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Abstract: Dynamic changes in forest biomass are closely related to the carbon cycle, climate change,
forest productivity and biodiversity. However, most previous studies mainly focused on the calcula-
tion of current forest biomass, and only a few studies attempted to predict future dynamic changes in
forest biomass which obtained uncertain results. Therefore, this study comprehensively considered
the effects of multi-stage continuous survey data of forest permanent sample plots, site condition
factors and corresponding meteorological factors using Beijing as an example. The geographic detec-
tor method was used to screen the key interfering factors that affect the growth of forest biomass.
Then, based on the back-propagation artificial neural network (BP-ANN) and support vector machine
(SVM) learning methods, 80% of the sample data were extracted to train the model, and thereby verify
the prediction accuracy of different modeling methods using different training samples. The results
showed that the forest biomass prediction models based on both the machine learning algorithms had
good fitting accuracy, and there was no significant difference in the prediction results between the two
models. However, the SVM model was better than the BP-ANN. While the BP-ANN model provided
more volatile predictions, and the accuracy was above 80%, the prediction results of the SVM model
were relatively stable, and the accuracy was above 90%. This study not only provides good technical
support for the scientific estimation of regional forest biomass in the future, but also offers reliable
basic data for sustainable forest management, planning decisions, forest carbon sequestration and
sustainable development.

Keywords: forest biomass; BP-ANN; SVM; prediction model; machine learning

1. Introduction

Forests are the dominant terrestrial plant communities, which not only maintain the
balance of the global ecosystem, but also play an important role in the global carbon
balance [1–3]. As the most basic quantitative characteristic of forest ecosystems, forest
biomass and its dynamic changes are closely related to the carbon cycle, climate change,
forest productivity and biodiversity, which makes them suitable to monitor the dynamic
changes in forest resources at all levels as well as to measure the quality and productivity
of the forest ecosystem [4–6]. In addition, forest biomass can also serve as an important
indicator for evaluating forest productivity and judging the development status of forestry
economy, playing an important role in promoting forest economy development and sustain-
able development [5,7,8]. Therefore, studying forest biomass can help us understand the
ecological environment and ecosystem functions of the region, evaluate the contribution of
forests to carbon cycling, the capacity of ecosystem service provision, and the stability of
the ecosystem, which is of great significance for formulating science-based forest protection
and management strategies.
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In the past decade, research on forest biomass has increased significantly, especially in
the development of biomass models using field data [9–15], but there is less research on
estimating or predicting biomass in future stages. In forest biomass estimation, the vast
majority of studies are based on individual tree scales, whereas this study estimates forest
biomass based on fixed plots, which is important for calibrating and validating large-scale
forest biomass and reflecting the relationship between various factors and forest biomass
at a macro level [16–18]. Currently, the estimation methods of forest biomass include the
clear-cutting method, mean wood method, relative growth method, and remote sensing
estimation method [17,19–25]. The clear-cutting method is very accurate, and although
some scholars later proposed a non-destructive method for measuring tree biomass, it
appears to be less accurate in the calculation of forest biomass in large areas [26]. The mean
wood method is relatively simple but offers low reliability. The relative growth method
and remote sensing estimation method have higher accuracy and cause less damage to
forest vegetation. Remote sensing data has certain advantages in forest biomass estimation,
but there are still considerable uncertainties [27]. First, the spatial resolution is not fine
enough to observe biomass changes in various corners of the forest and at different scales.
Second, the cost of obtaining high-resolution data is high, which limits the application
scope of remote sensing data in forest biomass monitoring and prediction. Third, due
to the lack of future remote sensing images, existing forest biomass models often cannot
make accurate predictions. Therefore, there is an urgent need for more reliable and low-
cost model development methods to predict and analyze the spatiotemporal evolution of
forest biomass.

