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Abstract: Reconstruction of relative humidity changes in the upper Tarim River using carbon isotopic
tree-ring chronology bridges the gap in historical observations on the Tarim River Basin in Arid
Central Asia. Populus euphratica Olivier (P. euphratica), growing in the Tarim River Basin of Xinjiang, is
an excellent record of past climate change. Based on precise dating, we analysed alpha-cellulose stable
carbon isotopes in four cores of P. euphratica taken from the Alaer region of the upper Tarim River
Basin. The four stable carbon isotope series records were corrected by the “pin method” and then
combined into a carbon isotopic discrimination (∆13C) series by the “numerical mix method”. The
discrimination (∆13C) series were clearly correlated with the mean relative humidity (RHAS) in April–
September of the growing season (n = 60, r = −0.78, p < 0.001), and according to the climate response
analysis, we designed a simple regression equation to reconstruct the mean relative humidity (RHAS)
in April–September from 1824 to 2018 on the Alaer region. The reconstructed sequence showed
mainly dry periods in the last 195 years, 1857–1866 and 1899–1907, while primarily wet periods from
1985 to 2016. Due to increased global warming and human activities, the climate shifted from “warm–
dry” to “warm–wet” in the mid-to-late 1980s, when there were signs of a shift from “warm–wet” to
“warm–dry” in the 2010s, with an increasing trend towards aridity. The RHAS series of Alaer compares
well to other hydroclimate series’ surrounding the research area, and the spatial correlation analysis
indicates that the reconstructed series has good regional representativeness. On an interdecadal
scale, the revamped RHAS series is positively correlated with the Atlantic Multidecadal Oscillation
(AMO) and negatively correlated with the North Atlantic Oscillation (NAO), reflecting the influence
of westerly circulation on regional wet and dry variability. At the same time, the RHAS may also be
influenced by The Pacific Decadal Oscillation (PDO).

Keywords: tree-ring δ13C; relative humidity; Populus euphratica; westerly circulation; Tarim River Basin

1. Introduction

Arid Central Asia is located in the innermost central part of Eurasia and consists
of Central Asian countries and Northwest China. With its complex geography, sparse

Forests 2023, 14, 682. https://doi.org/10.3390/f14040682 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14040682
https://doi.org/10.3390/f14040682
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-7763-8115
https://orcid.org/0000-0003-2964-6553
https://orcid.org/0000-0002-4713-9320
https://doi.org/10.3390/f14040682
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14040682?type=check_update&version=2


Forests 2023, 14, 682 2 of 16

vegetation, and low soil moisture content, the region is a crucial component of the global
environmental system and significantly impacts regional and international climate and
environment. Its climate, ecology, and environmental issues have been a scientific hotspot
of concern for scientists and governments at home and abroad. The strength and trajectory
of the westerly circulation are probably the main controlling factors for moisture in the arid
regions of Central Asia [1–3]. In the last hundred years, Arid Central Asia has experienced
a distinct heating trend and the most significant dry warming in the monsoon margins,
with geographical variability in climate change [4]. Climate change affects the global
and regional water cycle. It significantly impacts each region’s wet and dry conditions,
with significant social, economic, and environmental implications, hence the widespread
interest in damp and dry climate conditions [5]. With real dating, high resolution, large
replicates, and repeatability [6,7], tree-ring chronology approaches have become widely
used in different regions worldwide and have yielded remarkable results. Many researchers
have used tree-ring chronology to explore Arid Central Asia’s historical hydrology and
climate change. In Arid Central Asia, tree chronology researchers have reconstructed
precipitation [8–10], PDSI [11,12], SPEI [13,14], relative humidity [15], vegetation index [16],
temperature [17], etc. All of those contributions are crucial in helping to understand past
climate change and predict future trends.

