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Abstract: Guizhou Province is a typical representative karst region in China, with poverty and a
fragile ecology, and knowledge of vegetation dynamics and its response to climate changes and human
activities can provide basic information for ecological environmental resource management. Based on
MOD13Q1 NDVI remote sensing products and meteorological data, spatial-temporal variations of
NDVI in Guizhou Province from 2000 to 2021 were investigated using trend analysis, a coefficient of
variation and the Hurst index. Simultaneously, the response to climate change and human activities
was also explored using partial correlation and residual analysis. It was concluded that, firstly, the
regional average NDVI in Guizhou Province displays a significant improving trend, with a rate of
0.056/10a from 2000 to 2021. NDVI in Guizhou Province displays notable spatial heterogeneity, with
high values mainly concentrated in forests and woody savanna regions in eastern and northwestern
Guizhou and low values distributed in croplands and rapid urban expansion regions in western
and central Guizhou. In addition, the overall spatial distribution of NDVI displays an upward
trend, and the area of extreme and light significant improvement accounts for 81.0% of Guizhou
total area. Secondly, the NDVI variation in Guizhou Province is relatively stable and the area of
lower-to-moderate fluctuation accounts for 90.1% of Guizhou total area; meanwhile, the future trend
of NDVI variation in Guizhou is largely sustainable. Thirdly, the NDVI variations in Guizhou are more
strongly influenced by air temperature than precipitation; meanwhile, compared to climatic factors,
human activities have a stronger impact on vegetation dynamics in Guizhou Province. Fourthly, the
trend, stability, sustainability and relationship with climatic factors and human activities of NDVI
variations are varied among different vegetation types. These results will provide valuable information
for ecosystem restoration and environment protection in Guizhou Province.

Keywords: vegetation dynamics; MODIS NDVI; climatic factors; human activities

1. Introduction

Vegetation is a crucial component of terrestrial ecosystems, and it serves to regulate
energy exchange, the water and carbon cycle, and the ecological balance [1–4]. The vegeta-
tion patterns of a region are sensitive to climate changes and human activities including
ecological projects and urbanization expansion [5,6]. Taking into account the fact that
vegetation dynamics is a long and complicated process, monitoring long-term data with
high resolution is essential to an exploration of the spatial-temporal variations in vegetation
cover. As a scientific and rapid developing monitoring and research tool, satellite remote
sensing techniques have been widely employed in the field of ecological conservation and
climate changes [7,8]. With a long continuous period and good data availability, normalized
difference vegetation index (NDVI), derived from the ratio of difference between red and
near-infrared reflectance to their sum, is applied most frequently for examining vegetation
dynamics and its response to climate changes and environmental variations from a regional
to a global level at seasonal, inter-annual and decadal scales [9–12]. Recently, numerous
studies have been performed on the spatial-temporal changes of vegetation and its response
to climate factors employing the satellite-based NDVI data [13–20]. In general, vegetation
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greenness has shown an increasing trend since the 1980s across China and the globe, but
with spatial heterogeneity [13,21,22]. It is very important to further examine the spatial and
temporal variations of vegetation greenness on a regional scale for ecological protection
and sustainable development [7,8].

Numerous studies have revealed that NDVI displays a close connection to climate
variables on different spatial-temporal scales [23–25]. Temperature and precipitation were
believed to be the two most critical climatic factors on modulating vegetation variations [26].
For instance, vegetation coverage has been positively connected to the increasing temper-
ature, acting as a determining factor in the regulation of vegetation greenness in most
parts of China [17,19,27]. In contrast, the connection between vegetation dynamics and
precipitation is a feature of geospatial heterogeneity. Autumn vegetation greenness showed
a negative connection to precipitation due to cloudy days with precipitation preventing
solar radiation reaching the ground and inhibiting photosynthesis in the Heilongjiang
River Basin [17]. Global surface temperature increased by 0.99 ◦C in 2001–2020 compared
to 1850–1900, and global land average precipitation has probably increased since 1950 [28].
Thus, the responses of vegetation dynamics to climate change on a regional and global
scale have come to be a research hotspot worldwide in recent years.

Beyond climate factors, human activities are emerging as a crucial factor regulating
the spatial-temporal variations in vegetation greenness. Along with economic development
and urban expansion, vegetation in developed regions and their surroundings has been
destroyed to a certain degree [29–31]. Meanwhile, adhering to the strategy of sustainable
development, the Chinese government has invested a large amount of human and financial
resources to improve vegetation greenness and the ecological environment. A series of
huge ecological restoration projects has been proposed, for instance the Natural Forest
Conservation Program and the Grain to Green Project [32,33]. These projects are intended
to protect existing natural vegetation, improving the Earth’s surface greenness, and to
prevent desertification and soil erosion. A more profound understanding of distinguishing
vegetation dynamics responses to the human activities is of great significance for ecological
restoration strategies.

Guizhou Province, situated on the east side of the Yunnan-Guizhou Plateau, China,
features karst rocky desertification and extremely fragile ecological conditions [34,35]. In
recent years, with the support of China’s Great Western Development policy, Guizhou
Province has experienced rapid socio-economic development, and the impacts of economic
activities on ecological conditions have been deepening. Meanwhile, the temperature
variation in Guizhou Province has featured a remarkable warming trend since 1960 and the
warming rates have risen significantly since 1990 [36]. Variations of temperature, precipita-
tion and land coverage will have an impact to some extent on vegetation dynamics. Some
existing studies have explored the spatio-temporal characteristics of vegetation dynamics
in Guizhou Province and southwest China [8,37–39]. Based on the SPOT VEGETATION
data with 1-km spatial resolution, Tian et al. (2017) examined the spatio-temporal features
of vegetation dynamics in karst and non-karst areas during 1999–2015, and found that
the average NDVI of the karst region is lower compared to that in non-karst areas [38].
Wei et al. (2021) also estimated vegetation variations and their connection with climatic
changes and human activities during 1982–2015 in different geographical locations based
on the GIMM NDVI dataset with a horizontal resolution of 8-km [37]. The above-mentioned
studies mainly concerned the difference of vegetation dynamics in different areas based on
the satellite-based NDVI with relatively rough horizontal resolution. There has still not
been enough research on the sustainability of vegetation dynamics and its future trend in
Guizhou Province. At the same time, the responses to climate changes and human activities,
sustainability, and the future trend of the NDVI for different vegetation types in Guizhou
still lack systematic study. Therefore, it is essential to carry out research on long-term
spatio-temporal vegetation dynamics and its responses to climate changes and human
activities in Guizhou Provinces using datasets with higher spatial resolution. Meanwhile,
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we are also trying to establish how the NDVI in different vegetation types varies, as well as
the responses to climate changes and human activities.

