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Abstract: Gap size is one of the main variables used to quantify the environmental consequences
of forest management that can help in quantifying and monitoring changes in clearing areas. This
study aimed to characterize gaps from harvested individuals, quantify the resulting forest damage,
and adjust equations to describe gaps after tree cutting. Our research was conducted in three
phytophysiognomies of the eastern Pará Amazon. We performed descriptive analyses using data
on gap size and damage to the remaining individuals in each phytophysiognomy. We then applied
predictive modeling to estimate clearing size using a generalized linear model. Modeling parameters
included Gaussian, gamma, and inverse Gaussian families, with linking and transforming functions
of the analyzed variables. Among the three phytophysiognomies, the largest clearings were observed
in open ombrophilous forests with lianas (27,650 to 548,460 m2), with 56 large gaps, 148 medium,
and 113 small. The model with three linear predictors (diameter, height, and phytophysiognomy),
inverse Gaussian distribution, and logarithmic link function showed the best fit. There were notable
differences in clearing size across phytophysiognomies, suggesting that the phytophysiognomy
should be considered when planning measures to mitigate the impacts of forest management.

Keywords: forest exploitation; phytophysiognomies; dense ombrophilous forest; open ombrophilous
forest with lianas

1. Introduction

Gaps in the forest canopy are one of the consequences of logging. Cleared areas range
in size from small to large and vary according to the size of the exploited tree species,
the suitability of the forestry techniques [1], and the phytophysiognomy of the exploited
area. Gaps created by selective exploitation favor tree regeneration due to greater light
penetration and nutrient availability for the lower strata [2].

Gaps, also called forest clearings, are progressively occupied by a wide variety of
species, mainly classified into three successional groups: pioneers and early and late
secondary colonizers [3]. The particular dynamic of this regeneration is influenced by
several factors, such as the intensity and origin of local alterations and the growth and
mortality of the species occupying the clearings [4]. These factors lead to each gap being
colonized by different species due to environmental conditions in and around the gap,
which affect competition for light and nutrients [5,6]. The intensity of impacts in these areas
depends on the size of the clearing and the degree of damage to remaining trees during
extraction of the specimens selected for cutting [7–10].

Clearing size also affects the extent of the impact and colonization dynamics. It is
a determinant of environmental conditions that influence plants’ survival, growth, and
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structuring. Specifically, clearing size influences local conditions of luminosity, temperature,
humidity, and wind, among other factors [11–13]. In the Amazon rainforest, clearings are
classified as large, medium, and small, and have been shown to exhibit diverse regeneration
characteristics, from germination to number of specimens [14].

The Amazon, Brazil’s most exploited forest, comprises several phytophysiognomies
with complex and dynamic ecological processes. Therefore, any intervention in this region
must be preceded by a study of its structural characteristics to achieve sustainable manage-
ment [15]. These phytophysiognomies include ombrophilous forests and their variations,
such as dense and open ombrophilous forests, in which environmental interactions differ
considerably between these forest types.

Dense ombrophilous forests (DOFs) have upper strata comprising trees measuring
25–30 m in height with interlaced canopies. In addition, DOFs are inhabited by ever-
green broadleaf trees that are typical of humid environments. Periodically flooded dense
ombrophilous forests (PFDOFs) differ from DOFs because of their water regime; they
experience periodic flooding due to their proximity to rivers of black or clear waters [16,17].
Open ombrophilous forests with lianas (OOFLs) have less biomass and a higher abundance
of shrubs and lianas than DOFs. These features may be associated with deep water ta-
bles, impermeable soils, and poor drainage, resulting in a dense understory and an open
canopy [18]. Environmental heterogeneity, which is the result of factors including topog-
raphy, soil depth, temperature, and seed dispersal, is one of the main drivers of floristic
composition and forest structure of forests [19].

The various characteristics of the phytophysiognomies require a different set of local
approaches that may differ from those commonly used in the Amazon region. Current
regulations allow timber extraction through sustainable forest management (SFM) under
Normative Instruction MMA No. 5, 2006 [20], among other legal frameworks. SFM permits
methods of reduced-impact exploitation (RIE), which employs scientific and engineering
principles of impact mitigation, education, and training [15,21,22].