The Tarim River Basin is well known as part of the Arid Zone of Central Asia, a
highly arid area in China. [18]. Its climate is synchronized on a regular basis with the
overall Xinjiang and global climate variations. However, it also has its patterns [19].
Populus euphratica, an endangered species, grows on diving or river irrigation in the Tarim
River area of Xinjiang, where it is resistant against wind and sand and maintains a fragile
ecological balance [20]. Its maximum age of up to 300 years makes it a valuable material for
researching past climate and environmental change. Several studies have been undertaken
in this area in the last few years, showing that tree-ring records can broadly reflect ecological
and environmental change information such as runoff [21], groundwater [22,23], water
supply response [24–26], water use efficiency [27], and P. euphratica status [28]. The impact
of ecological water transfer projects is weaker at the upstream end of the Tarim River Basin
than at the downstream end of the Tarim River Basin [29]. P. euphratica growth relies mainly
on groundwater, and tree-ring width is not sensitive to temperature and precipitation, so
alternative tree-ring parameters need to be considered for past climate change studies.
Tree-ring stable isotopes, an essential branch of tree chronology, have gained merit with
advances in analytical techniques and clarification of the mechanisms of climate influence
on isotope fractionation [30–32]. Dendrocyclic stable carbon isotopes (δ13C) were used
to reconstruct past temperatures [33–35], precipitation [36–38], relative humidity [39,40],
runoff [41], and intrinsic water-use efficiency [42–44]. Stable isotope climate studies of
P. euphratica in the Tarim River Basin can fill the gap of proxy information on tree-ring
climate in the desert and plain areas.

The relative humidity is amongst the most critical elements of water vapour circulation
and energy balance in the atmosphere. The study of changes in relative humidity is essential
for a more transparent comprehension of past climate change. However, the instrumental
climate record is minimal; before the 1950s, longer-term climate change studies were
limited in the Tarim River Area. To establish a more thorough insight into the climatic
characteristics of the Tarim River basin, we have chosen P. euphratica, the most dominant
broad-leaved tree species in the Tarim River Basin area, as our subject of study. Correlations
among tree-ring ∆13C chronology and climate were established based on precise dating
following dendrochronological methodologies. The growing season relative humidity in
the Alaer region over the past 195 years was reconstructed from April to September. In
this investigation, the purpose was to develop an improved comprehension of the patterns
and mechanisms driving changes in relative humidity variation in the Aaler region. The
findings of this work improved time-scale data on the relative humidity in the Tarim
River Basin and provided data to support regional climate change with theoretical and
applied implications.
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2. Materials and Methods
2.1. Study Area and Sampling Site

The sampling site is located at the northern edge of the Taklamakan Desert, in the
upper reaches of the Tarim River on the Alaer region (80◦30′−81◦58′E; 40◦22′−40◦57′ N) at
an altitude of 1012 m (Figure 1). The Tarim River is the primary irrigation supply in this
region, and glaciers and snow mainly recharge its water. The vegetation is dominated by
scrub, meadows, and desert riparian forests, with P. euphratica as the main tree. The soil is
mainly brown desert soil and saline soil. Samples were taken from 25 live trees based on
the International Tree Ring Data Bank sampling criteria. Two cores were taken from each
tree in two directions by using a 5-mm incremental borer. This set is named ALE.
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Figure 1. Map of the sampling (Alaer, ALE) site and nearby meteorological station in Alaer, Xinjiang, China.

2.2. Tree-Ring Stable Carbon Isotopes Chronology Development

The LINTAB measuring table was used to determine the width of each annual ring,
and the COFFCHA program for qualitative control of chronology was used [45]. We
eliminated individual samples with too many singularities and poor correlation with
the primary sequence. We concluded by using the ARSTAN program [46] to produce a
chronology of tree-ring widths. After comparing all cores, four cores, named ALE-03A
(1787–2018), ALE-15A (1791–2018), ALE-26B (1795–2018), and ALE-54B (1787–2018), with
comparatively well-defined tree-ring boundaries were selected for research. In the absence
of carbon pollution, a thin, sharp knife was used to separate each annual ring under the
microscope. To obviate the “juvenile trend”, the first 20 years were excluded from the
isotopic data in further analyses [47]. A modified Jayme–Wise method was applied to
extract alpha-cellulose [31,48]. Specific procedures are detailed below: (1) Samples were
each exposed three times to a mixture of toluene and ethanol (2:1) in a constant temperature
water bath at 60 ◦C for 1 h. (2) The sample was exposed to a mixture of solutions (NaClO2
and acetic acid) in a constant temperature water bath at 80 ◦C for 1 h on three occasions.
(3) The 17.5% NaOH solution was added in three portions, and the reaction samples were
put in a constant temperature water bath at a temperature of 80 ◦C for 45 min. Following
three iterations, the distilled water cleaning procedure was performed up to the point
where the solution achieved a neutral pH. The alpha-cellulose was then homogenized and
freeze-dried.

