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Abstract: China’s Sloping Land Conversion Program (SLCP) is the largest ecological restoration
program (ERP) in the world. Since its full implementation in China in 2002, it has achieved remarkable
eco-effects worldwide. However, few researchers have paid attention to the efficiency behind the
ecological achievements. Understanding the eco-efficiency of the Sloping Land Conversion Program
(EEoSLCP) and its spatial and temporal evolution is necessary for the design and implementation of
other ERPs. Therefore, we took the counties reflecting the basic implementation units of the SLCP
as the research samples, and evaluated and analyzed the EEoSLCP on the Loess Plateau (LP) and
its spatial and temporal evolution based on remote sensing data and county statistics. Our results
reveal that: (1) The SLCP in LP has achieved good eco-effects, but the eco-efficiency is generally low.
(2) The EEoSLCP of the LP is increasing year by year in time and the spatial distribution pattern is
“high in the southeast and low in the northwest” with a gradual decrease in efficiency from southeast
to northwest. (3) The EEoSLCP in each county of the LP has a positive spatial autocorrelation and
this correlation increases with the passage of time. (4) The EEoSLCP in each county of the LP shows
relatively stable geographical spatial agglomeration characteristics of “H-H” and “L-L” in local
spatial autocorrelation, and there are spatial neighboring companion effects and spatial neighboring
spillover effects in the EEoSLCP in each county of the LP. (5) Natural conditions and redundancy
of input and output are important reasons that affect the level of EEoSLCP. Our study will not only
provide a general approach and methodological framework for evaluating the eco-efficiency of ERPs
and their spatial and temporal evolution, but also provide better guidance and inspiration for the
implementation of large-scale ERPs in the background of “The UN Decade on Ecosystem Restoration”
and the “carbon peaking and carbon neutrality” strategy.

Keywords: ecological restoration programs (ERPs); Sloping Land Conversion Program (SLCP);
eco-effects; eco-efficiency; spatial–temporal evolution; Loess Plateau (LP)

1. Introduction

Over the past 40 years of reform and opening-up, China has experienced far-reaching
social changes. Although China’s overall economic volume has continued to rise at a
rapid pace, it has also revealed a slew of issues, including environmental degradation,
resource depletion, and unequal wealth distribution, all of which have hampered the
country’s economic and social progress [1,2]. Among them, the contradiction between socio-
economic development and ecological environment deterioration is particularly prominent.
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Nationwide large-scale deforestation and land clearing, and unreasonable use of land
resources have led to intensified soil erosion, increased land desertification, degraded soil
quality, reduced biodiversity, and rapid ecological environment deterioration [3]. To this
end, the Chinese government has launched several ecological restoration programs (ERPs)
to respond actively, including implementing the Natural Forest Protection Program, the
Sloping Land Conversion Program (SLCP), the Beijing–Tianjin source of wind and sand
control program, etc. [4]. Among them, SLCP has been successfully piloted in 3 provinces in
China since 1999 and fully implemented in China in 2002, involving a total of 2435 counties
in 25 provinces in China [5,6]. By 2020, the Chinese government has invested a total of CNY
517.4 billion (the CNY is the base unit of a number of former and present-day currencies in
Chinese; 1 USD equals CNY 6.70 as of January 13, 2023) into the SLCP and has completed
a total of 515 million mu (mu is the Chinese unit of land measurement; 1 mu is equal to
1/15 hm2) of the SLCP, with 41 million farmers participating in the program, making the
SLCP the world’s largest ERP [4,7,8].

After implementing the SLCP, researchers have carried out a great deal of research
on its ecological performance. The study shows that the SLCP has significantly increased
the vegetation coverage [9–11], curbed soil erosion [12,13], increased terrestrial carbon
sequestration [14–16], and enhanced the water conservation service [17,18]. There is no
doubt that the ecological performance of the SLCP is outstanding in effect, and it has
brought substantial ecological benefits. However, few scholars have evaluated the eco-
efficiency of the Sloping Land Conversion Program (EEoSLCP), leading us to be unclear
about the ecological performance of the SLCP in terms of efficiency. More importantly,
considering the low development cost of forest carbon sequestration and great potential
for emission reduction, China has made a commitment to the world to a “carbon peaking
and carbon neutrality” target, and has clearly indicated that it will continue to implement
SLCP and will plan to implement a large number of other ERPs to increase forest area and
enhance forest carbon sequestration to help achieve the carbon neutrality target by 2060. In
this context, compared with the huge demand for ERP, the capital, land, and other factors
that the Chinese government can invest are pretty limited. On the one hand, China, as the
largest developing country in the world, still has a strong demand for financial resources in
all aspects of socioeconomic development. On the other hand, China is the world’s most
populous country with a severe shortage of cultivated land per capita and has implemented
the most stringent cultivated land protection system to ensure food security. Therefore,
the evaluation of the EEoSLCP can provide a reference for improving the new round of
SLCP and guide China and other countries in the world to implement other ERPs, thus
improving the overall efficiency of the allocation of resources they invest in ERP.