Based on the above ideas, this study analyzed more comprehensively the spatial-
temporal variations of NDVI across Guizhou Province, and its responses to climate changes
and human activities based on the MOD13Q1 NDVI with a higher horizontal resolution of
250 m × 250 m, and air temperature and precipitation from 83 meteorological stations in
Guizhou Province from 2000 to 2021. The purposes of this study were to investigate the
spatio-temporal variations, sustainability and the future trends of NDVI across Guizhou
and for different vegetation types, and to quantitatively establish the responses of vegeta-
tion dynamics to climatic changes and human activities.

2. Materials and Methods
2.1. Study Area

Guizhou Province is located in the southwestern part of China (24◦37′–29◦13′ N,
103◦36′–109◦35′ N), and covers an area of 176,167 km2 (Figure 1a). The terrain increases
from 121 m to 2887 m and has a declining slope from the west to the east, with an av-
erage altitude of 1100 m. Guizhou Province has the most concentrated distribution of
karst landscape with abundant carbonate rocks, comprising 64.2% of the total area of the
province [37]. The climate of Guizhou Province is a subtropical humid monsoon climate
area. The annual average temperature is 15 ◦C, and the temperature for the coldest month
(January) is between 3 ◦C and 6 ◦C, whilst that of the hottest month (July) is between 22 ◦C
and 25 ◦C. Annual mean precipitation ranges from 1100–1300 mm and has an increasing
slope from north to south [40]. Precipitation is mainly during April to October, accounting
for nearly 80% of the total annual precipitation. Proper temperature and ample precipitation
are beneficial to plants prospering and diversifying.
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Figure 1. (a) Elevation and location of 83 national benchmark/basic meteorologic stations. The
inlets in (a) show the location of Guizhou province. (b) Spatial distribution of vegetation. ENF,
EBF, DBF, MIF, WDS, SAV, GRA, CRO and OTH represent evergreen needleleaf forest, evergreen
broadleaf forest, deciduous broadleaf forest, broadleaf and needleleaf mixed forest, woody savannas,
savannas, grasslands, croplands, and others (including urban and built-up lands, barren, permanent
wetlands), respectively.

2.2. Datasets

The datasets applied in the present study consist of meteorological site observation
data, NDVI data, data on vegetation types, and altitude data. The meteorological data
comprise monthly temperature and precipitation during 2000–2021 for 83 national bench-
mark/basic meteorologic stations in Guizhou Province, which was obtained from the China
Meteorological Data (Figure 1a). These meteorological data include information about
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station number, latitude, longitude, elevation, year, month, as well as date of each observa-
tion, quality controlling code, and other information. Annual cumulative precipitation and
average temperature is calculated using the sum and averages of daily values during the
corresponding year, respectively. The consistency of the meteorological data was examined,
and we found there was a small amount of missing data. The missing data at a station were
ignored in this study. Furthermore, a bilinear interpolation method was adopted to obtain
data about the annual average temperature and precipitation in the Guizhou region with a
horizontal resolution of 250 m to match NDVI datasets.

The satellite-based NDVI data of Terra-MOD13Q1 V6 was gained from the Level-
1 and Atmosphere Archive & Distribution System Distributed Active Archive Center
(LAADS DAAC, https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13Q1--6,
accessed on 1 July 2022). The NDVI dataset has a 250 m horizontal resolution and a temporal
resolution of 16 days and has been available from 2000 to the present. In order to minimize
the impact of cloud cover, monthly NDVI was calculated based on the method of maximum
value composite (MVC) from original data. The annual NDVI was then calculated as the
average value from January to December for each year from 2000 to 2021. Owing to the fact
that the NDVI data available start in February 18, the annual value of 2000 is calculated as
the average value from February 18 to December in 2000.

Data about vegetation types were gained from the refined MODIS land cover product
in 2020 (MCD12Q1, V6, https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD1
3Q1--6, accessed on 1 July 2022), which has a spatial resolution of 500m and has been re-
interpolated to 250m resolution to match with NDVI dataset using a bilinear interpolation
method. The International Geosphere Biosphere Programme (IGBP) classification scheme
identifies seventeen land cover classes including eleven natural vegetation classes, three
developed and mosaicked land classes, and three non-vegetated land classes. By applying
the IGBP classification scheme, we extracted nine land cover types (Figure 1b): evergreen
needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF),
broadleaf and needleleaf mixed forest (MIF), woody savannas (WDS), savannas (SAV),
grasslands (GRA), croplands (CRO), and others (OTH), respectively. Cropland consists of
croplands and cropland natural vegetation mosaics, and others include urban and built-up
lands, barren, permanent wetlands.

The data processing and maps in this study were generated by NCAR Command
Language (NCL; The NCAR Command Language (Version 6.6.2) [Software]. (2019).
Boulder, CO, USA: UCAR/NCAR/CISL/TDD. https://www.ncl.ucar.edu, accessed on
20 July 2022). The NCL is an interpreted language designed specifically for scientific data
analysis and visualization, and supports those data stored in the format of NetCDF, GRIB,
HDF, HDF-EOS, shapefile, ASCII, and binary. In view of the fact that the MODIS data
(NDVI and land cover) and climate data are stored in HDF and ASCII formats, respectively,
we can directly process and analyze them based on the NCL. Digital elevation data with a
spatial resolution of 30 m were extracted from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM V3), which was
downloaded from the geospatial data cloud platform (http://www.gscloud.cn, accessed on
2 November 2022). A shapefile of Guizhou gained from Resource and Environment Science
and Data Center was employed to extract the Guizhou region (https://www.resdc.cn,
accessed on 20 August 2022). In addition, in need of a special note is the fact that the maps
of the study area and land cover were drawn by ArcGIS 10.5.