About 110–140 µg of homogenized alpha-cellulose was packaged into a tin capsule to
be measured. The δ13C values were determined with a Delta V Advantage isotope ratio
mass spectrometer connected to a FLASH 2000 Elemental Analyser (EA). Carbon isotope



Forests 2023, 14, 682 4 of 16

ratios were presented as deviations of δ13C relative to Pee Dee Belemnite (PDB) [49]. One
standard cellulose sample (IAEA CH3) was interpolated in every eight samples. The δ13C
values of tree rings were obtained as shown: δ13C = (Rsample/Rstandard – 1) × 1000‰ (R
represents the 13C/12C ratio, and Rsample and Rstandard are the R values of the sample and
the standard sample, respectively). The analysis of the carbon isotope measurements has
an accuracy of less than ±0.2‰.

2.3. Meteorological Data and Statistical Methods

The meteorological station, approximately 50 km from the sampling site, is the Alaer
Station (40◦33′ N, 81◦16′ N) at an altitude of 1012 m. The annual total precipitation at the
Alaer Station during 1959–2018 (Figure 2) was 505.67 mm, with rainfall mainly concentrated
in the months of June to August. The average annual temperature was 10.79 ◦C, with the
hottest month being July (24.80 ◦C) and the coldest month being January (−8.28 ◦C). The
annual mean relative humidity was 53.29%. The driest month was April, with a relative
humidity of 36.48%, while the wettest month was December, with a relative humidity of
69.04%. The above meteorological data was collected through the China Meteorological
Service Center (http://data.cma.cn/, accessed on 9 April 2021). The Palmer drought
severity index (PDSI) grid point data with 0.5◦ × 0.5◦ (38◦45′–41◦15′ N, 81◦15′–83◦45′ E)
was retrieved with the KNMI Climate Explorer (https://climexp.knmi.nl/, accessed on
9 April 2021).
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Figure 2. Distribution of temperature, precipitation, and relative humidity as monthly averages for
meteorological stations in Alaer from 1959 to 2018.

The Effective Number of Degree of Freedom (EDOF) of the sample is calculated by
the following equation [50] EDOF = N ∗ (1 − r1 ∗ r2)/(1 + r1 ∗ r2), where N represents
the length of the time series, and r1 and r2 are lag-one autocorrelation coefficients of each
independent series. The mean inter-series correlations (Rbar) and the expressed population
signal (EPS) were found for 30-year windows based on a 15-year lag from 1787 to2018 [51].
Generally, an EPS greater than or equal to 0.80 produces a sufficiently strong signal for
the selected sample core [52]. The Pearson coefficient of correlation (r) was used to study
the relationship between tree-ring δ13C series and, for the study area, various climatic
factors (precipitation, relative humidity, temperature, and PDSI). The δ13C “pin” correction
method for adjusting tree-ring δ13C series to changes in atmospheric CO2 values following

http://data.cma.cn/
https://climexp.knmi.nl/
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industrialization takes into account both the Seuss effect and the physiological response
of trees to rising atmospheric CO2 concentrations [53]. In addition, the “pin” correction
was done using Matlab code [53]. We referred to the pin-corrected chronology as δ13Cpin.
After correcting the tree-ring δ13C series of each core, we obtained four tree-ring δ13Cpin

series and finally synthesised an entire tree-ring ∆13C series using the “numerical mix
method” [40]. The reliability of the reconstruction is verified using bootstrap and bootstrap
methods [54]. The statistical parameters used in the validation work were the correlation
coefficient (r), explained variance (R2), explained variance after adjusting for degrees of
freedom (R2

adj), estimated standard error (SE), F-value, p-value and Durbin–Watson value.
Further, the reconstructed series were benchmarked against other paleoclimate series’
surrounding the area under study. A spatial correlation study between reconstructions and
sea surface temperatures (HadSST 4.0.0.0 dataset) was conducted with the KNMI Climate
Explorer (https://climexp.knmi.nl/, accessed on 9 April 2021). Finally, we calculated
the correlations between our reconstructions and the Atlantic Multiperiod Oscillation
(AMO), the North Atlantic Oscillation (NAO) and the Pacific Decadal Oscillation (PDO)
(https://climexp.knmi.nl/, accessed on 9 April 2021). To highlight changes on decadal time
scales and longer-term fluctuations, a 10-year low-pass filter or 11-year moving average
was used in the data analysis.