In the evaluation of the ecological performance of the SLCP, most researchers have fo-
cused their studies on evaluating the eco-effects of the SLCP, while neglecting to evaluate
the EEoSLCP. However, there are still a few scholars who have evaluated the EEoSLCP from
two aspects. Firstly, the EEoSLCP was evaluated from the perspective of “cost–benefit”.
Wang et al. [19] evaluated the “cost–benefit” of the SLCP on ecosystem carbon sequestration
based on farmer survey data, and found that the neglect of land productivity and environ-
mental heterogeneity in the program implementation was an important reason for the low
EEoSLCP. Chen et al. [20] not only confirmed Wang’s conclusion, but also pointed out that
ignoring the spatial heterogeneity of opportunity cost and environmental benefit in the SLCP
is also an essential reason for the low EEoSLCP. Ning et al. [21] evaluated the EEoSLCP of
Yan’an City using the “cost–benefit” method based on remote sensing and GIS technology, and
showed that the EEoSLCP of Yan’an City was low from 2000 to 2015. Xian et al. [6] evaluated
EEoSLCP from a provincial perspective in China using an improved cost–benefit approach,
and found that planting trees in unsuitable locations or not selecting suitable tree species in
some provinces was the root cause of the low EEoSLCP. Secondly, some scholars have evalu-
ated EEoSLCP by constructing econometric models. Lu et al. [22] analyzed the influence of
SLCP financial inputs on forest carbon sinks using the least squares dummy variable method
in Yunnan Province and showed that, although SLCP helps increase forest carbon sinks, the
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EEoSLCP is low because the impact of natural resource endowments on reforestation of the
program is not considered in the implementation of SLCP in each locality. Zhang et al. [23]
used a geo-weighted regression (GWR) model to explore the impact of investment in SLCP
on the Enhanced Vegetation Index (EVI) in Zhidan County and Wuqi County, China. The
results showed that there were significant spatial differences in EEoSLCP among villages,
and the spatial mismatch between investment and local resource endowment is an important
reason for low EEoSLCP. Liu et al. [24] used the fixed-effect model to investigate the impact of
financial input on the Normalized Difference Vegetation Index (NDVI) in Shaanxi Province,
and further analyzed the conversion rate between financial input and ecological output using
the panel threshold model. The results show that the EEoSLCP in Shaanxi Province is char-
acterized by “high in the middle and low at both ends”, and the conversion rates between
financial inputs and ecological outputs varied widely under different precipitation conditions.

Although the studies of previous scholars can provide us with a reference for eval-
uating EEoSLCP, there are three main shortcomings. First of all, in EEoSLCP evaluation
methods, although the “cost–benefit” method is simple and easy to implement and has
a wide range of application, it is difficult to provide decision makers with an optimal set
of “cost–benefit” ratios for improving efficiency from the perspective of optimizing the
allocation of input and output factors [25,26]. Although the researchers used econometric
models to compensate for the shortcomings of the “cost–benefit” method to a certain extent,
the results can only reflect the direction and intensity of the relationship between the inputs
and outputs of the SLCP. Furthermore, the efficiency measured by econometric models gen-
erally belongs to the parametric method, which relies on the choice of production function
and is difficult to solve the efficiency calculation of multiple inputs and multiple outputs.
Secondly, in the selection of indicators for efficiency measurement, researchers mostly take
the financial expenditure of the SLCP as an input, while ignoring other elements such
as land and labor. In the selection of output indicators, vegetation cover or vegetation
NDVI is often taken as the output indicator, ignoring that the core objectives of SLCP are to
reduce soil erosion and increase ecosystem service functions. It can be concluded that the
researchers’ unreasonable selection of indicators for calculating the EEoSLCP will make it
difficult to make a scientific and accurate assessment of the EEoSLCP. Finally, in terms of an
efficiency analysis perspective, most of the existing literature is based on the description of
phenomena and mechanism explanation from management or economics perspectives, and
it lacks the identification of the spatial pattern evolution and the portrayal of the temporal
dynamic evolution of the EEoSLCP from a two-dimensional perspective in time and space.

To bridge these gaps, this study makes the following contributions. First, the data
envelopment analysis (DEA) model was used to evaluate the EEoSLCP from the perspective
of multiple inputs and multiple outputs, which not only made up for the methodological
shortcomings of previous studies, but also pointed out the reasons for the non-DEA-
effective or weak-DEA-effective counties in the EEoSLCP and the direction and extent of
improvement using the projection method. Second, based on multi-type data such as land
use, vegetation NDVI, and soil type, various eco-effects of SLCP were obtained with the
support of GIS and calculated by models such as pixel dichotomy and the revised universal
soil loss equation (RUSLE). Furthermore, they are used as ecological output indicators of
the SLCP in order to be able to evaluate the EEoSLCP scientifically and accurately. Third,
kernel density estimation (KDE) and exploratory spatial data analysis (ESDA) were used
to portray and identify the temporal dynamic evolution and spatial correlation of the
EEoSLCP, respectively, which comprehensively reveals the spatial and temporal evolution
characteristics of the EEoSLCP.