SFM, however, only considers the estimated volume to be extracted without examining
the impact of logging on the remaining forest. This situation results from a scarcity of
impact assessments and the absence of any legal obligation to conduct them. Thus, studies
that aim to assess the impacts of factors such as clearing size are essential. Other authors
have raised similar concerns, focusing on the recovery of forest stocks, assessments of the
environmental and economic sustainability of forest management, and the definition of
the requirements, time, and intensity of forest management [23]. Hence, the main objective
of this study was to adjust generalized linear models for the prediction of clearing areas
produced by logging in different phytophysiognomies of the eastern Amazon. In addition,
the specific objectives were to classify and compare the clearing sizes generated by RIE
between forest phytophysiognomies and evaluate the relationships between clearing size
and variables such as diameter at breast height (DBH), volume and commercial height of
exploited trees, and phytophysiognomy.

2. Material and Methods
2.1. Characterization of the Study Area

The study was carried out at Annual Production Unit No. 14 (APU-14) of the Forest
Management Unit (FMU) at Fazenda Uberlândia (03◦06′15′′ 78 S; 49◦53′52′′ 28 W), located
in Portel, Pará state. The Effective Management Area (EMA) of APU-14 is 3760.27 ha,
subdivided into three areas and 39 work units (WUs) across three phytophysiognomies:
DOFs, PFDOFs, and OOFLs (Figure 1 and Table 1).

The structure of DOFs, which are adapted to hot and humid climates, is characterized
by a dense and interconnected canopy, an abundance of large trees, a subcanopy with
individuals of medium to small size that receives little incident light, and a predominance of
broadleaf species [16,17]. Similarly, PFDOF forests are rich in large trees with interconnected
canopies. The difference between PFDOFs and DOFs is their water regime, since PFDOFs
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are periodically waterlogged due to river floods [17]. Meanwhile, OOFLs are composed of
large and isolated trees covered by lianas [17].
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Figure 1. Location of the study areas and gaps and subdivisions of the Annual Production Unit No.
14 (APU-14) of the Forest Management Unit (FMU) at Fazenda Uberlândia, Portel, Pará state.

Table 1. Quantification of areas and phytophysiognomies in the studied Annual Production Unit.

APU-14 WT TA PPA EFEA Phytophysiognomy

A1 11 1075.9 55.14 1000.6 PFDOF

A2 14 1328.6 128.91 1194.5 DOF, OOFL

A3 14 1356.0 91.47 1264.2 DOF, OOFL

Total 39 3760 275.53 3460 -
APU-14: Annual Production Unit-14; WT: work unit; TA: total area, in hectares; PPA: permanent preservation
area, in hectares; EFEA: effective forest exploitation area, in hectares; PDFDOF: periodically flooded dense
ombrophilous forest; DOF: dense ombrophilous forest; OOFL: open ombrophilous forest with lianas.

In the APU studied, all trees with a DBH≥ 40 cm were inventoried, totaling 139 species.
Identification of the phytophysiognomies was obtained using the geoprocessing tools of
QGIS software. For this purpose, a vectorized classification base prepared by the company
managing the APU was constructed using information from satellite images, sample
collections from field trips, and manuals of Brazilian vegetation [17].

The exploitation of APU-14 by Guerra Indústria e Comércio de Madeira Ltd. was
approved by the State Department for the Environment and Sustainability (Secretaria de
Estado de Meio Ambiente e Sustentabilidade—SEMAS) through Authorization for Forest
Exploitation AUTEF No. 273333/2019. Authorization was issued under current legislation
(Normative Instruction No. 05/15—SEMAS and IBAMA Implementation Standard No.1,
of 24 April 2007), which granted special rights for the exploitation of 40 commercial timber
species, with the removal of 26.78 m3·ha−1, totaling 92,434.91 m3 (13,181 trees) released for
exploitation over a 35-year cutting cycle.
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2.2. Dataset

We used data from 653 gaps caused by planned forest exploitation, representing
4.95% of the individual trees extracted in APU-14. This sample was selected to include
proportional numbers of trees from each species harvested. The clearings were selected
randomly from the three phytophysiognomies (n = 171 for DOF, n = 165 for PFDOF, and
n = 317 for OOFL).

2.2.1. Determining Clearing Areas in the EFEA

Gap areas were determined by Equation (1) [24], in which AC = area of clearing, in m2;
π = Pi value; Bn = largest diameter of the clearing, in meters; Cn: smallest diameter of the
clearing, in meters (Equation (1)).

AC = π

(
B2

n
2

)(
C2

n
2

)
(1)

Gaps were classified into three size categories: (i) small clearings, with AC < 100 m2;
(ii) medium clearings, 100 m2 ≤ AC < 200 m2; and (iii) large clearings, AC ≥ 200 m2.