Machine learning methods provide a workable solution for these problems, with great
potential and advantages in predicting forest biomass [28]. Recently, machine learning
methods have been widely applied in forest biomass prediction models [22–25,29]. Machine
learning is an artificial intelligence technique that can automatically deduce patterns from
data [30]. By analyzing large amounts of forest ecological data, such as terrain features,
meteorological data, etc., features and patterns related to forest biomass are identified and
used to establish a model for predicting forest biomass [15,31–33]. Lin et al. [34] estab-
lished a stand harvesting model for Cunninghamia lanceolata plantations in northwest Fujian
province using machine learning methods based on the back-propagation artificial neural
network (BP-ANN) and support vector machine (SVM) algorithms, and the training sample
precision of the model was above 0.93, wherein the fitting accuracy and generalization
ability of the SVM model were better than those of the BP-ANN model. López-Serrano
et al. [23] used remote sensing data to estimate forest biomass using three methods, KNN,
RF and SVM, and the results indicated that SVM was the best choice. Pham et al. [24]
established an aboveground biomass model of mangrove forests using an SVM regression
method, and concluded that an integration of ALOS-2 PALSAR-2 and Sentinel-2A data with
the SVR model can improve the AGB accuracy estimation of mangrove plantations in tropi-
cal areas. Li et al. [35] combined assimilation technology of the MODIS LAI time series with
the random forest model to more accurately estimate bamboo forest aboveground biomass
(AGB) in Zhejiang province. They provided a new method for estimating large-scale forest
AGB based on low-resolution time series data. Wu et al. [36] used two nonparametric
modeling approaches, random forest (RF) and support vector machine, to estimate AGB
based on widely used Landsat images of the region. Rakesh et al. [37] used multi-source
datasets based on machine learning algorithms for spatial estimation of forest biomass in
India. The inclusion of multisource data using a random forest regression model increased
the saturation range to 350 Mg ha−1, which is a significant improvement applicable to 94.7%
of Indian forests. The model estimation error was reduced to 25.6% in the AGB range up to
350 Mg ha−1. Among many different machine learning methods [34,38–41], BP-ANN and
SVM are considered to offer the best predictability and stability, with significant advantages
in model construction. Therefore, using machine learning methods to accurately predict
forest plot biomass is of great significance for promoting the sustainable utilization of forest
resources and evaluation of carbon accounting.
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Currently, most current studies focus on estimating forest biomass, with few studies
focusing on predicting future forest biomass. Additionally, previous studies did not
fully consider the impact of various factors in the selection of modeling factors. This
study comprehensively considered the contribution of forest factors, site conditions, and
meteorological factors in modeling, which improved the reliability of the prediction results.
Moreover, there is no previous research on predicting future forest biomass based on
sample plots in Beijing. Therefore, to address the practical need for sufficient predicted
data on forest biomass in a specific region, using Beijing as a case study, this study aims to
fill this research gap and provide a model for forest biomass prediction in other regions
and help achieve the dual carbon targets, and enhance the forest ecosystem function. In
this study, BP-ANN and SVM were utilized to establish a forest biomass prediction model
for Beijing plots, followed by a comparison of the accuracy of the two models. The research
findings can provide a scientific basis and decision support for promoting sustainable
forestry development in Beijing, nationwide, and globally. This approach can help forest
managers plan and manage forest resources more effectively, promoting a stable and
healthy ecosystem development.

2. Materials and Methods
2.1. Overview of the Study Area

Beijing is an important economic center and population agglomeration area in China,
and the health status of forest ecosystems has a significant impact on the lives of residents
and economic development. It is located on the northwestern edge of the North China
Plain (115◦25′~117◦30′ E, 39◦28′~41◦05′ N), with its center at 116◦25′29′′ E and 39◦54′20′′ N.
Beijing’s topography is mainly composed of the Zhongshan Mountains, Yan Mountains,
and Taihang Mountains, gradually rising from northwest to southeast. The highest peak
is Badaling with an elevation of 2303 m. The city’s main rivers include the Bohai, Baihe,
Yongding, and Nanyunhe, which form the three major natural zones of “Western Mountains,
Northern Plains, and Eastern Waters”. Beijing belongs to a warm temperate semi-humid
and semi-arid monsoon climate zone, with distinct seasons. Spring is mild, summer is
hot and rainy, autumn is cool and pleasant, and winter is cold and dry. The average
annual temperature is around 12 ◦C, and the annual precipitation is 600–700 mm. Due to
differences in elevation, the climate factors, such as temperature and precipitation, also
vary within the city. In addition, the vegetation coverage in different areas of the city varies.
The vegetation growth and spatial distribution in Beijing are shown in Figure 1.

Beijing’s total area is 16,807 square kilometers, with the urban area covering
1368 square kilometers. According to the latest forest resource inventory data, Beijing’s
overall forest coverage has reached more than 40%. During the 15-year period from the
sixth term to the eighth term (2004–2018), the forest area increased by 197,700 hectares, the
forest coverage rate increased by 12.05%, and the forest stock increased by 13,987,800 cubic
meters. The corresponding datapoints are listed in Table 1.