2. Materials and Methods
2.1. Study Area

LP is located in the middle and upper reaches of the Yellow River Basin in China
(107◦28′~111◦15′ E 35◦21′~39◦34′ N), spanning seven provinces and regions in Shanxi,
Ningxia, Shaanxi, Gansu, Inner Mongolia, Qinghai, and Henan, with a total area of about
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6.49 × 105 km2, accounting for 6.7% of China’s land area (Figure 1a). LP terrain slopes
from northwest to southeast, with elevation differences exceeding 3000 m. The climate
is temperate continental monsoon climate with cold winters and warm humid summers.
The average annual temperature ranges from 3.7 to 14.0 ◦C, and the annual precipitation
is 144 to 812 mm, mainly between June and September [27]. The LP is one of the most
severe soil erosion and fragile ecosystems in the world due to frequent heavy rainfall,
steep topography, low vegetation cover and loose soils [28]. At the same time, the over-
exploitation and unreasonable utilization of the resources on the LP have aggravated
the soil erosion and led to the serious degradation of land and ecosystem [29,30]. At
the end of 1990s, the LP took the lead in implementing the SLCP as a pilot. Through
afforestation and other measures, the vegetation coverage was effectively increased, the
serious problem of soil erosion was alleviated, and the ecosystems have been greatly
restored and improved [31]. By 2015, a total of 154 million mu of cultivated land had been
converted to forests on the LP (Figure 1c), with a cumulative financial investment of CNY
61 billion (Figure 1b) and a cumulative participation of 0.9 billion households (Figure 1d).
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 Figure 1. (a) Location and topography of the LP; (b) cumulative investment in SLCP; (c) cumulative
area in SLCP, and (d) cumulative households in SLCP, 2002 to 2015.

2.2. Methodology

Figure 2 shows the research framework of this study for the evaluation of EEoSLCP
and its spatial and temporal variation. Firstly, based on the definition of the EEoSLCP,
the input-output indexes for evaluating the EEoSLCP were determined. Secondly, based
on multi-type data such as land use, vegetation NDVI and soil type, various eco-effects
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of SLCP were obtained with the support of GIS and calculated by models such as pixel
dichotomy and RUSLE. Finally, based on the input-output data of SLCP, the DEA-BCC
model is applied to measure EEoSLCP, and based on this, the KDE and ESDA models
are applied to analyze the spatial and temporal changes of EEoSLCP comprehensively,
respectively.
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2.2.1. Construction of EEoSLCP Evaluation Index System

Based on the definition of eco-efficiency and the characteristics of the SLCP in practice,
we define EEoSLCP as: restoring degraded ecosystems with less resource input in SLCP
implementation, producing more ecosystem services to meet human needs, and making
the ecosystem environment better. Based on this, we constructed the EEoSLCP evaluation
index system in terms of both inputs and outputs (Table 1). For the inputs, we chose three
indicators closely related to SLCP: capital, land, and labor. At the same time, considering
SLCP as a reforestation program, its ecological benefits are not only influenced by the input
of the program itself but also by the natural conditions [32,33]. Numerous studies have
shown that temperature and precipitation are the main natural factors that determine the
effectiveness of SLCP on the LP [34,35]. For this reason, we also selected precipitation and
temperature as input indicators. In terms of output, we selected five indicators that best
reflect the ecological changes on the LP, namely: vegetation fraction cover (VFC), vegetation
carbon sequestration (VCS), soil retention (SR), biodiversity (Biod) and water conservation
(WC). The specific process and reasons for the selection of EEoSLCP evaluation indicators
are explained in detail in our published paper [33]. The references involved in the selection
of evaluation indicators are: [10,13–16,18,32,36–41].

2.2.2. Eco-Effects Calculation of SLCP

We calculated and analyzed the spatial and temporal changes of eco-effects such as
VFC and VCS on the LP from 2002 to 2018 after the implementation of SLCP by collecting
various remote sensing data obtained from land use, vegetation NDVI, DEM, and mete-
orology, using GIS technology. Please refer to the supplementary materials [33] of our
published paper [33] for the specific formulae and results of the five eco-effects of VFC,
VCS, SR, WC, and Biod in the Loess Plateau from 2002 to 2018. The references for the
calculation of the five eco-effects of the Loess Plateau are: [42–59].
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Table 1. Input and output indicators of EEoSLCP.

Indicator Variable Variable Description Unite

Input Land Cumulative area of SLCP implementation mu *
Capital SLCP cumulative financial investment CNY *

Labor Cumulative number of SLCP
participating households hu *

≥10 ◦C accumulated temperature Average annual ≥10 ◦C
accumulated temperature

◦C

Precipitation Average annual precipitation mm

Output VFC Cumulative increase in average VFC
compared to 2002 %

SR Cumulative increase in average SR
compared to 2002 t·hm−2·yr−1

VCS Cumulative increase in average VCS
compared to 2002 gC·m−2·yr−1

WC Cumulative increase in average WC
compared to 2002

dimensionless, value range
0–1

Biod Cumulative increase in average Biod
compared to 2002

dimensionless, value range
0–1

*: mu is the Chinese unit of land measurement; 1 mu is equal to 1/15 hm2. The CNY is the base unit of a
number of former and present-day currencies in Chinese; 1 USD equals CNY 6.70 as of 13 January 2023 (https:
//www.federalreserve.gov/releases/h10/current/ (accessed on 13 January 2023)). According to the 7th national
census bulletin released by the China Statistics Bureau, 1 hu equals approximately 2.62 people. (http://www.stats.
gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818821.html (accessed on 13 January 2023)).