2.2.2. Classification of Damage to Remaining Trees

Damage refers to the degree of injury suffered by remaining trees due to the exploita-
tion of the trees intended for cutting. After measuring the impacted area of each selected
clearing, damage was analyzed in the remaining trees with a diameter measured at 1.30 m
from the ground (d1.3) greater than or equal to 10 cm. We then defined three damage inten-
sities [25]: (i) mild, (ii) severe, and (iii) irreversible (Table 2). We counted the occurrences of
each damage category by analyzing every tree damaged.

Table 2. Classification of damage to remaining trees.

Damage Site
Classification According to Field Parameters

Mild Severe Irreversible

Damage to treetops 1/3 canopy of damaged trees Between 1/3 and 2/3 canopy of
damaged trees Treetops destroyed

Damage to tree trunks Superficial damage in the trunk
of the trees Deep damage of size < 1/2 d1.3 Deep damage of size > 1/2 d1.3

In addition, to compose the forest census dataset, we compiled the following in-
formation on the extracted trees that gave rise to the clearings analyzed: (i) scientific
name; (ii) d1.3 in cm; (iii) commercial height (H), in m; (iv) cross-sectional area (gi), in m2;
(v) volume (vi), in m3; and (vi) phytophysiognomy.

2.3. Generalized Linear Models

The generalized linear models were calibrated using a training set based on the
trees’ dimensions and phytophysiognomy to predict the clearing area. The classical linear
regression model assumes that the response variable has a normal distribution, constant
variation, and independence. However, many situations do not meet these assumptions, so
more flexible and versatile models were needed to model other functional relationships.
Generalized linear models (GLMs) are one tool that has emerged to address this need [26].
GLMs expand the possible probability distributions of the dependent variable, allowing the
use of distributions from the exponential families for the response variable (e.g., normal,
inverse normal, gamma, binomial, and Poisson, among others).

A GLM contains three basic components: (a) a random component, (b) a systematic
component, and (c) a link function [27].
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(a) Random component: this consists of the random variable Y from a set of n inde-
pendent observations (y1, y2, . . . , yn) with a distribution belonging to the exponen-
tial family.

(b) Systematic component: a linear predictor covering a set of covariates through a linear
combination of parameters.

(c) Link function: a monotonous and differentiable function that associates the random
component (mean of a distribution) with the systematic component (linear predictor).
Different link functions can be used for each distribution assumed for the depen-
dent variable.

Therefore, to adjust a GLM, the behavior (distribution) of the response variable, the
explanatory variable, and the link function associating the random with the systematic
component must be defined. In this study, the dependent variable (Yi) is the area of
clearing (AC, in m2) resulting from the felling of a tree, and its nature is continuous. Thus,
three continuous random distributions (Gaussian, gamma, and inverse Gaussian) with the
identity (µ) and logarithmic (ln µ) link functions and five variations of linear predictors
were assumed for the conditional distribution of the response variable (Table 3).

Table 3. Generalized linear models adjusted to predict the area of gap (Y = AC) produced by the
planned felling of trees in three forest phytophysiognomies of the Brazilian Amazon.

Symbol Linear Predictor Family LF

M1 β0 + β1d + β2H + β3V Gaussian Identity

M2 β0 + β1Phyto + β2d + β3H Gaussian Identity

M3 β0 + β1Phyto + β2ln(d) Gaussian Identity

M4 β0 + β1Phyto + β2(d2H) Gaussian Identity

M5 β0 + β1Phyto + β2ln(d) + β3ln(d2H) Gaussian Identity

M6 β0 + β1Dsev + β2Phyto + β3H Gaussian Identity

M7 β0 + β1d + β2H + β3V Gamma Log

M8 β0 + β1Phyto + β2d + β3H Gamma Log

M9 β0 + β1Phyto + β2ln(d) Gamma Log

M10 β0 + β1Phyto + β2(d2H) Gamma Log

M11 β0 + β1Phyto + β2ln(d) + β3(d2H) Gamma Log

M12 β0 + β1Dsev + β2Dirrev + β3Phyto + β4H Gamma Log

M13 β0 + β1d + β2H + β3V Inverse Gaussian Log

M14 β0 + β1Phyto + β2d + β3H Inverse Gaussian Log

M15 β0 + β1Phyto + β2ln(d) Inverse Gaussian Log

M16 β0 + β1Phyto + β2(d2H) Inverse Gaussian Log

M17 β0 + β1Phyto + β2ln(d) + β3ln(d2H) Inverse Gaussian Log

M18 β0 + β1Dsev + β2Phyto + β3H + β4ln(d) + β5d Inverse Gaussian Log

Where β0, β1, β3, β4, and β5 = model coefficients; d = diameter at breast height (cm); H = total height (m);
V = volume, in m3; ln = Napierian logarithm; Phyto = phytophysiognomy; Dirrev = number of trees with
irreversible damage; Dsev = number of trees with severe damage; LF = link function.