Table 1. Forest area, forest cover ratio and forest accumulation from 2006 to 2016.

Timepoint Forest Area (km2) Forest Coverage (%) Forest Stock Volume
(Million Cubic Meters)

6 5205 31.72 1038.58
7 5881 35.84 1425.33
8 7182 43.77 2437.36
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Figure 1. Forest vegetation coverage map of Beijing.

2.2. Data Source

The dataset mainly used in this study includes the National Forest Resource Continu-
ous Inventory data and Meteorological data.

2.2.1. National Forest Resource Continuous Inventory Data

This study selected the forest inventory data of the 6th, 7th, and 8th periods in Bei-
jing, including 214 permanent sample plots and 428 plot data records, all of which were
forestland data. The permanent sample plot survey data mainly includes plot number,
slope, aspect, GPS plane coordinates, vegetation cover, shrub cover, herb cover, average
age, tree density (trees/ha), canopy density, average tree height (m), average diameter at
breast height (cm), dominant tree species, breast height area G (m2/ha), and stock volume
(m3/ha).

2.2.2. Calculating the Basic Biomass of Permanent Plots

In this study, the future forest biomass was predicted by modeling forest growth, so
it was necessary to calculate the basic biomass of the forest permanent sample plot. The
basic biomass of the permanent sample plot consists of the biomass of trees, shrubs and
herbs. The tree biomass in the sample plot in this study was estimated using the linear
fitting equation of biomass and storage volume by forest type and age group proposed by
Xu et al. [42]. The biomass of shrubs and herbs was estimated using the method established
by Wang et al. [43]. Based on the basic biomass of the permanent sample plot, this study
calculated the forest growth for two consecutive periods.

2.2.3. Meteorological Data

The meteorological data used in this study were obtained from the China Meteoro-
logical Science Data Sharing Service Network and the ClimateAP software development
kit. This study used two dominant climate factors, mean annual temperature and mean
annual precipitation, which have a significant impact on forest growth, as the primary
meteorological factors for modeling [32,44–46].

The historical meteorological data were obtained from the China Meteorological
Science Data Sharing Service Network (http://data.cma.cn, accessed on 14 July 2021).

http://data.cma.cn
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Daily meteorological data from 21 meteorological stations in Beijing from 2004 to 2018 were
selected, including daily mean temperature and mean precipitation (Figure 2). The missing
data and outliers in some meteorological stations were supplemented using the inverse
distance weighting method. To correspond the forest growth data for the two consecutive
periods, a pivot table was used to organize the meteorological data for every five years,
and the average values of mean annual precipitation and mean annual temperature for the
corresponding period were calculated for modeling and validation.
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Figure 2. Distribution map of continuous forest inventory data samples and meteorological stations
in Beijing.

The future meteorological data were obtained from Climate AP [47,48]. This software
covers future climate data predicted based on the IPCC Fifth Assessment Report (AR5).
Climate AP can automatically extract corresponding climate data based on the query point
location and the corresponding time series. Based on the coordinates of the inventory plots,
annual climate data for five consecutive years from 2019 to 2023 (precipitation, temperature)
were extracted and used to calculate the annual average of mean annual precipitation and
mean annual temperature from 2019 to 2023 for model prediction.

2.3. Research and Construction Methods

Before conducting the modeling study, it is necessary to organize the above sample
plot data. As the sample plot data is a continuous survey data of multiple periods, the
correlation between the data is poor, and there is a lack of intuitive continuous variability.
In order to better correlate the sample plot data, we use the following methods to conduct
correlation analysis on the sample plot data separately. The continuous survey plots
use a “point sampling” system, which can be directly correlated based on the fixed plot
coordinates. This study selected the relational database management software MySQL
developed by the Swedish MySQLAB company to calculate and match the correlation
between different period plot data. The data of the sixth, seventh, and eighth periods
were imported into the software, and then matched according to the coordinate of each
two-period data, realizing the one-to-one correlation of the three-period plot data. At the
same time, in order to realize the prediction function for the fixed plots in Beijing, the latest
continuous survey plot data was classified, organized, and correspondingly correlated.
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2.3.1. Correlation Analysis

Geographic Detector is a tool used to analyze geographic phenomena and explore
relationships between geographic factors [49]. It combines GIS, remote sensing, and statis-
tical methods to help researchers better understand geographic phenomena and explore
relationships between variables. Geographic Detector can analyze the relationships be-
tween multiple variables to find their mutual influence and spatial relationships, including
linear and nonlinear relationships. By comparing the contribution of variables to the target
variable, Geographic Detector can select variables that are important to the target vari-
able, reduce the complexity of the model, and improve the accuracy and reliability of the
model. Geographic Detector can consider spatial autocorrelation, which helps to select
variables with regional differences in factor selection, and improve the adaptability and
generalizability of the model.