2.2.3. Ecological Efficiency Calculation of SLCP

(1) DEA model

The core idea of the DEA model is to keep the input or output values of the decision
units constant, project the decision units onto the effective frontier surface with the help of
the linear programming principle, and then compare the deviation of the decision units
from the effective frontier surface to evaluate their relative effectiveness. Using this method,
we can not only derive the efficiency between input and output variables, but also the
direction from which we need to improve each input variable in order to enhance the
overall efficiency. DEA models are divided into CCR models with constant returns to scale
and BCC models with variable returns to scale [60–62]. Considering that the ecological
benefits obtained from the implementation of SLCP are characterized by variable payoffs
to scale, we will complete the measurement of EEoSLCP for the LP using the DEA-BCC
model. The specific model is as follows.

minθz − ε(
m

∑
i=1

si
− +

s

∑
r=1

sr
+) (1)

s.t.
n

∑
j=1

λjxij + si
− = θzixrz, i = 1, 2, · · · , m (2)

n

∑
j=1

λjyrj − si
+ = yrz, r = 1, 2, · · · , s (3)

n

∑
j=1

λj = 1 (4)

θ0, λj, si
−, si

+ ≥ 0 (5)

where θz is the EEoSLCP in the LP under VRS, where n = 314 is the number of counties
in the LP, j represents the jth county, which can also be called the jth DMU. m and s,
respectively, represent the number of input–output indicators of SLCP, xij represents the

https://www.federalreserve.gov/releases/h10/current/
https://www.federalreserve.gov/releases/h10/current/
http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818821.html
http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818821.html
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input of the i factor in the jth county, yrj represents the r output in the jth county, and λj
is the weight coefficient of the input index of a certain factor in the jth county. When the
sum of Si

- and Sr
+ is 0, all input and output are in a relaxed state, θz = 1, and the EEoSLCP

is in complete efficiency. When the sum of Si
- and Sr

+ is not 0, θz < 1, the EEoSLCP is in
incomplete efficiency, and the complete efficiency can be achieved again by adjusting the
level of input or output.

(2) Kernel Density Estimation (KDE)

KDE is an important method to study spatial disequilibrium distribution, which is
surface interpolation through discrete sampling points [63]. It is a nonparametric estimation
method in which the position, shape, and extensibility of random variables are described
by continuous smooth density curves instead of histograms. The kernel function mainly
includes linear kernel function, polynomial kernel function, Gaussian kernel function, etc.
In this paper, we choose the more commonly used Gaussian kernel function. Assuming
that the density function of the random variable x is f(x), the kernel density is estimated
as [64]:

f (x) =
1

Nh

N

∑
i=1

K
(

Xi − x
h

)
(6)

K(x) =
1√
2Π

exp
(
− x2

2

)
(7)

where K(·) is the kernel function; N is the number of observations; Xi is the independent
observation with the same distribution; x is the mean; h is the bandwidth, which determines
the smoothness and accuracy of the estimated density curve. The larger the bandwidth, the
smaller the variance of the kernel estimation and the smoother the curve.

(3) Exploratory Spatial Data Analysis (ESDA)

ESDA is a collection of a series of spatial data analysis methods and techniques, which
takes spatial association measure as the core, and distinguishes spatial agglomeration
and spatial differentiation by describing and visualizing the spatial distribution pattern of
things or phenomena, so as to reveal the spatial dependence among objects. ESDA consists
of global spatial autocorrelation (GSA) and local spatial autocorrelation (LSA) [65].

GSA is mainly used to judge whether a phenomenon has clustering characteristics in
space, which is generally measured by Moran’s I index, and its calculation formula is [66]:

I =

n
∑

i=1

n
∑

j=1
Wij

(
Yi −Y

)(
Yj −Y

)
S2

n
∑

i=1

n
∑

j=1
Wij

(8)

Among them, S2 = 1
n

n
∑

i=1

(
Yi −Y

)2, Y = 1
n

n
∑

i=1
Yi, Yi is the EEoSLCP for county i, n is

the number of samples, and the sample number in this study refers to the 314 counties in
the LP; Y is the average of EEoSLCP in all counties; Wij is the spatial weight matrix, which
represents the influence factors between counties i and j and constitutes a complete set of
spatial relationships. Moran’s I value range is [−1,1]. When I is greater than 0, it indicates
that there is a positive spatial correlation between regions and, the closer it is to 1, the more
similar observed values (high or low values) tend to gather in space. When I is less than 0,
it shows that there is a spatial negative correlation between regions and, the closer it is to
−1, the more scattered the similar observations tend to be in space. When I is equal to 0, it
shows that there is no spatial correlation between regions and the observed values tend to
be randomly distributed.

GSA mainly explains the average correlation degree of a phenomenon in space, but
cannot clearly reflect which areas in the study area have agglomeration. LSA is an index
to measure the spatial correlation of the research object from the local perspective, which
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measures the similarity between the regional observations in this area and the observations
in neighboring areas, and can be used to identify the agglomeration and discrete character-
istics of the local spatial pattern [65]. It is usually measured by local Moran’s I index and
its calculation formula is [66]:

Ii = Zi

n

∑
j=1

WijZj (9)

where Zi = Yi −Y, Zj = Yj −Y, Yi, Yj denote the observed values of the ith and jth region,
which is the EEoSLCP in this study, n is the number of samples, the sample number in
this study refers to the 314 counties in the LP, and Wij is the spatial weight matrix. The
local Moran’s I index measures the degree of correlation between the ith region and other
surrounding areas. If Ii > 0, it means that the local area neighboring units are spatially
clustered with similar values; if Ii < 0, it means that the local area neighboring units are
not spatially clustered with similar values; if Ii = 0 means that the local area neighboring
units are spatially randomly distributed. Specifically, LSA analysis can be divided into the
following four types: high–high cluster (H-H), high–low outlier (H-L), low–high outlier
(L-H), and low–low cluster (L-L).