The original dataset (n = 653) was divided into training (80%) and test (20%) data
through random stratified sampling based on the diameters of the trees whose extraction
gave rise to the clearings. We used the training dataset to estimate the parameters of the
GLMs, and the power of generalization was assessed using the test set. The fitting quality
of the GLMs was assessed by inspecting the residual deviance of the Akaike information cri-
terion (AIC) [28] (Equation (2)), the Bayesian information criterion (BIC) [29] (Equation (3)),
relative root mean square error (rRMSE) (Equation (4)), and through diagnosis of half-
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normal plots with simulated envelopes. The fulfillment of the hypothesis of absence of
collinearity (or multicollinearity) was assessed using the variance inflation factor (VIF)
statistic (Equation (5)). Severe effects of multicollinearity were assumed when VIF > 5 [30].
Potential outliers and influential points were diagnosed by analyzing a Cook’s distance
chart. Following this, some models were refitted by removing individual observations
and evaluating the impacts of these modifications on the estimates of coefficients and
standard errors.

AIC = −2 ln(LP) + 2p (2)

BIC = −2 ln(LP) + Kp; [For K = ln(n)] (3)

rRMSE =
100

y

√
1
n

n

∑
i=1

(ŷi − yi)
2 (4)

VIF =
1(

1− r2
23
) (5)

where Lp = value that maximizes the maximum likelihood function of the estimated model;
p = number of model parameters; ln = natural logarithm; n = number of observations;
yi = observed value for the ith tree in the sample; y = observed mean of the response
variable; ŷi = predicted value for the ith tree in the sample; r2

23 = correlation coefficient
between regressors X1 and X2.

We performed all analyses using the R programming language, version 4.1.0. [30],
adjusting all GLMs using the glm function of the stats package available in the R-base. We
diagnosed the residuals by visual inspection of half-normal plots with simulated envelopes,
using the packages auditor [31] and hnp [32].

3. Results
3.1. Species Richness

The exploited trees generating the gaps belonged to 36 species distributed in 15 botan-
ical families. The sample sufficiency in monitoring reduced impact (5%) is commonly
accepted in forest certification and implemented by companies and communities that carry
out forest management. Goupia glabra, Manilkara paraensis, Chrysophyllum venezuelanense,
and Manilkara huberi were the most representative species in the sample (Table 4).

Figure 2 depicts the box plots, by phytophysiognomy, for the biometric variables
measured in the felled trees and the area of the clearing (response variable) formed after the
felling of trees. The highest mean clearing area and clearing size variability were 141.09 m2

and CV = 57.13% for OOFLs, followed by DOFs (AC = 101.48 m2, CV = 49.8%) and PFDOFs
(AC = 82.8 m, CV = 42.9%).

The mean diameters of trees from the OOFLs (d1,3 = 77 cm) and DOFs (d1,3 = 76.8 cm)
were similar, with a dispersion of less than 26%. In PFDOFs, the trees showed lower
variability (CV = 20.1%) and mean diameter (d1,3 = 69.2 cm). Average tree height was higher
and less variable in DOFs (H = 18.46 m, CV = 10.7%) than in the other phytophysiognomies.
In PFDOFs, average tree height was the lowest (H= 13.9 m), though with high variance
(CV = 19.5%). Finally, the highest average wood volume of the trees was measured in DOFs
(V = 6.30 m3), followed by OOFLs (V = 5.64 m3) and PFDOFs (V = 3.87 m3). The variance
of the variable volume was high, above 50% for all phytophysiognomies.
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Table 4. Number of trees, arranged by species and phytophysiognomy, related to gap formation after
extraction by reduced impact exploitation methods.