The stand factors, site conditions, and meteorological factors are all important factors
affecting forest biomass, and the influence of each factor on forest biomass varies depending
on the region, environment, vegetation type, and other conditions [33,50–55]. According to
extensive research, this study selected forest stand factors (mean stand age, mean stand
density, mean diameter at breast height, mean stand height, and mean cross-sectional area at
breast height), site conditions (slope, and aspect), and meteorological factors (mean annual
precipitation, and mean annual temperature) as variables. This study used Geographic
Detector to analyze the correlation among variable factors and plotted the following factor
interaction diagram using the R software environment (Figure 3). It can be seen that the
impact of any two independent factors was enhanced after interaction. However, the
correlation between terrain factors, such as slope and forest growth, was weak, while
the correlation between meteorological factors was strong. The main reason is that the
impact of terrain factors on forest growth can ultimately be reflected in temperature and
precipitation [32,44–46].
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Therefore, this study combined the site conditions and meteorological factors with
forest survey factors for model training and testing, and subsequently analyzed the forest
sample biomass model for Beijing.

2.3.2. BP-ANN Model

Back-propagation artificial neural network (BP-ANN) is a machine learning algorithm
based on neural networks that can be used for prediction and classification of problems [56].
In predicting forest biomass, BP-ANN has many advantages, as this model can adaptively
learn the nonlinear relationship between input and output through training, which can
better capture the complex relationships and nonlinear features of forest biomass, thus
improving the estimation accuracy [57]. Compared to traditional linear regression models,
BP-ANN can better handle nonlinear relationships and high-dimensional data. BP-ANN
is able to handle missing data and outliers because its training process is based on a
large number of data samples, which can be used to infer missing values or filter out
outliers based on multiple sample features. In addition, BP-ANN can perform iterative
training and tuning to improve the accuracy of model prediction by continuously adjusting
network structure and hyperparameters [58]. In summary, BP-ANN is a powerful machine
learning algorithm that can be used to predict forest biomass, with good prediction accuracy
and scalability.

BP-ANN is a multilayer feedforward neural network trained using an error backward-
propagation algorithm, which has a single hidden layer or multiple hidden layers [59]. In
1989, Funahashi proved that a Rumelhart–Hinton–Williams multi-layer neural network
could approximately realize arbitrary continuous mapping, and its output was an s-type
function [60,61]. The accuracy is higher than that of a network with a single hidden layer.
In the process of model establishment, the topology of BP-ANN is composed of an input
layer, a hidden layer, and an output layer. Neurons in the same layer do not affect each
other, and the neuron state of each layer only affects the neuron state of the next layer [59].
However, the number of parameters will increase exponentially with the number of hidden
layers. When it reaches a certain number of layers, the classification effect will become less
and less obvious when further hidden layers are added.

In this study, we used a single hidden layer to construct the model. The sorted data
were randomly divided into test sets and training sets, while the input and output vectors
were normalized to a range of [0, 1] using the Max and Min method. The topological
structure of BP-ANN was determined to be 9-14-1, and the empirical range of weight and
threshold value was [−1, 1], so that the range of optimization can be widened appropriately.
The number of learning iterations was set to 1000, with a minimum training target error of
0.00001 and a learning rate of 0.1. To improve the learning ability of BP-ANN, the algorithm
was optimized. To pass in front of the signal process, it imports data from the input layer,
constantly training the model in the hidden layer, and then reaches the output layer; if
the output of and comparison between the predicted values and the real value if it do not
meet expectations, it goes into the reverse transmission, and uninterruptedly adjusts the
weights and thresholds, until the minimum error output value is close to the real value.
Finally, the prediction results are inversely normalized and visualized, while the model
error evaluation is given as the output (Figure 4).
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2.3.3. SVM Modeling