3. Results

3.1. Characteristics of Tree-Ring δ13C Time Series

Table 1 displays the statistical characteristics of the tree-ring δ13Cpin series and ∆13C
series in Alaer. The correlation coefficients were 0.86, 0.78, 0.84, and 0.83, respectively,
between the individual δ13Cpin series and the composite series (ALE_com). The individual
δ13Cpin series are remarkably well correlated with each other (Figure 3a and Table 1). The
combined series may represent the ∆13C variation in local tree rings. The average value
of the mixed series is −24.60‰, the minimum value is −26.75‰, the maximum value is
−22.83‰ and the standard deviation is 0.64‰. Statistical characteristics for all series are
given in Table 2. The values of EPS larger than 0.80–0.85 generally capture the conventional
signal of the region [51]. Rbar (0.43–0.77) and EPS (0.75–0.93) are presented in Figure 3c.
We found that the periods for which the ∆13C chronology is most reliable are 1824 to 2018.

Table 1. Correlation statistics between the individual tree-ring δ13Cpin series of Alaer (r, N/EDOF).

ALE-03A ALE-15A ALE-26B ALE-54B

ALE-15A 0.55, 247/217
ALE-26B 0.67, 243/214 0.56, 244/178
ALE-54B 0.61, 249/245 0.55, 246/238 0.53, 242/192
ALE_com 0.86, 251/228 0.78, 248/196 0.84, 244/194 0.83, 250/244

Note: All p < 0.001.

3.2. Climatic Responses

Figure 4 shows that the tree-ring ∆13C series is correlated positively to temperature
and negatively to precipitation, PDSI, and mean relative humidity, with an insignificant cor-
relation to precipitation. The composite tree-ring ∆13C series correlated highest (r = −0.80,
p < 0.0001) with the mean relative humidity from March to October from 1959 to 2018.
According to previous studies, the growing season of P. euphratica in the Alaer region, Tarim
River Basin, is from April to September [55], and the mean relative humidity from April to
September of the growing season is at r = −0.78 (p < 0.001).

https://climexp.knmi.nl/
https://climexp.knmi.nl/
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We carried out a partial correlation analysis among tree-ring ∆13C and observed
climatic factors. The data indicate that (Table 3) the correlation coefficients for RHAS
and tree-ring ∆13C remained the highest when the April–September mean temperature
and precipitation were fixed as variables, respectively. After RHAS was selected, the
correlation of tree-ring ∆13C with mean April–September temperature and precipitation in
the preceding period was not high. These results suggest that in the growing season, RHAS
is predominant in controlling tree-ring δ13C differentiation in the Alaer region.

Table 3. Partial correlation analysis between the tree-ring ∆13C chronology in Alaer and climatic
factors from April to September (1959–2018).

Controlled Variable ∆13C vs. Mean TAS ∆13C vs. Mean PAS ∆13C vs. Mean RHAS

mean TAS 0.15 0.76 *
PAS −0.09 0.77 *

RHAS 0.18 −0.25
Note. Mean TAS and mean RHAS are the mean April–September temperature and RH, respectively. PAS is the
total precipitation from April to September. * Significant at the 99% confidence level.

3.3. Growing Season Relative Humidity Reconstruction and Verification

According to the above analyses, RHAS on the Alaer region was reconstructed from
the transfer functions below:

RHAS = −58.6908 − 4.2131 × ∆13C (1)

(n = 60, r = −0.78, R2 = 0.6, R2
adj = 0.6, F = 86.48, p < 0.0001, D/W = 1.34)

where r is the correlation coefficient between RHAS and tree-ring ∆13C, R2 is the
explained variance, and R2

adj is the explained variance after adjusting for the degrees of
freedom. The D/W value [56] tests the first-order autocorrelation in the reconstruction series.
The D/W values between 0.66 and 1.38 when n = 60 represent the absence of first-order
autocorrelation. Table 4 displays Bootstrap and Jackknife methods to examine Equation (1).
All of the parameters of the statistics in the validation are closely analogous to those in the
calibration, indicating that the reconstruction equations are reliable and suitable for relative
humidity reconstruction. Figure 5a shows that the observed RHAS is in good accordance
with the reconstructed series from 1959 to 2018. The results verify that our reconstructed
RHAS traces the observed sequence. The change in RHAS in the Alaer area from 1824 to
2018 was reconstructed according to Equation (1) (Figure 5b).