Species Family DOF PFDOF OOFL Total

Astronium lecointei Ducke Anacardiaceae 2 - 10 12

Caryocar glabrum (Aubl.) Pers. Caryocaraceae - 9 1 10

Caryocar villosum (Aubl.) Pers. Caryocaraceae 1 - 2 3

Chrysophyllum venezuelanense (Pierre) T.D.Penn. Sapotaceae 11 2 49 62

Cordia goeldiana Huber Boraginaceae 2 - - 2

Couratari guianensis Aubl. Lecythidaceae 4 32 36

Couratari stellata A.C.Sm. Lecythidaceae 1 1 3 5

Dinizia excelsa Ducke Fabaceae 15 - 20 35

Diplotropis martiusii Benth. Fabaceae 2 24 - 26

Diplotropis purpurea (Rich.) Amshoff Fabaceae 2 5 2 9

Dipteryx polyphylla Huber Fabaceae 8 13 8 29

Endopleura uchi (Huber) Cuatrec. Humiriaceae 1 - 2 3

Enterolobium schomburgkii (Benth.) Benth. Fabaceae 4 - 3 7

Erisma uncinatum Warm. Vochysiaceae - 1 - 1

Goupia glabra Aubl. Celastraceae 10 48 22 80

Hymenaea courbaril L. Fabaceae 5 11 3 19

Hymenolobium petraeum Ducke. Fabaceae 5 11 4 20

Iryanthera paraensis Huber Myristicaceae - 5 4 9

Lecythis pisonis Cambess. Lecythidaceae 1 - 1 2

Licaria cannella (Meisn.) Kosterm. Lauraceae 4 - 3 7

Manilkara huberi (Ducke) Chevalier Sapotaceae 21 - 38 59

Manilkara paraensis (Huber) Standl. Sapotaceae 36 4 22 62

Micropholis venulosa (Mart. & Eichler) Pierre Sapotaceae 7 - 12 19

Ocotea neesiana (Miq.) Kosterm. Lauraceae - - 2 2

Ocotea rubra Mez Lauraceae 4 - 7 11

Piptadenia suaveolens Miq. Fabaceae 3 - 15 18

Pouteria oblanceolata Pires Sapotaceae 8 - 4 12

Qualea paraensis Ducke Vochysiaceae - 6 - 6

Sclerolobium paraense Huber Fabaceae 2 - - 2

Simarouba amara Aubl. Simaroubaceae - 6 5 11

Sterculia alata Roxb. Malvaceae 3 3 3 9

Terminalia amazonica (J.F.Gmel) Exell. Arecaceae 1 - 11 12

Tetragastris panamensis (Engl.) Kuntze Burseraceae - 18 18

Vantanea parviflora Lam. Humiriaceae 6 - 3 9

Vatairea paraensis Ducke Sapotaceae 2 2 8 12

Vochysia guianensis Aubl. Vochysiaceae 14 - 14

Total 36 15 171 165 317 653

PFDOF: periodically flooded dense ombrophilous forest; DOF: dense ombrophilous forest; OOFL: open om-
brophilous forest with lianas.
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3.2. Dimensioning of the Clearings by Phytophysiognomies

Of the sampled clearings, 342 were classified as small, 244 as medium, and 67 as large.
In relative terms, felled trees generated a higher proportion of medium (n = 148; 46.7%) and
large (n = 56; 17.7%) clearings in the OOFLs than in the other forest types. The medium and
large clearings represented 46.7% (20,900 m2) and 34.9% (15,622 m2), respectively, of the
total area opened by the felled trees. The highest proportions of small clearings were found
in DOF (n = 101; 59.1%) and PFDOF (n = 128; 77.6%) phytophysiognomies. Thus, small
clearings were 40.4% (7002 m2) of the open area in DOFs and 63.3% (8653 m2) in PFDOFs
(Figure 3).

The large clearings in the OOFLs were generated by the felling of trees of relatively
small diameter (50 cm), and the number of damaged trees during the formation of each of
these gaps ranged from 10 to 30. In DOF, large clearings were generated from the felling
of trees with diameters above 75 cm, with 10 to 30 damaged trees per clearing. These
gaps in PFDOFs resulted from cutting trees above 100 cm in diameter, with damaged trees
numbering 10 to 30.

The trees whose felling gave rise to small and medium clearings in the OOFLs and
DOFs had heights below 12 m, and the number of damaged specimens ranged from 0 to
10. In comparison, large clearings were caused by trees of over 12 m in height, with 10 to
30 damaged specimens. In PFDOFs, meanwhile, large gaps were found in areas where the
exploited trees were over 14 m in height, with 10 to 20 damaged specimens.

The timber volume of trees whose felling caused large clearings was around 1.5 m3 in
OOFLs, with 0 to 30 damaged specimens. In DOF, the large clearings were formed from
the felling of trees above 3 m3, with 10 to 30 damaged specimens. Large gaps in PFDOFs
were generated after exploiting trees above 10 m3, with 0 to 20 damaged specimens.