2.3. Research Methods
2.3.1. Trend Analysis Method

This study employs the Theil–Sen (TS) [41,42] trend estimation and Mann–Kendall
(M–K) trend significance to examine the long-term trend of NDVI and climate factors. The
TS trend estimation is insensitive to outliers, and it could be more precise for skewed and
heteroskedastic data. It also competes well against non-robust least squares. The TS median
trend is calculated using

https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13Q1--6
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13Q1--6
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TS = median ((Xk − Xi)/(k − i)); 0 < i< k < n (1)

where Xk and Xi indicate the NDVI values of years i and k, respectively. n is the length of
the studying period (2000–2021, 22 years). The NDVI displays an increasing trend when
the TS > 0, and vice versa.

The M–K test is employed to evaluate statistical significance of TS trend. As a non-
parametric test, the M–K method does not require the sample data to follow a certain
distribution and is more resistant to outliers and data errors. Hence, it has been widely
applied to detect a monotonic trend in the area of ecological and climate change. The M–K
significance test is calculated as follows:

Z =


D−1√
Var(D)

(D > 0)

0 (D = 0)
D+1√
Var(D)

(D < 0)

where D = ∑n−1
k=1 ∑n

i=k+1 sgn(Xk − Xi)

sgn(Xk − Xi) =


1 (Xk − Xi > 0)
0 (Xk − Xi = 0)
−1 (Xk − Xi < 0)

(2)

Var(D) =
n(n− 1)(2n + 5)

18
where Xk and Xi represent the NDVI values of years i and k, n is the length of time series
(2000–2021, 22 years), and sgn is the sgn function, respectively. The statistic Z follows a
standard normal distribution, and its value varies between −∞ and +∞. It represents an
increasing trend when the value of Z is greater than 0, and vice versa. A value of |Z|
greater than 1.96 and 2.58 indicates that the trend is significantly exceeding the 0.01 and
0.05 confidence level. In this research, the NDVI trend is a classification based on the
combination of the TS trend and the MK significance test (Table 1).

Table 1. Classification of NDVI trend based on the TS trend and MK test.

Code TS Z NDVI Trend Percentage (%)

1 ≤0 >2.58 Extreme significant decrease 0.5
2 ≤0 >1.96, ≤2.58 Light significant decrease 0.4
3 ≤0 ≤1.96 Insignificant decrease 2.4
4 >0 ≤1.96 Insignificant increase 15.7
5 >0 >1.96, ≤2.58 Light significant increase 12.8
6 >0 >2.58 Extreme significant increase 68.2

2.3.2. Coefficient of Variation

The coefficient of variation (CV) can be employed to detect the spatial fluctuation of
vegetation to mirror the discrete degree for the NDVI [43,44]. The CV can be calculated as
follows [45]:

CV =

√
∑n

1
(
Xi − Xi

)2

Xi
(3)

where Xi represents the NDVI values of years i and n is the length of studying period
(2000–2021, 22 years). Xi indicates the value averaged from 2000 to 2021. A larger CV
indicates greater fluctuation in annual variation of the NDVI, while a smaller CV repre-
sents more robustness in the NDVI variations. To further evaluate the variation degree
in quantitative terms, based on the actual situation in Guizhou Province and with ref-
erence to completed research [38,46], the CV was classified as five levels, namely, lower
fluctuation (CV < 0.086), low fluctuation (0.086 ≤ CV < 0.1081), moderate fluctuation
(0.1081 ≤ CV < 0.1286), high fluctuation (0.1286 ≤ CV < 0.1558), and higher fluctuation
(CV ≥ 0.1558).
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2.3.3. Hurst Index

The Hurst index can be employed to mirror the future evolution trend of NDVI
variations in Guizhou Province. The rescales range (R/S) analysis method has been used
to calculate the Hurst index of annual average NDVI [47]. The basic procedure of the
R/S analysis was referred to existing relevant studies [20,38] and was conducted by the
NCL. It indicates that the future trend is random and inconclusive when the value of the
Hurst index is equal to 0.5 (H = 0.5). Those values of the Hurst index range from 0.5 to 1
indicate that a variable trend of NDVI in future is sustainable and is in line with the past,
meanwhile, a larger Hurst index indicates stronger sustainability. Those which range from
0 to 0.5 (0 < H < 0.5) reveal that the future trend of NDVI is unsustainable and contrary to
that of the past, whilst a smaller Hurst index means weaker sustainability. In accordance
with the combination of the TS trend and the Hurst index, we classified the NDVI variable
trend of the future into nine categories. Details are illustrated in Table 2.

Table 2. Classification for sustainability and trend of the NDVI.

Code TS |Z| Hurst Index Classification Percentage (%)

8 >0 >1.96 >0.75 Strong sustainability
significant increase 49.7

7 >0 >1.96 >0.5 ≤ 0.75 Light sustainability
significant increase 31.2

6 >0 ≤1.96 >0.75 Strong sustainability
insignificant increase 4.6

5 >0 ≤1.96 >0.5 ≤ 0.75 Light sustainability
insignificant increase 11.0

4 <0 ≤1.96 >0.75 Strong sustainability
insignificant decrease 1.1

3 <0 ≤1.96 >0.5 ≤ 0.75 Light sustainability
insignificant decrease 1.3

2 <0 >1.96 >0.75 Strong sustainability
significant decrease 0.6

1 <0 >1.96 >0.5 ≤ 0.75 Light sustainability
significant decrease 0.3

0 ≤0.5 Unsustainability 0.2

2.3.4. Partial Correlation Analysis

NDVI variations are very complex and may be simultaneously influenced by both
temperature and precipitation. Hence, the relationship of the NDVI to temperature and
precipitation was examined by using the partial correlation method. The calculating
Equation is displayed as follows:

Ryx1.x2

Ryx1 − Ryx2 ·Rx1x2√(
1− R2

yx1

)(
1− R2

yx2

) (4)

where y represents the annual average NDVI during 2000–2021, x1 and x2 indicate the
temperature or precipitation. Ryx1.x2 is the partial correlation coefficient between y and x1
when x2 is fixed. Ryx1 , Ryx2 , and Rx1x2 are the linear correlation between y and x1, y and
x2, x1 and x2, respectively. The degree of correlation is divided into six types. Details are
described in Table 3.
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Table 3. Classification of partial correlation coefficients. R and |α| Represents partial correlation
coefficient and confidence level.

