generated by a conventional non-spatial optimization method (i.e., density slicing)
and the draft plan provided by the local department of land use planning. The density
slicing method divides the land use pixel values into two categories (i.e., protected and
non-protected), building upon the ranking of ecological suitability scores [23,40]. In other
words, the land use pixels with higher ecological suitability scores in this study area were
chosen for generating the conservation areas.

As shown in Figure 5a, the result generated by the density slicing method exhibited a
very fragmented spatial pattern. This result can hardly be put into implementation because
the important connectivity and compactness criteria have not been taken into account in the
method. Additionally, compared with the real-world draft plan (see Figure 5b), we found
that some narrow-shaped and small land use pixels were not incorporated in our result.
This is because these tiny elements are easily ignored by spatial optimization techniques.
Nevertheless, generally speaking, the real-world draft plan and our result shared a similar
spatial pattern. The differences are in part due to the fact that policymakers can acquire
much more detailed and accurate data. Overall, these comparisons have indicated that the
proposed method is promising in conservation area planning.
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3.3.2. Advantages of This Study and Policy Implications

Spatial optimization-based models are the current cutting-edge methods for land use
and ecological planning. A number of advanced multiobjective intelligent algorithms
have been selected to assist the planning of conservation areas. Nevertheless, there is still
huge room for improvement because previous studies mainly focused on the upgrade of
intelligent algorithms. In fact, the objective function is the core of spatial optimization-
based models. Therefore, the resultant conservation area plans can hardly be put into
practice if the objective function is not properly designed by policymakers.

To overcome this disadvantage, a novel zoning model with an improved objective func-
tion is developed in this study. Our proposed method performs better than the traditional
method in terms of the following two points. Firstly, although some popular spatial metrics
have been widely considered in the objective function to characterize spatial patterns, linear
corridors are still very difficult to generate regardless of the spatial optimization techniques.
Fortunately, MSPA is a convenient approach for setting apart core areas and corridors.
Considering the size of bridges and loops could guarantee enough ecological corridors
in the conservation area planning result. This advantage is particularly valuable within a
relatively data-poor context. For example, functional connectivity information is usually
unavailable or very difficult to obtain. In fact, animal ecology has been substantially re-
strained by difficulties in monitoring free-roaming species [63]. This demands a data-driven
species-specific field investigation that observes how animals engage with the natural envi-
ronment [64–66]. Therefore, functional connectivity information is frequently unavailable
even in developed countries. Without accurate movement records, local planners struggled
to design ecological corridors reasonably [63]. In that case, structural connectivity identified
by MSPA is a suitable alternative.

Secondly, some tiny built-up areas (e.g., tiny communities) may be unevenly dis-
tributed inside the ecological areas, and some conservation area patches may also be
separated by large built-up areas. In such situations, a higher connectivity degree is fun-
damental for the movement of animals. Unfortunately, many preexisting built-up areas
were unreasonably included in the conservation area plan generated by the traditional
method since the compactness metric has been overemphasized. As a result, future urban
and socio-economic development may be substantially hindered if these plans are put into
practice. More detailed real-world examples of the conflicts between conservation and
human activities are presented in the Supplementary Materials (see Table S2). By contrast,
this disadvantage has been improved in our new planning result. Hence, our method is
expected to give helpful support for policymaking in ecological planning and management.

Typically, our proposed model could be applied to the intelligent optimal planning
of various similar land use regulations, such as environmental reserves, national parks,
ecological greenways, and urban growth boundaries. In particular, many countries and
regions around the world, including the European nations, the United States, Canada, and
China, have all strongly emphasized the increasing importance of ecological corridors in
conservation planning (see Table S3 in Supplementary Materials). Therefore, our proposed
model may assist decision processes during the design of ecological corridors in fragmented
urban ecosystems. Furthermore, the weights for ecological importance assessment and
spatial pattern can also be adjusted by policymakers to explore various conservation
scenarios. It should also be noted that although the corridors can still be generated after
the zoning of core areas, their objectivity may be severely questioned, especially when the
connectivity information is totally missing. Therefore, it is advantageous if the core areas
and corridors are simultaneously designed in an intelligent and objective way.

3.3.3. Disadvantages of This Study

Nevertheless, several aspects of the proposed method should also be strengthened in
future studies. For example, other types of intelligent algorithms can also be used to search
for the best plan for conservation areas. In addition, we will try to distinguish further
two types of ecological corridors, i.e., bridges (connecting different cores) and loops (con-
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necting the same core). Moreover, local authorities in China are strongly encouraged to
replace multiple different conservation-related plans (e.g., national parks, strict nature
reserves, forestry ecological red lines) with one top-down master plan. In that case, those
previously established key ecologically important areas can be marked out as a baseline
conservation framework, which should stay invariable throughout the optimization pro-
cedure. Furthermore, to guarantee the performance and efficiency of conservation area
planning in much larger study areas, high-performance computing technology should be
applied to the spatial optimization process of intelligent algorithms. Lastly, functional
connectivity information (e.g., animal migration tracking data), if available, can also be
incorporated to assess the quality of ecological corridors during the optimization processes.

4. Conclusions

The major contribution of our research is the introduction of a novel quantitative
method for the planning of conservation areas in the absence of connectivity information.
Although corridors are fundamental to the interconnection of fragmented green spaces, the
design of ecological corridors still requires an efficient, intelligent, and flexible workflow.
To this end, a GA-based spatial optimization model is presented, in which morphological
spatial pattern analysis and ecological importance assessment are combined. The former
can easily distinguish core areas and corridors, while the latter can identify the regions
with higher ecological importance. Then, the best solution with the highest scores for
both mean ecological importance and spatial pattern metrics can be effectively discovered
by GA.

This new method was employed in the planning of conservation areas in a highly
urbanized city. Several experiments have demonstrated that our method can provide much
better planning results than the traditional method, which uses only common landscape
indicators to characterize spatial patterns. The proposed method, which could greatly
facilitate the planning of ecological corridors in an objective manner, is more suitable for
dealing with land use optimization problems. Our planning results should be much more
advantageous in fragmented urban ecosystems.

Despite the fact that this new model was assessed via a case study in Asian cities, it is
promising for ecological restoration and management in many other aspects because the
previously mentioned problems are not unique to only Asian or less-developed countries.
In particular, ecological corridors need to be carefully considered throughout the world
during conservation area planning because they allow a safe migration of living beings in
densely built-up urban areas. Enhancing ecological connectivities through corridor design
is key to the sustainable development of our natural world.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14051031/s1. Table S1. Definition of the seven morphological
types. Table S2. Real-world examples of the conflicts between conservation and human activities.
Table S3. Real-world examples of the importance of ecological corridors in conservation planning.
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