OOFLs showed the highest number and percentage of damaged trees in the three
categories (mild, severe, and irreversible), followed by DOFs and PFDOFs (Figure 4).
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3.3. Generalized Linear Models

Table 5 describes the estimates of the regression coefficients and their significance
through the t-test (α = 0.05) and the adjustment statistics of the models.
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Most of the calibrated models are unreliable for making inferences since they had
nonsignificant regression coefficients (α = 0.05; t-test). Severe multicollinearity effects
(VIF > 5) were identified in the coefficient estimates of the fitted models that included the
inverse Gaussian (logarithmic link) distribution and also for the models M5 (Gaussian
and identity link) and M11 (gamma and logarithmic link), which include the predictors
ln(d) and ln(d2H). The M12 model (gamma and logarithmic link), with the inclusion of
predictors indicative of the amount and intensity of damage caused by falling trees on
remaining trees, fitted the data better and showed better predictive performance. In this
case, predictors indicative of the amount of irreversible or severe damage to trees were
more important in describing the effects on the response variable. For the M12 model, the
half-normal plots showed residuals inside the simulated envelope, indicating a good fit of
the model to the data (solid black lines, Figure 5). In addition, the randomized quantile
residuals showed good adherence to the Gaussian distribution (Figure 6), confirmed by the
Shapiro–Wilk hypothesis test, without discrepant values, which were in the range of −3
to 3.
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Figure 5. Half-normal plots with simulated envelope for the deviation residuals of the six models
with the best fitting. Predictors indicative of the amount of irreversible or severe damage to trees
were more important in describing the effects on the response variable. For the M12 model, the
half-normal plots showed residuals inside the simulated enve-lope, indicating a good fit of the model
to the data. AC = area of the clearing; Phyto = phytophysiognomy; d = diameter at breast height;
H = height; Dirrev = number of trees with irreversible damage; Dsev = number of trees with severe
damage; log = logarithmic transformation.
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Table 5. Coefficients and precision statistics of generalized linear models to predict the clearing size
in an area of planned forest exploitation in the Brazilian Amazon.

Mod
Coefficients

Adjustment Statistics

Set Training Set Test

β0 β1 β2 β3 β4 β5 AIC BIC rRMSE AIC BIC rRMSE

M1 −30.0983 1.525 * 1.7572 0.5655 - - 5838.92 5860.24 56.26 5881.24 5902.55 55.24

M2 −11.7493 −44.9291 * 44.1305 * 1.4245 * 2.7063 * - 5771.37 5796.95 54.46 5617.29 5638.6 53.25

M3 −402.316 * −38.476 * −47.945 * 125.77 * - - 5776.53 5797.85 54.75 5565.34 5586.65 56.14

M4 91.56 * −37.38 * −49.98 * 0.0079 * - - 5784.94 5806.25 55.09 5849.14 5874.72 53.32

M5 −476.198 * −44.977 * −43.689 * 38.683 39.528 * - 5771.66 5797.24 53.52 5555.88 5581.47 54.47

M6 −5.859 20.411 * −36.245 * −16.484 * 4.899 * - 5708.05 5733.63 47.62 5708.05 5733.63 47.56

M7 3.1836 * 0.0169 * 0.025 * −0.0263 - - 5565.97 5587.29 57.25 5505.97 5531.55 57.59

M8 3.7453 * −0.3555 * −0.4278 * 0.011 * 0.0204 * - 5467.08 5492.66 54.36 5852.67 5873.98 53.03

M9 0.6113 −0.3118 * −0.4542 * 0.9984 * - - 5466.61 5487.93 54.62 5565.48 5586.8 55.49

M10 4.565 * −0.3495 * −0.438 * 0.0000035 * - - 5478.48 5499.79 55.03 5516.7 5538.02 53.32

M11 0.093 −0.357 * −0.4235 * 0.3136 0.3051 * - 5461.15 5486.73 53.22 5862.59 5883.91 53.69

M12 3.567 * 0.1162 * 0.2111 * −0.2289 * −0.095 * 0.0461 * 5298.14 5327.98 41.22 5298.14 5327.98 47.64

M13 3.4579 * 0.0134 * 0.0154 0.0024 - - 5521.60 5542.92 57.36 5569.44 5590.76 57.47
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Table 5. Cont.

Mod
Coefficients

Adjustment Statistics

Set Training Set Test

β0 β1 β2 β3 β4 β5 AIC BIC rRMSE AIC BIC rRMSE

M14 3.7237 * −0.3407 * −0.4372 * 0.0122 * 0.0166 * - 5424.48 5450.06 54.39 5517.69 5539.01 52.93

M15 0.521 −0.3096 * −0.4582 * 0.0198 * - - 5423.73 5445.05 54.76 5830.74 5856.32 55.31

M16 4.48 * −0.3459 * −0.4309 * 0.0000044* - - 5428.13 5449.44 55.03 5537.03 5562.61 53.38

M17 0.1709 −0.3456 * −0.4354 * 0.4295 0.2544 * - 5420.80 5446.38 53.41 5491.88 5517.46 53.48

M18 3.9067 * 0.1456 * −0.2808 * −0.1968 * 0.0375 * −0.0244 5371.06 5400.91 46.01 5371.06 5400.91 47.70

Mod = model; β0, β1, β2, β3, β4, and β5 = model coefficients; AIC = Akaike information criterion; BIC = Bayesian
Schwarz criterion; rRMSE = relative root mean square error; * = significance level (α = 0.05).