2.2.4. Data Sources

The data of this study include remote sensing data, land use data, meteorological data,
soil data, and other multi-source data sets. All the raster data below are processed with a
resolution of 500 m and the coordinate system is Krasovsky_1940_Albers. The data sources
of this study are as follows:

The land use map data of 2000, 2005, 2010, and 2018 were downloaded from the Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC)
(https://www.resdc.cn/ (accessed on 5 May 2021)), including cultivated land, forests,
grassland, water area, construction land, and unused land. The spatial resolution of the
data was 30 m. The land use data of each period were verified and modified by field survey,
and the combined precision of the data in 2000 was 92.9% [67], in 2005 was 95% [68], in
2010 was 94.3% [69], and in 2018 was 95.53% [70].

In the meteorological data, precipitation and temperature from 2002 to 2018 was
obtained from the Chinese National Meteorological Science Data Service Center (http://
data.cma.cn/ (accessed on 6 September 2020)). Moreover,≥10 ◦C accumulated temperature
from 2002 to 2015 was obtained from the National Ecosystem Science Data Center (http:
//www.nesdc.org.cn (accessed on 5 May 2021)). Furthermore, via ArcGIS software using
the Kriging interpolation method, we obtained the meteorological raster dataset.

The digital elevation model (DEM) data used in the study is ASTER GDEM V2, with a
spatial resolution of 30 m, downloaded from Japan Space Systems.

The NDVI from 2002 to 2018 was derived from the MOD13A1 product synthesized
by the maximum value composite (MVC) method 16d and downloaded from the NASA
MODIS website with a spatial resolution of 500 m (https://ladsweb.modaps.eosdis.nasa.
gov/search (accessed on 5 May 2021)).

The net primary productivity (NPP) from 2002 to 2018 was derived from the MOD17A3HGF
database of the Terra Net Primary Production and downloaded from the NASA MODIS website
with a spatial resolution of 500 m (https://ladsweb.modaps.eosdis.nasa.gov/search (accessed
on 5 May 2021)).

Soil attribute data were obtained from the China soil map based harmonized world
soil database (HWSD) (v1.1) (2009) shared by the National Tibetan Plateau/Third Pole
Environment Data Center (https://data.tpdc.ac.cn/ (accessed on 5 May 2021)), which was
provided by the Second National Land Survey data from the Nanjing Institute of Soil
Research, Chinese Academy of Sciences.

The data of SLCP financial investment and project implementation area of 314 counties
in the LP from 2002 to 2015 were obtained from the Central South Survey and Planning
Institute under the National Forestry and Grassland Administration of China (http://

https://www.resdc.cn/
http://data.cma.cn/
http://data.cma.cn/
http://www.nesdc.org.cn
http://www.nesdc.org.cn
https://ladsweb.modaps.eosdis.nasa.gov/search
https://ladsweb.modaps.eosdis.nasa.gov/search
https://ladsweb.modaps.eosdis.nasa.gov/search
https://data.tpdc.ac.cn/
http://www.forestry.gov.cn/sites/zny/zny/
http://www.forestry.gov.cn/sites/zny/zny/
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www.forestry.gov.cn/sites/zny/zny/ (accessed on 5 May 2021)). The number of farm
households participating in the SLCP is based on provincial data published in the China
Forestry Statistical Yearbook (2003–2016) and obtained by proportional conversion of
financial investment data in each county.

Administrative boundaries of the cities are obtained from the national 1:1,000,000
database of China Geographic Information Monitoring Platform (https://www.webmap.cn
(accessed on 5 May 2021)).

3. Results
3.1. Eco-Effects of SLCP

From 2002 to 2018, after implementing SLCP on the LP, the ecological afforestation
effect was remarkable, the ecological environment was significantly improved, and the
growth of each eco-effect was remarkable. Firstly, from the temporal changes of various eco-
effects (Figure 3a–e), the average VFC increased from 50.12% to 64.15%, with a growth rate
of 27.99%; the average VCS increased from 883.54 gC·m−2·yr−1 to 1296.35 gC·m−2·yr−1,
with a growth rate of 46.72%; the average SR increased from 221.11 t·hm−2·yr−1 to
228.41 t·hm−2·yr−1, with a growth rate of 3.3%; the average WC increased from 0.1458 to
0.1643, with a growth rate of 12.73%; and the average Biod increased from 0.1549 to 0.1815,
with a growth rate of 17.12%. Secondly, from the spatial change trend of the eco-effects
of the LP from 2002 to 2018 (Figure 3f–j), the eco-effects of the southwest, central, and
northeast of the LP have been significantly improved.

3.2. Temporal Changes and Evolution of EEoSLCP

The EEoSLCP of the LP and its 314 counties from 2002 to 2015 was measured using
the DEA-BCC model selected by MaxDEA software. Figure 4 shows the average score of
EEoSLCP for LP from 2002 to 2015. Firstly, it was found that the average EEoSLCP score for
the LP from 2002 to 2015 was low, with an overall average score of only 0.413. Secondly, the
EEoSLCP presented an overall growth trend from 0.305 in 2002 to 0.531 in 2015, indicating
that EEoSLCP has been effectively improved over time. Finally, based on the trend of
EEoSLCP changes on the LP during 2002–2015, the temporal changes of EEoSLCP can
be divided into three stages in conjunction with the implementation of SLCP during the
study period: the first stage was from 2002 to 2006, in which the EEoSLCP increased year
by year; the second stage was from 2006 to 2010, in which the EEoSLCP decreased first
(2006–2007) and then increased (2007–2010); the third stage was from 2010 to 2015, in which
the EEoSLCP also decreased first (2010–2012) and then increased (2012–2015).