Table 4. Verification results from Bootstrap and Jackknife methods.

Statistical Items
Jackknife Bootstrap (100 Iterations)

Mean (Range) Mean (Range)

r −0.78 (−0.79–0.76) −0.77 (−0.89–0.65)
R2 0.6 (0.57–0.63) 0.61 (0.4–0.77)

R2
adj 0.6 (0.57–0.62) 0.6 (0.39–0.77)

SE 2.59 (2.5–2.61) 2.52 (2.1–2.97)
F 85.05 (75.15–93.96) 93.29 (38.16–193.43)
p 1 × 10−12 (1 × 10−13–6 × 10−12) 1 × 10−9 (6 × 10−20–7 × 10−8)

D/W 1.34 (1.21–1.41) 1.97 (1.2–2.49)
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loess filter for each calendar year (bold line).

4. Discussion

4.1. Climatic Response of δ13C

Tree-ring δ13C is derived from atmospheric CO2 and enters the plant body through
photosynthesis, and its fractionation is primarily controlled as a function of stomatal con-
ductance and photosynthetic rate [57]. Generally, stomatal conductance can be limited
mainly by humidity conditions, such as relative humidity and soil moisture, while the
photosynthetic rate is primarily influenced by temperature and radiation intensity. [31].
Therefore, the dominant controlling factors vary under different climatic conditions. Pho-
tosynthetic use efficiency is dominant in areas not subject to water stress. Liu et al. [37]
reconstructed the summer temperature (TJA) using a tree-ring stable carbon isotope in
Helan Mountains. Liu et al. [58] reconstructed the May–July temperatures (TMJJ) from
stable carbon isotopes in the Southern Wutai region for the past century. Due to moisture
stress, stomatal conductance was the predominant influence, and tree-ring δ13C was better
linked to atmospheric humidity and precipitation. Hemming et al. [59] discovered that
high-frequency variations in tree-ring δ13C values in oaks and pines were negatively re-
lated to the average relative humidity from June to September (RHJS). In studying the
relationship of the stable carbon isotope content of different components in tree rings in
response to precipitation, Ma Limin et al. [60] observed that δ13C values were negative in
relation to the overall precipitation from February to July (PFJ).

In dry and semi-arid environments where drought stress and changes in photosyn-
thetic rate due to temperature are severely constrained by stomatal conductance [30], which
largely depends on atmospheric relative humidity. Therefore, the temperature is hardly the
main restricting force in controlling δ13C of tree rings in the region, while relative humidity,
and PDSI, which contain the temperature signal, are the key limiting factors. The photo-
synthetic rate of internal leaf CO2 concentration mainly influences the positive correlation
between δ13C and April–September temperature (Figure 4). P. euphratica is a stomatal-
limiting plant [61], and its δ13C values negatively correlated to water-related proxies such
as precipitation, relative humidity, and PDSI. They restrict stomatal conductance and thus
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severely constrain photosynthetic rates. The above analysis showed that relative humidity
during the growing period influences the growth of trees, and that relative humidity is the
main controlling factor for δ13C values of P. euphratica in the Alaer region.

4.2. Characteristics of Changes in Reconstructed Relative Humidity

Over the reconstruction period from 1824 to 2018, the average RHAS stands at 45.19%
with a standard deviation ± 1σ of 2.67%. We used the definition of a highly wet year
as >mean + 1σ and an extremely dry year as <mean − 1σ. As a result, drought and wet
years account for 12.00% and 10.22% of the last 195 years, respectively. We used a 10-year
low-pass filter on the interdecadal scale and found that the dry periods were concentrated
in 1857–1866 and 1899–1907, and the wet periods in 1985–2016. Our reconstruction captures
severe drought events. The years 1899–1907 in our reconstructed sequence were significant
drought periods. A global El Niño-induced drought occurred around 1900, leading to
widespread drought and famine in northern China [62]. Because Alaer is located on
the secondary terrace of the Tarim River Alluvial Plain, it was initially a wilderness that
was rarely inhabited, and it was only in 1958 when the First Agricultural Division began
cultivating the area [63]. There are few historical records of this region. In the middle
to late 1980s, the climate shifted from “warm and arid” to “warm and humid” [64,65].
Floods and droughts were recorded in the context of instrumental measurements; for
example, in 1986 (RH = 48.45%) when the Alaer rainstorm affected the farmland and
caused economic losses of more than eight million CNY [66] the reconstructed sequence also
appropriately reflected this year as a wet year. In 2009 (RH = 47.83%), the Tarim River Basin
experienced a once-in-60-year drought [67]. In 2014, Alaer suffered the worst drought in
the last 15 years (http://www.gov.cn/xinwen/2014-06/30/content_2710042.htm, accessed
on 15 May 2022), which was more painful than the 2009 drought. The relative humidity
(RH = 44.92%) was lower than the average of the reconstruction history (RH = 45.19%).
There are signs of a change from “warm–wet” to “warm–dry” in the 2010s, with an
increasing trend towards aridity.