4. Discussion
4.1. Species Richness

The species with the highest number of individuals sampled in the clearings follow
the pattern of forest management in the Amazon region in terms of both abundance of
species and commercial demand. Specifically, it is consistent with a report of the 10 most
managed species of the lower Amazon in a study conducted between 2006 and 2016. That
study reported more than 4 million m3 of log extraction, with emphasis on the species
Manilkara huberi (Ducke) Chevalier and Goupia glabra Aubl. [33]. Studies conducted by the
authors of [34,35] also addressed the abundance and commercial interest of these species in
management areas located in other regions, showing that a specific logging profile existed
throughout the Amazon that placed significant pressure on the most exploited species.
Hence, the selective exploitation of forest species in the Amazon causes unequal pressure
among flora populations, restructuring the forest with several plant species different from
those found in the original forest [36].

The flora populations of each phytophysiognomy exhibit distinct features. One of
these features is tree density, since DOFs and PFDOFs have a higher number of individuals
per hectare than OOFLs. A study carried out in another DOF reported a density of 544 trees
per hectare (≥10 cm), while a study carried out in an OOFL reported 306 individuals per
hectare [37]. These studies demonstrate that the number of specimens around the exploited
trees differs between phytophysiognomies.

Other characteristics that differ between DOFs, PFDOFs, and OOFLs are flooding
regime, liana density, and tree size and diameter [38–40]. These characteristics are not
considered during forest management activities since the legal framework requires that dif-
ferent forest areas be treated with the same silvicultural and exploitation techniques. Thus,
there is no differential logging for OOFLs, which are areas with more lianas per hectare
and thicker and taller specimens than in the other phytophysiognomies. Consequently,
logging activities generate more extensive clearings with more damaged remaining trees in
OOFLs than in the other ombrophilous forests. The generalization of forest management
techniques for all tropical forests—or even all ombrophilous forests—therefore leads to
more extensive damage to trees in clearings of OOFLs than in DOFs and PFDOFs.

4.2. Measuring the Clearings by Phytophysiognomy

Although the harvested trees in DOFs are greater in height and average volume than
in PFDOFs, there were more damaged trees in clearings of PFDOFs than in DOFs. This
outcome is probably due to the more pronounced occurrence of lianas in PFDOFs than in
DOFs. Other studies carried out in Amazonian Forest areas with a prominent presence
of lianas demonstrate relationships between the density of lianas, the clearing size, and
damage to remaining trees [41]. It should be noted that an OOFL has few large trees per
hectare, its canopies are connected by lianas, and there is high incident light. In contrast,
dense forests have many large specimens per hectare and dense, connected canopies [17].
Thus, the presence of lianas connecting the trees is one of the reasons for the opening of more
extensive clearings and more damaged trees in OOFLs than in the other ombrophilous
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forests [42]. More extensive clearings are a problem for forest regeneration since they
are avoided by fauna due to difficulties in their structural characteristics, rendering the
dispersal of fruits and seeds more difficult [43]. In addition, reports indicate that clearings
are affected by increased temperature and loss of humidity since they are exposed to high
luminosity [4,9].

Hence, forest management regulations need to consider the characteristics of forest
phytophysiognomies when considering exploitation intensity, liana-cutting level, and
specific silvicultural treatments, among other factors. Forest management regulations
currently dictate that lianas must be cut one year before forest exploitation in all forest
types [17,20,44]. However, this criterion could be revised by inserting new guidelines for
tailoring reduced impact management to each phytophysiognomy and considering factors
such as tree density (specimens per hectare) and degree of liana occurrence.

The high density of specimens over 10 cm around the exploited trees, associated with
the presence of lianas, increases the damage caused by forest exploitation on remaining
trees, both in the number of affected specimens and the severity of the impact. Consequently,
the size of the clearings also increases, which may result in the establishment of pioneer
species with low timber value [45].

After examining the relationships between the morphometric variables across these
three forest typologies, it appears that there are large clearings with a high number of
damaged specimens in the analyzed OOFL, which showed the smallest DBH, height, and
volume. Since they can also generate large clearings, other variables to consider are the
type of canopy, silvicultural treatments, presence of lianas, density [13,37,46], water deficit,
soil fertility, flooding, and forest degradation [47].