Code R |α| Classification

1 >0 ≤0.01 Extreme significant positive correlation
2 >0 ≤0.05 Significant positive correlation
3 >0 >0.05 Insignificant positive correlation
4 <0 >0.05 Insignificant negative correlation
5 <0 ≤0.05 Significant negative correlation
6 <0 ≤0.01 Extreme significant negative correlation

2.3.5. Residual Analysis

The vegetation dynamics are simultaneously impacted by climate changes and human
activities. In this study, the residual analysis method is employed to separate vegetation
variations induced by human activities from variations due to climate changes [20,48]. Firstly,
a multiple regression analysis method was used to calculate the predicted NDVI (NDVIpred)
as follow formula, which could represent the impacts induced by climate changes.

NDVIpred(t) = a ∗ Tobs(t) + b ∗ Pobs(t) + c, 0 < t < n, n = 22

Then, the differences between the observed and predicted NDVI calculated according
to the following formula are the NDVI residuals (NDVIresi) representing the response of
vegetation dynamics to human activities.

NDVIresi = NDVIobs − NDVIpred

A combination of the TS trend and the MK test method was also employed to detect
the change trend of residual NDVI during 2000 to 2021. When the trend of the residuals
is insignificant, NDVI variations are explained by climatic trend. In contrast to the above,
changes in NDVI are explained by human activities [20]. Referring to the method of
Liu et al., 2021 [31] and Gao et al., 2022 [49], the relative contribution rates of climatic trend
and human activities are calculated as follows:

rclim =
NDVIpred

NDVIobs
× 100; rhuman =

NDVIresi
NDVIobs

× 100

rclim and rhuman represent the relative contribution rates of climatic changes and human
activities, respectively. In addition, the specific definition and classification of the relative
contribution rates of climatic changes and human activities are also illustrated in Table 4.

Table 4. Relative contribution rates of climatic changes and human activities to NDVI trend.

Types NDVIpred NDVIresi
Contribution

Climate Changes
Contribution

Human Activities

NDVIobs > 0
>0 >0 NDVIpred

NDVIobs
× 100 NDVIresi

NDVIobs
× 100

>0 <0 100 0
<0 >0 0 100

NDVIobs < 0
<0 <0 NDVIpred

NDVIobs
× 100 NDVIresi

NDVIobs
× 100

<0 >0 100 0
>0 <0 0 100

Note: NDVIobs indicates observed NDVI trend; NDVIpred indicates predicted NDVI trend associated with climate
factors; NDVIresi indicates residual NDVI trend.
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3. Results
3.1. Vegetation Dynamics Trend during 2000–2021
3.1.1. Spatial Pattern

The spatial pattern of the average annual NDVI in Guizhou Province during 2000–2021
is displayed in Figure 2a. The overall vegetation distribution of NDVI in Guizhou Province
featured a prominent spatial heterogeneity, decreasing from the southeast to the northwest.
Higher NDVI values were distributed across Qiandongnan, northwestern Zunyi, eastern
Tongren, Qiannan, and southeastern Qianxinan, due to the larger areas of forests and
woody savannas with more evergreen plants. The planting of seasonal croplands in the
west and rapid urban expansion and frequent human activities in the central urban areas
have a large impact on NDVI variations, hence NDVI across these regions was notably
lower than those over other regions. The NDVI values ranged from 0.07 to 0.79 and were
mainly distributed between 0.5 to 0.8, accounting for about 93% of the total studying area
(Figure 2b). Based on the TS trend and the MK test, the variations in annual mean NDVI
(Figure 2c,d) showed a significant improving trend in the western, northern, and south-
western Guizhou Province, with an annual variable rate of up to 0.05/10a. The vegetation
greenness showed a decreasing trend and was distributed in eastern Guizhou Province
and scattered in the central urban built-up areas. For instance, a notably decreasing trend
occurred across southern Guiyang, including Yunyan-Nanming old town, Guanshanhu,
Huaxi, and Qingzhen district owing to rapid urban expansion. Meanwhile, notable vege-
tation greenness deterioration was also seen across the Huichuan and Bozhou districts in
Zunyi. Therefore, vegetation variations in Guizhou Province displayed regional differences.
In order to quantitatively examine NDVI variations, the vegetation changes in Guizhou
Province during 2000–2021 were classified into six classes (Table 1), and the percentage of
NDVI values for different grades was also counted in Figure 2e. Most vegetated regions
(96.71%) showed an improving trend in Guizhou Province, including both an extremely
and lightly significant improving trend, accounting for 68.18% and 12.83%, respectively.
Only a small part (3.29%) displayed a decreasing trend, with an extremely and lightly
significant decreasing trend accounting for 0.46% and 0.38%, respectively. Meanwhile, the
percentages of the NDVI trend in different vegetation types were counted in Figure 2e.
Over the last 22 years, the NDVI trends have been different for the eight vegetation types,
and greater proportions in terms of improvement in vegetation were detected for savannas
and woody savannas more than for forests, croplands and grasslands. Savannas account
for 78.83% and 8.8% of areas with an extremely and lightly significant increasing trend,
respectively, followed by woody savannas, mixed forests, evergreen broadleaf forests,
evergreen needleleaf forests, and deciduous broadleaf forests. For croplands, 66.67% and
4.12% of areas displayed an extremely and lightly significant improvement, respectively,
and the extremely and lightly significant increasing areas of grasslands were 42.14% and
7.72%. The regions with an extremely and lightly decreasing trend account for 11.81% and
5.78% for grasslands, 5.15% and 5.50% for croplands, respectively, however, the proportion
of areas with a significant decrease for savannas, woody savannas, mixed forests, evergreen
broadleaf forests, evergreen needleleaf forests, and deciduous broadleaf forests are nearly
equal to zero.