Figure 5 is obtained after kernel density calculation by Matlab R2018a (Matlab software
from MathWorks, Inc., Natick, MA, USA).

(1) In terms of the distribution position, the overall EEoSLCP on the LP shows a “rightward”
distribution from left to right, with peaks from high to low, and the curve tends to flatten
out with increasing years, with a small shift to the right, indicating that the number of
counties with high eco-efficiency is increasing and the number of counties with relatively
low efficiency is decreasing, implying that the eco-efficiency of each county is steadily
improving over time.

(2) From the distribution pattern, the overall distribution curve of EEoSLCP on the LP shows
the evolution pattern of “two peaks standing side by side” composed of “one main peak
plus one side peak”. It shows that the EEoSLCP in each county of the LP is always in the
pattern of polarization during the study period and the eco-efficiency of some counties
is concentrated at a higher level, while that of other counties is concentrated at a lower
level. From 2002 to 2015, the evolutionary dynamics of the main peak height showed
an overall decrease over time and an increase in the width of the main peak, indicating
that the absolute gap in efficiency tends to widen in counties clustered at a lower level of
EEoSLCP. The evolution of the height of the lateral peaks shows an overall increase over
time and a gradual decrease in width, indicating that the absolute difference in efficiency
tends to decrease in counties clustered at a higher level of EEoSLCP.

http://www.forestry.gov.cn/sites/zny/zny/
http://www.forestry.gov.cn/sites/zny/zny/
https://www.webmap.cn
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(3) In terms of polarization characteristics, the EEoSLCP in the LP from 2002 to 2015 shows
the phenomenon of “bimodality” and polarization, with relatively large distances be-
tween the side peaks and the main peaks, and obvious differences in eco-efficiency be-
tween counties on the LP, gradually forming a “bimodal” evolution pattern of “low–low
agglomeration and high–high agglomeration”, which is similar to “club convergence”.
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3.3. Spatial Distribution of EEoSLCP

Based on the EEoSLCP of each county in the LP from 2002 to 2015, the EEoSLCP of
each county was classified into four states of low efficiency (0, 0.25], medium–low efficiency
(0.25, 0.5], medium–high efficiency (0.5, 0.75], and high efficiency (0.75, 1] with reference to
previous studies [33]. From Figure 6, it can be seen that the EEoSLCP of most counties in
the LP is low-efficiency during the study period, mainly distributed in the central, northern,
and western regions in a contiguous manner. There are fewer medium–low efficiency
counties in the study period, which are mainly distributed in the middle of high-efficiency
and medium-high efficiency counties in the southern and eastern regions, distributed in a
northeast–southwest strip. Fewer counties have medium–low efficiency status, and they are
mainly concentrated in the middle of high efficiency and medium–high efficiency counties
in the southern and eastern regions, distributed in a northeast–southwest strip. The spatial
distribution areas of high efficiency and medium–high efficiency counties are roughly the
same, mainly distributed in the eastern, southern, and western regions. Overall, although
the EEoSLCP has obvious spatial heterogeneity among counties in the LP, it presents a
distribution trend that gradually decreases from southeast to northwest and from south
to north.

Forests 2023, 14, x FOR PEER REVIEW 13 of 28 
 

 

reference to previous studies [33]. From Figure 6, it can be seen that the EEoSLCP of most 

counties in the LP is low-efficiency during the study period, mainly distributed in the 

central, northern, and western regions in a contiguous manner. There are fewer medium–

low efficiency counties in the study period, which are mainly distributed in the middle of 

high-efficiency and medium-high efficiency counties in the southern and eastern regions, 

distributed in a northeast–southwest strip. Fewer counties have medium–low efficiency 

status, and they are mainly concentrated in the middle of high efficiency and medium–

high efficiency counties in the southern and eastern regions, distributed in a northeast–

southwest strip. The spatial distribution areas of high efficiency and medium–high effi-

ciency counties are roughly the same, mainly distributed in the eastern, southern, and 

western regions. Overall, although the EEoSLCP has obvious spatial heterogeneity among 

counties in the LP, it presents a distribution trend that gradually decreases from southeast 

to northwest and from south to north. 

 

Figure 6. Spatial distribution of EEoSLCP by counties in the LP from 2002 to 2015. 

From the number of counties divided into efficiency status intervals (Appendix A, 

Figure A1), the number of counties with low EEoSLCP showed a fluctuating downward 

trend, from 161 in 2002 to 76 in 2015, mainly concentrated in the southeastern part of the 

LP, and the range of counties with low efficiency shrank from southeast to northwest year 

by year. The number of counties with high efficiency and medium efficiency showed a 

fluctuating upward trend, from 60 and 35 in 2002 to 114 and 69 in 2015, respectively, 

mainly located in the central and eastern regions of the LP. The number of medium–low 

efficiency counties shows a stable and unchanging trend, basically stable at about 50. 

Figure 6. Spatial distribution of EEoSLCP by counties in the LP from 2002 to 2015.