4.3. Comparisons with Other Paleoclimatic Reconstructions

Numerous climate reconstruction series and other high-quality paleoclimate change
series already exist around the study area, providing excellent conditions for validating
our reconstructed series and gaining a more detailed view of the history of climate change
in the region. For example, a comparative study of reconstructed RHAS series and tree-ring
width-based March–August PDSI reconstruction on the Hindu Kush around Central Asia
over the period 1824–2016 [68] (Figure 6a). The series are clearly positively correlated,
r = 0.20 (n = 193, p < 0.01), with the correlation coefficient increasing following 10-year low-
pass filtering, with r = 0.40. Moreover, the reconstructed RHAS correlates markedly to the
reconstructed climate series, the April–June PDSI based on tree-ring width in the Central
Tian Shan during the period 1824–2002 [69] (Figure 6b), with a correlation coefficient of
r = 0.39 (n = 179, p < 0.01), which increased following 10-year low-pass filtering, with
r = 0.64. We suggest that there is a clear correlation between the reconstructed RHAS series
of the Alaer region and other hydroclimatic series’ located around arid Central Asia. We
also note that these reconstructed series show the same upward trend after about 1980,
the “warming and wetting” trend, a finding consistent with previous studies [64,65]. The
cause of the “warming and wetting” has been suggested to be enhanced moisture transport
from high latitudes, the tropical Indian Ocean, the Arabian Sea, and local areas under the
joint impact of the combined high and low latitude circulation systems [70,71]. The unique
mountain basin structure in the Tarim River basin is characterised as an internal moisture
circulation mechanism driven by valley winds. Since the 1960s and 1970s, the increase in
actual evaporation from the plain oasis areas due to the expanding irrigated areas of the
basin and the warming-induced glacial melting are also likely to have contributed to the
warm season moisture gain in the Tarim River area [72].

http://www.gov.cn/xinwen/2014-06/30/content_2710042.htm
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width-based PDSIAJ reconstruction on the central Tien Shan mountains (black line) [69].

4.4. Possible Factors Affecting Relative Humidity Change

Figure 7 shows a positive spatial relationship between RHAS reconstructions and sea
surface temperature (SST) over 1959–2018 in the Atlantic, Indian, and Western Pacific Oceans.
These dependencies point to the possibility that the moisture conditions in the areas we study
may have a direct relationship with the large-scale ocean–land circulating systems.
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Figure 7. Spatial correlations between (a) reconstructed RHAS and April–September HadSST, and
(b) observed RHAS and HadSST from 1959 to 2018.