3.1.2. Temporal Variation

Figure 3 displays the interannual variation of the regional mean NDVI for the total
studying area and the different vegetation types. Specifically, the regional mean NDVI
displays a significant upward trend (0.056/10a), and it shows prominent interannual
variations with a notable decreasing (improving) trend during 2000, 2005, 2010–2012, 2014,
and 2020 (2001–2004, 2007–2009, 2013, 2015–2017, and 2021), respectively. These large
decreasing years can well match with extreme climatic drought events [50]. The annual
NDVI of different vegetation types ranges from highest to lowest in the following order:
forests, woody savannas, savannas, grasslands, and croplands (Figure 3b). With regard
to the temporal NDVI variations for mixed forests, evergreen broadleaf forests, evergreen
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needleleaf forests, and deciduous broadleaf forests are almost same at annual time scales,
only the sum of the four forests was analyzed here. The NDVI value ranges from 0.55
to 0.76 for forests, was 0.51–0.68 for woody savannas, 0.45–0.61 for savannas, 0.40–0.48
for grasslands and 0.33–0.43 for croplands. The NDVI in different vegetation types also
displayed a significant upward trend with forests (0.058/10a), woody savannas (0.058/10a),
savannas (0.059/10a), grasslands (0.019/10a) and croplands (0.025/10a), respectively. The
NDVI in the eight vegetation types are a strong response to the extreme drought with a
large decreasing trend during 2009–2012.
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3.2. Vegetation Stability and Sustainability
3.2.1. Stability

Referring to the classification method of Xu 2002 and Tian et al., 2017 [38,46], the
vegetation stability was classified into five groups on the basis of the CV values. As shown
in Figure 4, the CV ranged from 0.03 to 0.67. Specifically, areas of lower, low, and moderate
fluctuation in NDVI accounted for 90.2%, whereas areas of high and higher fluctuations
only accounted for 9.8%. These results indicate that the vegetation variations are stable
in most parts of Guizhou Province. The spatial distribution of the CV value showed a
decrease from the west to the east. Specifically, higher, high, and moderate fluctuations
mainly occur across Bijie, Liupanshui, Anshun, Guiyang, northwestern Zunyi, western
Tongren, Qianxinan, and southwestern Qiannan, whereas lower and low fluctuations
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mainly appear across Qiandongnan, southern Tongren, eastern Guiyang, and eastern
Qiannan. The spatial distribution of vegetation stability was quite similar to that of the
NDVI (Figure 2), indicating that high vegetation coverage tends to appear with high
stability. Furthermore, proportions of areas for the stability in different vegetation types
were also examined in Figure 4b. The stability was different among the eight vegetation
types, with greater proportions of lower and low fluctuation appearing in evergreen
needleleaf forests, deciduous broadleaf forests, evergreen broadleaf forests, and mixed
forests compared to those of woody savannas, savannas, grasslands and croplands. The
evergreen needleleaf forest accounted for 48.9%, 40.2%, and 10.7% of areas with lower, low,
and moderate fluctuation, respectively, followed by deciduous broadleaf forests, evergreen
broadleaf forests and mixed forests, respectively. For woody savannas, 32.9%, 40.5%, and
19.1% of areas showed lower, low, and moderate fluctuation, respectively. In addition,
the lower, low, and moderate fluctuation areas of savannas were 16.1%, 36.7%, and 29.2%,
and the proportion of higher and high fluctuation was 3.7% and 14.27%. In contrast, the
proportion of higher and high fluctuation for grasslands and croplands were clearly greater
than other vegetation types. Specifically, the croplands (grasslands) showed 60.8% (25.9%)
and 19.59% (15.4%) higher and high fluctuation, which was consistent with the NDVI trend.
It indicates that the vegetation type with a larger portion of the decreasing trend tends to
be more unstable compared to that with a smaller portion of the decreasing trend.
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3.2.2. Sustainability

The NDVI sustainability in Guizhou Province was also further examined using a
Hurst index method in Figure 5. The spatial distribution of the Hurst index value exhibited
a decrease from the west to east of the area studied, with higher values occurring across
Bijie, Liupanshui, Qianxinan, northwestern Tongren, and southwestern Qiannan. Over
the total region studied, the proportion of higher and high sustainability were 56.0%
and 43.8%, respectively, whereas that of unsustainability was very small. Specifically,
savannas, grasslands, and croplands showed the highest sustainability, followed by woody
savannas and forests. Based on the combination of the TS trend, the MK test and the Hurst
index, the sustainability of NDVI was classified into nine grades (Table 2). Consistent
with the spatial pattern of NDVI trend, the vegetation greenness exhibited a sustainable
significant increasing trend accounting for 80.9%, except for a small proportion (11.0%)
of sustainable significant decrease scattered in central and eastern Guizhou Province. In
addition, the sustainability of the NDVI trend in future is clearly different among the eight
vegetation types. Specifically, the savannas and woody savannas exhibited the largest
sustainable increasing trend, with the proportion of strong and light sustainable and
significant increasing trends being 64.7%, 48.2% and 23.0%, 33.2%, respectively. Among
the four types of forests, mixed forests exhibited the greatest proportion of strong and
light sustainable significant increasing trends with 35.7% and 39.2%, followed by evergreen
broadleaf forests (34.7%, 35.2%), evergreen needleleaf forests (32.3%, 34.2%) and deciduous
broadleaf forests (28.7%, 38.0%), respectively. The proportion of strong and light sustainable
significant increase for croplands and grasslands was 36.0%, 52.9% and 13.8%, 52.9%;
meanwhile, the strong and light sustainable significant decrease was 4.8%, 12.7%, and 5.8%,
4.8%, respectively.

Hence, according to the results above, vegetation greenness for the four types of
forests showed the largest stability, followed by woody savannas and savannas. In contrast,
vegetation greenness of croplands showed the weakest stability, followed by grasslands.
In addition, vegetation greenness for woody savannas and savannas exhibited the largest
sustainable significant increasing trend, followed by the forests and croplands, and the
grasslands showed the smallest sustainable significant increasing trend. Meanwhile, the
grasslands exhibited a larger sustainable significant decreasing trend, followed by crop-
lands, compared to the other vegetation types with a small proportion of decreasing trends.