From the number of counties divided into efficiency status intervals (Appendix A,
Figure A1), the number of counties with low EEoSLCP showed a fluctuating downward
trend, from 161 in 2002 to 76 in 2015, mainly concentrated in the southeastern part of the
LP, and the range of counties with low efficiency shrank from southeast to northwest year
by year. The number of counties with high efficiency and medium efficiency showed a
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fluctuating upward trend, from 60 and 35 in 2002 to 114 and 69 in 2015, respectively, mainly
located in the central and eastern regions of the LP. The number of medium–low efficiency
counties shows a stable and unchanging trend, basically stable at about 50.

3.4. Spatial Correlation of EEoSLCP
3.4.1. GSA Analysis

Based on the ESDA model, ArcGIS software was used to calculate the global Moran’s
I index of EEoSLCP in the LP from 2002 to 2015. From Figure 7, it can be concluded
that the global Moran’s I index was positive, ranging from 0.41 to 0.57, and all of them
passed the significance test at the 1% level (Appendix A, Table A1), indicating that the
EEoSLCP in each county of the LP showed positive spatial autocorrelation. Its spatial
connection characteristics are as follows: the counties with higher eco-efficiency tend
to be adjacent to the counties with higher eco-efficiency, while the counties with lower
eco-efficiency tend to be adjacent to the counties with lower eco-efficiency; that is, the
adjacent counties mostly show the spatial agglomeration characteristics of “high–high” or
“low–low”, but seldom show the spatial agglomeration characteristics of “high–low” or
“low–high”. The spatially positive autocorrelations of the EEoSLCP in each county of the
LP show a relatively stable trend. The positive spatial correlation of the EEoSLCP decreased
from 2002 to 2006, increased from 2006 to 2007, decreased again from 2007 to 2008, first
increased, then decreased and then increased from 2008 to 2012, then decreased from 2012
to 2013, and finally increased from 2013 to 2015. Its spatial pattern is more obviously
clustered in all years except for two years in 2006 and 2008 when it showed weak clustering
distribution. The global Moran’s I value was the lowest in 2006 at 0.41 and the highest in
2015 at 0.57. This indicates that the spatial agglomeration state of the EEoSLCP of the Loess
is relatively stable but also has some fluctuations. Specifically, the relative positions of the
spatial pattern of the EEoSLCP in neighboring counties are basically constant, but their
relative differences are variable and show certain strong and weak variations.
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3.4.2. LSA Analysis

The global Moran’s I index can prove that there is a positive spatial correlation in the
EEoSLCP on the LP, but it cannot reflect its local spatial characteristics. Therefore, the local
Moran’s I index is needed to identify the local spatial characteristics of the EEoSLCP in
each county of the LP. According to Figure 8 and Appendix A, Figure A2, the specific local
spatial pattern and distribution quantity can be classified into the following four categories:
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(1) H-H clustering, which indicates that, if a county has high EEoSLCP, then its neighbor-
ing counties also have high efficiency, mainly concentrated in the western, southern,
and eastern regions, which is a high level of the spatial equilibrium associated ag-
glomeration state of “high in the center and high around”. The number of H-H in
2002 to 2015 showed an overall fluctuating upward trend in time and, in space, it
showed that the range of the H-H clusters in the west remained basically unchanged,
while the H-H clusters in the south expanded and spread to the north and northeast,
and the H-H clusters in the southeast corner region expanded and spread to the south
and to the west.

(2) L-H outlier, which indicates that, although the EEoSLCP of a county is low, the
efficiency of its neighboring counties is high, sporadically distributed in the western
and eastern parts of the LP, showing a spatially unbalanced correlated agglomeration
of “low in the center and high in the surroundings”. This trend is spatially distributed
in the western and eastern regions.

(3) L-L clustering, which indicates that not only is the EEoSLCP of a county low but also
the efficiency of its neighboring counties is low, mainly concentrated in the central,
northern, and northeastern areas of the LP, with an overall “southwest–northeast”
distribution, showing a low level of spatial equilibrium associated with the clustering
state of “low in the center and low around”. The number of L-L in 2002–2015 showed
a fluctuating decline in time and a gradual decrease in space from the southeast to the
northwest, but the L-L cluster in the southwest showed a continued spreading and
expanding trend to the southwest.

(4) H-L outlier, which indicates that, although a county has high EEoSLCP, its neighboring
counties have low efficiency, mainly scattered in the central and eastern parts of the
LP, showing a spatially unbalanced correlated clustering state of “high in the center
and low around”. The number of such counties is small, and the temporal change
increases then decreases, and this trend is spatially distributed in the central region.
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Overall, the number of local spatial characteristics of the EEoSLCP in the LP during
the study period was L-L > H-H > L-H > H-L. Further analysis of the local spatial pattern
of EEoSLCP in each county shows that there is a strong spatial neighboring companion
effect of EEoSLCP among the counties in the LP. Specifically, in the LP, when the EEoSLCP
around a county is at a high (low) level, its own efficiency tends to reach a high (low) level.