The support vector machine (SVM) is also a commonly used machine learning al-
gorithm that can be used for classification and regression problems [62]. In predicting
forest biomass, SVM has many advantages, as it can handle non-linear relationships and
high-dimensional data by selecting appropriate kernel functions to map the data to a
high-dimensional space, thus more accurately capturing the key factors that affect forest
biomass [63]. SVM can undergo iterative training and parameter tuning, improving the
model prediction accuracy by continuously adjusting hyperparameters and kernel func-
tions. Its learning algorithm seeks the optimal compromise between model complexity
(namely, the learning accuracy of training samples) and learning ability for limited sample
information [64,65]. In summary, SVM is a powerful machine learning algorithm that can
be used to predict forest biomass with good predictive accuracy and scalability. However,
training and prediction on large-scale datasets may consume a longer time and more com-
puting resources. Therefore, when selecting an algorithm, the size and complexity of the
dataset should be considered.

This study was carried out using the libsvm toolbox. According to the requirements of
the SVM model, the input and output vectors were normalized, and the encapsulated svmrp
was used to predict the number growth of svm, and the optimal parameters C (penalty
parameter) and G (kernel parameter) were found. In order to improve the learning ability
of the SVM network, the particle swarm optimization algorithm was used for parameter
optimization, whereby the penalty parameter C and kernel parameter G were used as
optimization variables with cross-validation. The initial range of the penalty parameter
C was 0~100, the initial range of the kernel parameter G was 0~1000, the termination
algebra was 100, the population number was 20, the variation probability was 0.01, and
the functional error precision was set to 0.0001. After optimization, the optimal value
of the parameter C was 11.3137 and that of G was 0.7071, which were used in the SVM.
The optimal parameters were used for SVM network training, simulation prediction and
inverse normalization, and the prediction results were obtained and visualized. At the
same time, the model error evaluation was generated as the output (Figure 5).
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2.4. Model Assessment

In order to evaluate the prediction performance of the model and further test its
applicability, the determination coefficient (R2), mean square error (MSE), root mean square
error (RMSE) and mean absolute percentage error (MAPE) were used as evaluation indexes
to explain the stability of model fitting, the criterion for judging the quality of the model
and the accuracy of the prediction results. The corresponding equations are as follows:

Determination coefficient (R2):

R2 = 1− ∑i(ŷi − yi)
2

∑i

(−
y − yi

)2 (1)

Mean square error (MSE):

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (2)

Root Mean Square Error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (3)

Mean Absolute Percentage Error (MAPE)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (4)

where, n is the number of samples, ŷ = {ŷ1, ŷ2, . . . , ŷi} is the predicted value,

y = {y1, y2, . . . , yi} is the actual value, and
−
y is the average value.
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3. Results

This study is based on 428 sorted data samples. During the training phase, the original
data was automatically divided into two non-overlapping parts, one for model training and
the other for validation. The training data was used to train the model, and the validation
data was used to verify the accuracy and generalizability of the model, to ensure that
the model can effectively predict new data. By adjusting the parameters of the model
and optimizing the algorithm, the predictive performance of the model was continuously
improved to achieve higher accuracy and stability. We randomly sampled 80% of the data
for training. This data selection method and ratio have been widely used by many scholars,
such as Zeng et al., who established a larch forest biomass equation [66], or Zhu et al., who
used this model to accurately estimate the biomass of heterogeneous and dense mangroves
in worldview-2 images [67].

After developing and constructing the BP-ANN model, we obtained the prediction
results shown in Figure 6. As can be seen in the figure, when the training samples accounted
for 80% of the total dataset, the forest biomass growth predicted by the model was basically
consistent with the actual value, indicating a good training result.
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At the same time, we found that the prediction model based on BP-ANN was slightly
unstable with different training times, and the R2 fluctuated within a certain range. We
randomly selected the results three times (Table 2), and the R2 of the three operation results
basically remained above 0.85, which reflected the prediction results and illustrated the
feasibility of the model.

Table 2. The fitting results based on BP-ANN.