3.3. Climatic Changes
3.3.1. Spatial-Temporal Variations of Climatic Factors

Figure 6 shows the spatio-temporal variations of air temperature and precipitation.
The regional annual mean temperature ranged from 15.1 ◦C (observed in 2012) and 16.4 ◦C
(in 2016) during 2000 to 2021 in Guizhou Province, with an average value of 15.9 ◦C and
standard deviation of 0.37 ◦C. The regional mean temperature exhibited a light increasing
trend, with a change rate of 0.18 ◦C/10a, indicating a light warming trend in Guizhou
Province during 2000 to 2021. Though the warming trend of the regional mean temper-
ature in Guizhou Province is not significant, the spatial distribution showed prominent
heterogeneity, with a significant increase over Weining, Shuicheng, Wangmo, Huishui, Libo,
Qiandongnan, Shiqian, Songtao, Chishui and Xishui. Weak cooling trend appeared over
Panxian, northern Tongzi, Deijiang and Duyun. The proportion of areas with a positive
and negative trend accounted 60% and 40%, respectively, indicating that the overall tem-
perature in Guizhou Province is characterized by a warming trend, which is weaker than
warming both in the whole of China and globally. The regional annual mean precipitation
ranged from 856.6 mm (observed in 2011) to 1449.0 mm (in 2020), with an average value of
1193.0 mm and a standard deviation of 144.4 mm. It exhibited an insignificant increasing
trend in Guizhou Province during 2000–2021, with a change rate of 69.0 mm/10a. The
lowest precipitation is 856.6 mm took place in 2011, which is well matched with the lowest
NDVI value, which occurred in 2011 and 2012, indicating that the drought which took place
in 2011 plays an important role in the NDVI variation in Guizhou Province. Although the
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regional mean of precipitation manifested a weak increasing trend, the spatial distribution
showed prominent region features, for instance, significant increasing trend was seen over
central Qiannan, western Qiandongnan, and eastern Tongren, and a weak decreasing trend
appears across southern Zunyi and Panxian. Precipitation increased as a whole, with 59.2%
of areas exhibiting an uptrend and 40.8% showing a downtrend, respectively.
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3.3.2. Responses to Climatic Factors

The partial correlation coefficients between annual mean NDVI and temperature and
precipitation were examined to detect the connection of vegetation dynamics and climate
changes in Figure 7. The correlation was divided into six grades based on the combination
of correlation coefficient and significance (Table 3). A definite positive correlation exists
between the annual mean NDVI and temperature in most parts of the study areas, except
for some negative correlations which appear across Panxian, northern Tongzi, Yanjiang,
and which are scattered across some major urban areas. The areas with positive correlation
coefficients accounted for 95.5%, with extreme significant, significant, and insignificant
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positive correlation accounting for 36.3%, 24.4%, and 34.6%, respectively, whereas the nega-
tive correlation only accounted for 4.7% of vegetation areas (Figure 7a–c). The connection
between annual mean NDVI and temperature displayed a similar, notable distribution
among different vegetation types. The annual mean NDVI for savannas exhibited the
greatest proportion of significant positive correlations with temperature (68.5%), followed
by evergreen broadleaf forests (66.5%), deciduous broadleaf forests (64.7%), mixed forests
(63.1%), evergreen needleleaf forests (57.4%), woody savannas (56.8%), croplands (55.7%)
and grasslands (39.6%), successively. In addition, the annual NDVI for grasslands dis-
played the greatest proportion (21%) of negative connections to temperature among the
eight vegetation types.
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Figure 6. Air temperature and precipitation variations in Guizhou from 2000 to 2021. Linear trend (a);
spatial distribution of trend (coloring) and significance (dotted region) (b); statistical results of spatial
trend (c). (d–f) is the same as (a–c), respectively, but for precipitation. The unit of the trend is
◦C/10 years for air temperature, and mm/10 years for precipitation. The dotted region in (b,e)
represents the trend significant above the 0.05 confidence level. (c,f) shares a common legend.
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Figure 7. Partial correlation between air temperature and NDVI in Guizhou from 2000 to 2021.
(a) spatial distribution; (b) significance; (c) statistics results of spatial correlation for Guizhou regional
mean and different vegetation types. (d–f) is the same as (a–c), but for precipitation. Numbers 1
to 6 in (b,c) denote extremely significant positive correlation (R > 0, p ≤ 0.01), significant positive
correlation (R > 0, p ≤ 0.05), insignificant positive correlation (R > 0, p > 0.05), insignificant negative
correlation (R < 0, p > 0.05), significant negative correlation (R < 0, p ≤ 0.05), extreme significant
negative correlation (R < 0, p ≤ 0.01), correspondingly. The symbols of “ALL” to “CRO” in (c,f) are
the same as Figure 1b. The legend of (c,e,f) are the same as that of (b).
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The correlation between annual NDVI and precipitation showed notable spatial het-
erogeneity, with a positive correlation existing across Bijie, Shuicheng, Renhuai, Chishui,
Daozhen, Kaiyang, central Qiannan, and negative correlation occurring over southeast-
ern Zunyi, northeastern Tongren, southeastern Qiandongnan and Qiannan, southwestern
Qianxinan, and central and southern Guiyang, respectively. The areas with positive correla-
tion coefficients accounted for 71.4%, with extreme significant, significant, and insignificant
positive correlation accounting for 8.0%, 10.0%, and 53.8%. The significant positive cor-
relation was mainly distributed across Bijie, Renhuai, Chishui, Wuchuan, Kaiyang, and
central Qiannan. However, the negative correlation between annual NDVI and precipi-
tation accounted for 28.6%, and was mainly distributed across southern Zunyi, Yanjiang,
southeastern Qiandongnan and Qiannan, southwestern Qianxinan, and parts of Guiyang.
Specifically, significant negative correlation only accounted for 1.9%, and was mainly dis-
tributed across Yinping, Liping, and Libo. The connection between annual mean NDVI
and precipitation exhibited notable differences among different vegetation types. The
annual mean NDVI for savannas exhibited the greatest proportion of significant positive
correlations (36.7%), followed by croplands (25.8%), grasslands (16.0%), woody savannas
and evergreen broad forests (11.6%), mixed forests (9.8%), deciduous broadleaf forests
(9.4%) and evergreen needleleaf forests (3.3%), successively. In addition, the annual NDVI
for grasslands displayed a greater proportion (4.4%) of significant negative connections
to precipitation. In general, spatial distribution for the response of annual mean NDVI in
Guizhou Provinces to climatic factors exhibited notable heterogeneity, and NDVI variations
were more influenced by temperature than precipitation.