There was a higher percentage of individual trees with mild, severe, and irreversible
damage in PFDOFs than in DOFs and OOFLs. Thus, PFDOF areas require different
silvicultural treatments than those used in other phytophysiognomies, specifically to
remove the lianas attached to the trees to be cut [38]. The greater the number of liana
connections between the canopy of a tree and the surrounding trees, the greater the amount
and degree of damage to the remaining trees [48]. Cutting lianas six months before logging
would significantly reduce the damage to the remaining trees. Low-impact management
areas currently conduct liana cuts one year before exploitation during the forest inventory.

The gaps opened during logging are little studied, and there have been no previous
studies on the impact of planned forest management in the exploited area. Therefore, the
prediction of clearing size could be made a mandatory requirement before exploitation
using existing models for the first APU and adjusted models on subsequent APUs. The
utility of this requirement relies on the fact that the affected area is fully linked to forest
restructuring to allow returning for another exploration cycle via forest management.

In forest management, Brazilian law allows re-exploitation after 25 to 35 years, with
the volume to be exploited in a second cutting cycle dependent upon the impact caused to
the trees that remained after the first cutting cycle [20]. Many studies show that exploited
areas do not reach their pre-exploitation volume during this period, seeing only a return of
about 30%–40% of their previous volume, along with major changes in species composition
after recolonization [49–51]. Forest exploitation in tropical environments requires species
classification according to their ecophysiological demands and the establishment of a
cutting cycle compatible with the recovery of the volume extracted from each group,
ensuring the environmental and financial sustainability of logging activity [23].

4.3. Generalized Linear Models

Most studies use linear regression models to predict the size of clearings from variables
such as DBH and the volume and morphometry of the canopy. In a previous study [46],
dendrometric variables such as DBH, basal area, and volume, along with morphometric
variables of the canopy such as its length, average diameter, branch length, and projection
area, were used to predict clearing areas in forest management units of the state of Acre.
Other authors used these same variables to obtain accurate estimates in five forest manage-
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ment areas in the Mamirauá Sustainable Development Reserve [52]. None of these studies
considered phytophysiognomy as a variable in their adjusted equations, which highlights
the importance of the present study.

This study showed a significant difference in the size of the clearings between phy-
tophysiognomies. Hence, using phytophysiognomy as a variable in models predicting
clearing size would be a way to monitor and reduce the areas impacted by forest manage-
ment. However, complementary long-term studies on the relationship between clearing
size, log volume recovery, forest structure, and diversity of the exploited area in different
phytophysiognomies may also be informative.

Studies indicate a highly dynamic generation of clearings in the western and eastern
Amazon region, with some specific cases in the central Amazon [47]. This concerning
finding demonstrates the need for forestry operations to focus on reducing clearing size.

The difficulty in using standard analyses such as regression for predicting clearings
in tropical forests is due to the assumption of normal distributions. Therefore, GLMs are
more suitable since they allow data analyses without this assumption [53]. Among all
the tested and adjusted models that had a 5% level of statistical significance, those of the
inverse Gaussian family showed the best fit to the data, a result consistent with the positive
asymmetric organization of the database [54,55]. Among these models, the M12 stands out
with the best fit to the database, the lowest AIC and BIC values, and better distribution of
randomized residuals. Thus, the M12 model is feasible and easy to apply to the reality of
Amazon Forest managers since it uses data already collected during forest management.
Some of these data are DBH and height, collected during the 100% inventory, along with
the phytophysiognomy classification, which is conducted when completing the annual
operational plan.

5. Conclusions

The felling of trees has opened large clearings in all the studied phytophysiognomies.
However, the clearings formed are smaller in diameter and volume in OOFLs than in DOFs
and PFDOFs.

The floristic units differed among the studied clearings, indicating the need for man-
agement prerogatives that take the phytophysiognomy of the exploited area into account.
Features related to the phytophysiognomy, such as tree density, DBH, height, and volume,
density of lianas, and water regime, can drastically interfere with forest management.
Management that does not consider these features can cause more damage to the remaining
forest, which can hinder forest recovery and re-exploitation of the same area according to
the cycle established in current laws and standards.

The size of the clearings is an essential variable for monitoring forest management
since it is linked to the proportion of impact on the forest and its regeneration capacity.

The easy-to-apply M12 model showed the best fit for the database, demonstrating that
phytophysiognomy is a significant variable in predicting clearing size. Thus, forest manage-
ment should consider phytophysiognomy for the specific implementation of silvicultural
measures intended to minimize impact on the forest.
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