Training
Times

Test Prediction

R2 MAPE RMSE MSE MAPE

1© 0.88 0.29 76.13 18.63 0.35
2© 0.86 0.31 63.57 14.88 0.48
3© 0.91 0.25 69.46 16.02 0.33

After developing and constructing the SVM model, we obtained the prediction results
shown in Figure 7. When the training samples accounted for 80% of the total dataset, the
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forest biomass growth predicted by the model was in good agreement with the actual value,
indicating a good training result.
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At the same time, we randomly selected the results three times. Table 3 shows that
with different training times, the prediction model based on SVM had good stability. The R2

fluctuated only slightly, and the R2 of the three operation results basically remained above
0.9. This indicated high precision, which can well reflect the prediction results, confirming
the feasibility and superiority of the model.

Table 3. The fitting results based on the SVM prediction model.

Training
Times

Test Prediction

R2 MAPE RMSE MSE MAPE

1© 0.91 0.23 64.25 14.15 0.43
2© 0.92 0.18 60.51 8.19 0.40
3© 0.91 0.26 61.98 13.45 0.36

By using the two models established above and taking the model built with 80% of
the training samples as the standard, the forest growth of the next period (2019–2023) of
the sample plot can be predicted. Based on this, the forest biomass of the ninth period
can be obtained by adding the basic biomass of the eighth period permanent sample plot
(Figure 8).

In order to express the predictive performance of the two models more intuitively,
the established models were used to predict all data. After plotting the predicted values
and standard values on the same coordinate system (Figure 9) and the error graphs of
two models (Figure 10), we can observe the distribution of the scatterplot to compare the
differences and correlations between the predicted values and standard values. Overall, the
scatterplot showed that the points are dense and concentrated near a straight line, indicating
relatively accurate predictions. In addition, some points were relatively scattered, which
may be due to additional factors. In this case, we can continue to analyze these outliers
to understand their relationship with other factors. Compared to the sub-models, the
predictions of the SVM model were more concentrated near the straight line than those of
the BP-ANN model (R2

SVM > R2
BP-ANN), indicating higher accuracy. These results indicate

a strong correlation between predicted and standard values, demonstrating that the model
can provide a valuable reference for forest resource management and carbon cycle research.
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In this study, we found that the prediction accuracy of the models based on the BP-
ANN and SVM methods can reach more than 80%. As can be seen from Tables 2 and 3,
when the training samples of the BP-ANN and SVM prediction models included 80% of the
data, the results of multiple runs fluctuated differently and the influence on the accuracy
was different. Therefore, in order to further compare the stability of the two prediction
models with different training samples, we reduced the number of training samples to
determine the impact of the number of training samples on each model. Because the
training samples generally contain more than 50% of the data, in order to highlight the
comparison between research and construction models, we selected numbers of samples
with an interval of 10% for training, and we obtained the model prediction fitting results
when the number of training samples was 70% (Figure 11).
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Figure 11. Predicted and actual values of forest biomass growth (∆B) based on the BP-ANN model
and the SVM model.

By comparing the two models separately (Table 4), it can be observed that the variation
of training sample size has a certain impact on both prediction models. Both the BP-ANN
and SVM prediction models showed a downward trend in R2 as the number of samples
decreased (Table 4).
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Table 4. The fitting results of the BP-ANN and SVM models.

Model
Test Prediction

R2 MAPE RMSE MSE MAPE

BP-ANN 0.67 0.51 93.34 26.52 0.86
SVM 0.74 0.36 84.07 25.86 0.60

4. Discussion

Establishing forest biomass models based on machine learning methods opens great
possibilities for more reliable estimation and prediction [30]. This study accurately esti-
mated the forest biomass of the permanent sample plots in Beijing using two machine
learning methods, providing a reference for solving regional forest biomass estimation
problems. The findings of this study can enhance our comprehension of the productivity
and carbon stocks of forest ecosystems, and evaluate the response and adaptability of
forests to climate change in Beijing.

In accuracy evaluation, R2 is mainly used to measure the degree of fit of a model,
which reflects its quality, while other indicators are mainly used to evaluate the accuracy
of the predicted values [68]. MAPE measures the relative size of deviations, which is not
easily affected by extreme values. MSE and RMSE measure the absolute size of deviations
between measured and predicted values, which are more sensitive to outliers. In the model
constructed in this study, R2 was relatively high, but RMSE was also high, indicating
that the overall fitting effect was good in the prediction results, but there were some
outliers. This is mainly because different types and ages of forests have different rates of
forest biomass growth [5,18,69]. Therefore, evaluating the quality of a model cannot be
separated from specific application scenarios and datasets. It is basically meaningless to
simply judge which model is good or bad. Overall, both models were relatively stable,
which was mainly attributed to the reliability, representativeness and accuracy of the data
used in modeling, the use of geographic detectors for correlation analysis of variables to
identify important explanatory variables, and the combination of variables to optimize the
explanatory power and prediction accuracy of the models. However, this also indicates that
higher requirements are placed on the data sources when using machine learning methods
for modeling. Attention should be paid to the processing of missing values and outliers,
variable selection, as well as other aspects of data processing and screening.