3.4. Human Activities

The TS and MK analysis based on the temporal NDVI residual index, which was cal-
culated as the regional average NDVI residual during 2000–2021 across Guizhou Province,
exhibited an extreme significant increasing trend with an annual change rate of 0.035/10a
(R2 = 0.67, p < 0.001; Figure 8a). The impact of human activities underwent a significant
increase during 2000–2010 with an annual change rate of 0.05/10a (R2 = 0.55, p < 0.01) and
an insignificant slow rising tendency during 2011–2021 with a change rate of 0.028/10a
(R2 = 0.24, p = 0.13). In general, human activities in the last 22 years were favorable for
improving vegetation greenness in Guizhou Province. The spatial distribution of NDVI
residual exhibited an increasing trend across most parts of Guizhou Province, except for a
decreasing trend scattered across Qiandongnan, southern Guiyang, southern Zunyi, South-
ern Bijie, and northern Zunyi. Specifically, extreme significant and significant increasing
trends, accounting for 61.8%, were distributed across Bijie, Panxian, Qianxinan, southern
Anshun, northwestern Guiyang, northern Zunyi, and northwestern Tongren; meanwhile,
extreme significant and significant decreasing trends, only accounting for 0.72%, were scat-
tered across the central urban area. The impacts of human activities to the NDVI variations
varies from different vegetation types. For instance, the NDVI residual extracted based
on savannas exhibited the largest significant increasing trend, accounting for 68.7%, suc-
cessively, followed by woody savannas (63.6%), mixed forests (61.3%), croplands (57.7%),
evergreen needleleaf forests and evergreen broadleaf forests (45.0%), deciduous broadleaf
forests (39.7%) and grasslands (36.5%). In addition, the NDVI residual of grasslands and
croplands also exhibited some extreme significant and significant decreasing trends, ac-
counting for 7.1%, 4.8%, and 7.2%, 8.3%, respectively, whereas the proportions of significant
decreasing trends for other vegetation types were nearly equal to zero.
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3.5. Evaluate Contribution of Climatic Factors and Human Activities

The above NDVI residual analysis reveals that human activities might lead to vegeta-
tion greenness improvement across most regions of the studying regions. In order to further
evaluate the relative contribution rates of climatic factors and human activities in quanti-
tative terms, referring to the methods of Liu et al., 2021 [31] and Gao et al., 2022 [49], the
relative contribution rates is divided into six situations (Table 4). The relative contribution
rates of climatic changes and human activities were calculated following the equation of
NDVIpred
NDVIobs

× 100, and NDVIresi
NDVIobs

× 100, respectively. When the observed NDVI trend, predicted
NDVI trend, and residual NDVI trend are greater than zero, this means that the contribution
of climatic changes and human activities promote vegetation greeness improvement. If the
observed and predicted NDVI trend are greater than zero but the NDVI residual trend is less
than zero, the contribution of climatic factors to vegetation greeness improvement is 100%
but that of human activities is zero, respectively. When the observed and residual NDVI
trend are greater than zero but the predicted NDVI trend less than zero, the contribution
of human activities to vegetation greeness is 100% but that of climatic changes is zero. In
addition, when the observed NDVI trend is less than zero, the relative contribution of
climatic factors and human activities to a decrease in vegetation greenness is similar to
those greater than zero (details seen in Table 4). Figure 9 displays spatial distribution for
relative contribution rates of climatic factors and human activities to vegetation greenness
improvement and decrease, respectively. The climatic factors have a relatively stronger
contribution (greater 60%) to vegetation greenness improvement across southern Guiyang,
Bijie, Nayong, Zhijin, Xishui, Yuqing, Shiqian, Huangping, Shibin, Liping, Jinping, Jianhe
and Taijiang. The stronger contribution of human activities (greater than 60%) to vegetation
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greenness improvement is mainly distributed across Hezhang county, Panxian, Liuzhi,
Qianxinan, southern Anshun, Luodian, Pingtang, Duyun, northern Zunyi, northwestern
Tongren, Songtao, Cenggong and Congjiang. The remaining areas with relative contribution
rates of less than 60%, such as Weining, Shuicheng, Renhuai, Huishui, Daozhen, Songtao and
northern Qiandongnan, indicate that climatic factors and human activities simultaneously
promote vegetation greenness improvement. The decreasing parts of vegetation greenness
scattered over Qiandongnan, southern Zunyi, Bijie, and Qianxinan, are mainly caused by
human activities. Moreover, climatic factors result in vegetation greenness decreasing in the
old town of Guiyang city and in some scattered places.
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Figure 9. Contribution to NDVI increasing trend for climate factors (a) and human activities (b).
(c,d) is the same as (a,b), but for the NDVI decreasing trend. Definition of the contribution is described
in Table 4.