We found meaningful correlation coefficients between the AMO index [73], NAO [74],
and PDO index [75], which we reconstructed as 0.66 (p < 0.01, n = 183 for 1824–2006),
−0.15 (p < 0.05, n = 194 for 1825–2018), and 0.54 (p < 0.01, n = 183 for 1824–2006), and
the correlation coefficient increases following an 11-year moving average, with r = 0.80,
−0.54, and 0.68, respectively (Figure 8). The Atlantic Multidecadal Oscillation (AMO) is a
quasi-cyclical warming and cooling variation in sea surface temperature occurring at the
basin scale in the North Atlantic region [73]. Earlier tree-ring investigations showed that
AMO has a widespread association with the climate in different parts of the world, for
instance, floods [76] and droughts [77] in North America, and precipitation in Europe [78].
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In the other areas far from the Atlantic Ocean, such as in the Western Tien Shan [11], the
Qinghai-Tibet Plateau [79–82], and the Daxinganling [83,84], AMO may be a key driver
influencing regional climate. The primary mechanism of influence is that AMO causes
atmospheric circulation anomalies through the heating/cooling effect of the upper mid-
troposphere, which in turn affects climate change [85]. We clarified this relationship
by correlating the reconstructed series with the AMO index, which suggests that the
positive and negative AMO phases map onto the relatively wet and relatively dry periods,
respectively, in the Upper Tarim River basin. NAO is another well-known important factor
influencing climate change, and its relationship with temperature [86], precipitation [87],
and runoff [88–90] have been studied by many scholars. It has been suggested that the NAO
reflects the strength of the mid-latitude westerly circulation, and its variability significantly
correlates with climate elements such as temperature and precipitation [91]. Therefore,
the reconstructed RHAS series were compared with the NAO index [74], and a marked
correlation was found between the RHAS and the NAO index. The mechanism of influence
is that moisture in the Tarim River Area comes largely from westerly wind circulation
carrying water vapour. The AMO and NAO indices are global atmospheric pressure fields
that record westerly circulation intensities. The effect of the westerly circulation on the
regional wet and dry variability is reflected. When the westerly circulation is strong, the
region is arid; conversely, when it is weak, the area is damp.
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NAO, and PDO series’ (red lines). (a) Comparisons of RHAS reconstruction and the reconstructed
annual AMO [73]. (b) Comparisons of RHAS reconstruction and April–September averaged NAO [74].
(c) Comparisons of RHAS reconstruction and the reconstructed annual PDO [75].

The Asia-India-Pacific convergence zone affects short-term climate anomalies in
China [92]. Yang, Lianmei et al. [93] found that moisture of the Indian Ocean is con-
veyed northward to Xinjiang with the westerly winds, thus affecting the early summer
precipitation in Xinjiang. Bothe et al. [2] suggest that water vapour has been transported
into the Tarim River basin from the Indian Ocean. Meanwhile, southeastern monsoon
moisture primarily affects eastern China from the Pacific Ocean, and only when the easterly
flow is strong can it enter the Tarim River Region and contribute to precipitation in southern
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Xinjiang [94]. The RHAS series correlates well with the PDO index [75]. At the same time,
the enhanced and westerly shift of the East Asian Pacific teleconnection along the East
Asian coast has facilitated an increase in summer precipitation in Xinjiang [70]. It has been
suggested that global warming and PDO may soon help to reduce the severity of drought in
Xinjiang, Northwest China, and Tibet [95]. Wu et al. [96] found that the local climate of the
Tarim River Region correlated highly to the local moisture cycle and that the warming and
humidification trends in the western Tien Shan do not persist for long due to the reduced
annual mean moisture input from the west and northwest to the Tarim Basin, which is
blocked by the “U-shaped” topography. The reconstructed RHAS series shows signs of a
switch from “warm–wet” to “warm–dry” in the 2010s, with an increasing trend towards
aridity. The causes of aridification since the 21st century are complex, and available studies
suggest that the AMO and ENSO are closely related to the aridification in Xinjiang [97]. In
addition, the strength of the westerly circulation is nonlinearly modified by perturbations
such as ENSO, NAO, and the East Asian monsoon, which affect moisture conveyance in
the Tarim River Region [98]. Mechanisms driving wet and dry changes are complex, and
further research in this region is needed to gain insight into climate change.

5. Conclusions

The April–September mean relative humidity from 1824 was reconstructed using tree-
ring stable carbon isotope variations of P. euphratica. in the Alaer region, the upper Tarim
River Basin, northwestern China. Our reconstructed RHAS series closely matches other high-
resolution paleoclimate reconstructions surrounding our study area. The reconstruction
RHAS series indicates a predominantly “warm–dry” climate over the last 195 years. We
also observe that since the 1980s, there has been a trend towards increasing humidity in
Northwest China. There are indications of a shift in the direction from “warm–wet” to
“warm–dry” with growing drought in the 2010s. Moreover, the reconstructed RHAS series
is positively related to AMO and negatively associated with NAO, reflecting the impact of
westerly circulation on regional wet and dry variability and the possible influence of PDO
on relative humidity. Together, these factors influence the changes in relative humidity in
the upper Tarim River Basin, Northwest China.
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