Using machine learning methods can effectively improve the accuracy of model
prediction, but due to the complexity and uncertainty of the prediction object, the results of
a single modeling method may be biased [24,34,37]. In this case, the optimal integration of
various modeling algorithms provides another alternative to reduce this uncertainty [70].
Dai et al. [50] pointed out that using combination models can greatly improve the accuracy
of estimation results. Che et al. [71] demonstrated that the output of the combination
prediction model is more accurate. Smuga-Kogut et al. [30] used artificial neural networks
and random forest algorithms to generate mixed models, and the fitting degree was
improved to R2 = 0.961. This suggests that the use of combined prediction models can
comprehensively improve the accuracy and overall effect of predictions, thereby achieving
a better performance [72]. However, the universality of combination models still needs
to be explored and verified. Therefore, the role of combination models in forest biomass
models should be studied in depth in the future.

Forest diversity (in terms of types, climates, site conditions, etc.), long-term temporal
scales, and different model construction methods can all lead to differences in forest biomass
estimation at different scales [6,8,73]. Currently, research on forest biomass models mostly
focuses on vegetation factors, while ignoring the influence of topography and weather
on the models. In this study, site conditions and meteorological factors were added as
independent variables to the biomass model based on stand factors. The increase in the
number of independent variables brings the estimate of biomass closer to the true value [74],
but it also reduces the general effectiveness of the biomass model. Therefore, theories
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from other disciplines (ecology, biology, meteorology, etc.) should be cross-referenced
when constructing a biomass model, and the balance between statistical standards and
practical application requirements should be considered [75]. Additionally, the prediction
in this study is primarily based on fixed sample sites and has not yet been extended
to the entire region (surface). Therefore, the next step will focus on predicting forest
biomass for the entire region (surface). At the same time, improving the practicality
and representativeness of the model, carrying out regional and national forest biomass
estimation and evaluation, as well as establishing a universal biomass model suitable for
large regions are all worthwhile goals for future studies.

In the context of global carbon cycling, forest biomass prediction plays a critical role
in carbon sequestration, sustainable forest management, and response to global climate
change [76]. In the long run, the high population density of Beijing and worldwide, the
issuance of relevant policies, and the willingness of the public to participate in protection
are all important for the growth of forest biomass. The research results of this study are
significant for promoting sustainable forestry development in Beijing, as it can aid forest
managers in developing more scientific forestry management strategies and evaluating the
ecological benefits of forest ecosystems. However, forests are subject to dynamic changes in
biomass due to natural succession and air pollution [77,78]. In addition, human activities,
such as changes in forest landscape patterns, land use types, and fires, also have significant
impacts on forest biomass [79–82]. Therefore, future studies should pay more attention
to combining models and adding human activities as variables to obtain more accurate
forest biomass estimates and understanding potential dynamic changes. These methods
will provide a valuable reference for research on forest carbon storage and carbon balance.

Although this study made a good attempt at predicting regional forest biomass, there
are still two areas where there is room for improvement in future research. The first area of
potential improvement is that the prediction in this study is based on fixed sample locations,
primarily used for point prediction, and has not yet been extended to the entire region
(surface). The focus of future work will be expanding from point to surface prediction.
Another potential area for improvement is the significant influence of human activities.
In future research, changes in land cover and landscape patterns should be included as
driving factors in modeling.

5. Conclusions

The results showed that the forest biomass prediction models based on both machine
learning algorithms had good fitting accuracy, and there was no significant difference in
the prediction results between the two models. However, the SVM model was better than
BP-ANN. While the BP-ANN model provided more volatile predictions, and the accuracy
was above 80%, the prediction results of the SVM model were relatively stable, and the
accuracy was above 90%. We believe that machine learning models can better predict
the potential of forest carbon sequestration and sequestration enhancement, which can
provide a valuable reference for the improvement of forest quality and sustainable forest
management in Beijing, nationwide, and globally.
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