Figure 10 exhibits the statistical percentage for the relative contribution rates of climatic
factors and human activities to vegetation greenness in different vegetation types. Overall,
the vegetation variation trend is mainly affected by human activities, with the proportion
of strong contribution (greater than 60%) to vegetation greenness improvement and a
decrease accounting for 57.2% and 80.1%, respectively. However, the strong contribution
(greater than 60%) of climatic factors to the increase and decrease only accounts for 15.3%
and 10.2%, respectively. In addition, the relative contribution rates of climatic factors and
human activities shows a notable difference among the eight vegetation types. Specifically,
for the vegetation greenness improving trend, the proportion of strong contribution (>60%)
of human activities ranges from highest to lowest, in the following order: woody savannas
(61.8%), evergreen needleleaf forests (58.2%), savannas and mixed forests (52.0%), evergreen
broadleaf forests and grassland (49.0%), deciduous broadleaf forests (45.0%) and croplands
(43.0%). For the vegetation greenness decreasing trend, the largest proportion of strong
contribution (>60%) of human activities is observed by croplands (96.6%), followed by
mixed forests (93.1%), evergreen broadleaf forests (90.5%), deciduous broadleaf forests
(90.1%), evergreen needleleaf forests and woody savannas (80.0%), savannas (77.8%) and
grasslands (75.4%). In contrast, the proportion for strong contribution (>60%) of climatic
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factors is obviously smaller compared to those of human activities, ranging from 9.3%
(croplands) to 25.7% (deciduous broadleaf forests) for improving trends, and from 4.8%
(mixed forests) to 14.2% (evergreen needleleaf forests) for decreasing trends, respectively.
In general, compared to climatic factors, human activities have had a stronger influence on
vegetation dynamics in Guizhou Province during the last 22 years.
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4. Discussion

The interannual variation of annual mean NDVI for different vegetation types in
Guizhou Province experienced a notable increasing trend during 2000–2021 (Figures 2 and 3)
based on the MODIS13Q1 NDVI with a spatial resolution of 250 m × 250 m. Satellite re-
mote sensing is an efficient way of detecting vegetation dynamics, but its insensitivity
in well-vegetated areas may sometimes lead to some uncertain results [51,52]. The spa-
tiotemporal patterns of NDVI variations in Guizhou Province are consistent with several
previous studies based on different satellite remote sensing datasets and periods of study.
For instance, the results based on SPOT VGT data with a 1 km × 1 km horizontal resolu-
tion during 1999–2015 [38], GIMMS NDVI data with an 8 km × 8 km resolution during
1982–2015 [37], and MOD13A1 NDVI data with a 1 km × 1 km resolution during
2001–2018 [31] also display an uptrend of NDVI variation in Guizhou Province. This
phenomenon is inseparable from the combined effect of climatic factors and human activ-
ities. Since the late 1990s, a series of ecological restoration projects were lauched by the
Chinese central government, which may have a large impact on vegetation dynamics in
Guizhou Province [53]. Undoubtedly, land use and land cover change play a crucial role
in vegetation dynamics. We also examined the land cover variations from 2001 to 2020 in
Guizhou Province (Figure 11). Results indicate that the area of evergreen needleleaf forests,
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evergreen broadleaf forests, deciduous broafleaf forests and savannas showed a signifi-
cant upward trend with a rate of 0.04%/10a, 0.91%/10a, 1.62%/10a and 2.54%/10a, and
woody savannas, savannas, and grasslands with a notable decreasing trend of −1.61%/10a,
−3.43%/10a, and−0.64%/10a, whereas the cropland showed an insignificant upward trend
with 0.46%/10a, respectively. All of the vegetation cover types except for the croplands
exceed the 0.001 confidence level. In addition, from 2001 to 2020, the four types of forests
increased by 0.05%, 1.52%, 2.92%, and 5.34%, and the two types of savannas decreased by
−2.66%, and −9.69%, respectively. The grasslands decreased by −1.17% and the croplands
increased by 3.50%. Therefore, future work should focus on evaluating the effects of ecologi-
cal restoration projects and land use and land cover change on the vegetation dynamics in
Guizhou Province.
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In terms of the climatic factors, the annual mean temperature and precipitation in
Guizhou Province have increased in the past 22 years (Figure 6). Temperature was the main
controlling climatic factor influencing vegetation dynamics in Guizhou Province when
compared to precipitation. An increase in temperature could benefit vegetation growth
through promoting photosynthesis, promoting absorption of organic matter by vegetation,
and extending the growing period of vegetation [54–56]. An increase in weak precipitation
in Bijie significantly promoted vegetation growth due to water depletion and excessive
sunshine there. In addition, high precipitation over Qiandongnan and eastern Tongren
is negatively correlated with the NDVI variations, which can be explained by the fact
that higher precipitation generally enhances cloudy weather, decreasing downward solar
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radiation and thereby inhibiting photosynthesis and vegetation growth. However, this
study mainly focuses on examining the contemporaneous connection between climatic
factors and vegetation dynamics. Future studies need to be devoted to exploring the lag
response of vegetation dynamics and phenology to climatic factors.

5. Conclusions

Based on the MOD13Q1 NDVI and meteorological datasets with a relatively high
spatial resolution, this study examined the vegetation variations and its response to climatic
factors and human activities in Guizhou Province during 2000–2021 based on methods of
the maximum value composite, TS trend estimation, MK significant test, the coefficient of
variation, the Hurst index, partial correlation analysis and residual analysis. The temporal
change of NDVI displayed a significant increasing trend in most parts of the study region
and for different vegetation types at different rates. In terms of spatial distribution, the
average NDVI during 2000–2021 increased from the northwest to the southeast. The NDVI
showed a significant improving trend in western, northern, and southwestern Guizhou
Province, and a decreasing trend in eastern Guizhou Province and some central urban
built-up areas. The NDVI trends are different for the eight vegetation types, with greater
proportions of improving trends for savannas and woody savannas compared to those of
forests, croplands and grasslands. The vegetation variations are very stable and sustainable
in most parts of Guizhou Province. Vegetation greenness in forests showed the largest
stability, followed by woody savannas and savannas. The croplands showed the weakest
stability, followed by grasslands. Woody savannas and savannas exhibited the largest
sustainable significant increasing trend, followed by forests and croplands, and grasslands
show the smallest sustainable significant increasing trend. Meanwhile, grasslands exhibited
a larger sustainable significant decreasing trend, followed by croplands. Furthermore,
a partial correlation analysis of the climatic factors with NDVI variation showed that
vegetation growth is strongly influenced by temperature rather than precipitation in most
parts of the study areas. This study also evaluated the relative contribution rates of climatic
factors and human activities. In general, compared to climatic factors, human activities
have exerted a stronger influence on vegetation dynamics in Guizhou Province during the
last 22 years.
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