4. Discussion
4.1. Analysis of Temporal Changes in EEoSLCP

Our research shows that the ecological environment of the LP has been greatly im-
proved after the implementation of SLCP. Good ecological benefits have been achieved in
VFC, VCS, SR, and other aspects, which is consistent with the research results of previous
scholars [9–18]. However, from the perspective of efficiency, we found that the average
EEoSLCP score for the LP from 2002 to 2015 was low, with an overall average score of
only 0.413. The reason for this is that SLCP is a top-down, government-led ERP [7], and
the implementation of the program involves a wide range of tasks and high construction
requirements, although the construction of the project has achieved good eco-effects. How-
ever, the lack of scientific proof, empirical guidance, and a scientific supervision system
for project implementation, coupled with the generally low compensation standard for
households, makes it difficult to create a sustainable incentive for the households to par-
ticipate in the program, which eventually leads to low EEoSLCP [71,72]. However, from
the temporal changes of EEoSLCP, it can be obtained that, from 2002 to 2015, the overall
EEoSLCP on LP has been growing and the growth rate has gradually accelerated. The
reason is that 2002–2006 is still the initial stage of the SLCP implementation, although a
lot of investment, land, and households have been input; however, because of the irra-
tional planting structure of economic forests (the planting proportion of economic forests
is far greater than ecological forests) [73], the low quality of afforestation [74,75] and the
low subsidy standard [71,74], etc. As a result, eco-efficiency is always on the low side
at this stage and the growth rate is slow. The period 2007–2010 was the optimization
and adjustment phase of SLCP and the problems that existed before were greatly solved
by learning the lessons from the implementation of SLCP in the previous phase. More
importantly, the State Council decided to increase cash subsidies for participating SLCP
households and to prolong the subsidy period for those who are enjoying the subsidy
expiration [76,77], and also decided to give households a certain degree of autonomy in
SLCP participation [78], which greatly motivated households to participate in the SLCP,
improved the afforestation quality of SLCP implementation, and finally achieved greater
ecological benefits [79]. Therefore, EEoSLCP was able to ramp up rapidly during this
stage. The period 2011–2015 was the consolidation and improvement stage of the SLCP,
and the EEoSLCP decreased and then increased in this stage. The reason is that, since
2011, the main task of SLCP has been adjusted to consolidate the ecological achievements
made in the previous period but, in practice, due to the lack of subsidy distribution, lack
of supervision, and backward management techniques, some of the trees planted in the
previous period have died and some districts and counties have even experienced the
phenomenon of deforestation and replanting [74,80,81]. However, the central government
still provides financial subsidies according to the completed area of SLCP in each county,
resulting in a decrease in the input–output ratio and a decline in eco-efficiency from 2011 to
2012. After 2013, local governments began to subsidize households participating in SLCP
with their own funds so as to further improve the results of SLCP and strengthened the
management of the results of SLCP implementation. Meanwhile, the implementation of
a new round of SLCP after 2014 not only led to the expansion of afforestation area but
also further improved and consolidated the achievements of the previous SLCP, which
eventually led to a renewed increase in EEoSLCP between 2013 and 2015.
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4.2. Analysis of the Spatial Pattern of EEoSLCP

Low–low agglomeration area in the northern part of LP. A large part of this area
is located in sandy land and desert areas, which belong to arid and semi-arid regions.
The growth and survival of vegetation are strictly limited by the supply of water re-
sources [82,83]. Although the SLCP has input a certain amount of area (Figure 1c), invest-
ment (Figure 1b), and households (Figure 1d) in the region, the precipitation (Appendix A,
Figure A3a) and ≥10 ◦C accumulated temperature (Appendix A, Figure A3b) conducive
to the growth of vegetation are very limited, coupled with the unreasonable selection of
tree species, leading to a low afforestation survival rate, and it is difficult to achieve the
expected eco-effects of afforestation in sandy and desert areas [84]. In addition, the presence
of sparse trees can concentrate airflow between trees, thereby increasing wind speed and
erosion forces, and increasing soil drying and erosion when trees are unable to block strong
winds, instead accelerating the rate of land degradation within sandy desert areas and
further exacerbating the degree of desertification within the region [85,86]. As mentioned
above, due to the limitation of precipitation and accumulated temperature, it is difficult
to effectively convert the input of SLCP into eco-effects in the northern part of LP, which
leads to the low EEoSLCP in this region.

Low–low agglomerations in the central and western parts of the LP. Most of this area
is located in the hill and gully region of the LP in Shaanxi and Gansu, where soil and water
loss is the most serious, so the counties in this area have always been the key areas for
the implementation of SLCP. From 2002 to 2015 the region was the most invested in the
LP Retirement Forestry Project. The counties belonging to this region were the areas that
received the most input from the SLCP from 2002 to 2015 (Figure 1b–d). In terms of effect,
the VFC, VCS, SR, WC, and Biod in the area have been significantly improved (Figure 3f–j),
indicating that the implementation of SLCP in the area has achieved significant eco-effects.
However, in terms of efficiency, the EEoSLCP in the above areas has been low. In order to
find the reasons, we conducted statistics on the average input redundancy and average
output deficiency of the SLCP in 314 counties of the LP. The reason for this is that the
above-mentioned areas have higher redundancy in terms of area (Appendix A, Figure A3c),
investment (Appendix A, Figure A3d), and households (Appendix A, Figure A3e) inputs
for the SLCP, and at the same time higher deficiency in terms of eco-effects outputs such as
VFC, VCS, and SR (Appendix A, Figure A4a–e). Therefore, although the aforementioned
areas have achieved good eco-effects with a large amount of investment, land, and labor
resources invested, excessive input redundancy and deficiencyoutput have led to low
EEoSLCP in the area.

Medium–high and high-efficiency agglomerations in the eastern and southern parts of
the LP. The region is in a semi-humid area and has precipitation (Appendix A, Figure A3a)
and ≥10 ◦C temperature accumulation (Appendix A, Figure A3b) conditions that are more
suitable for vegetation growth than other areas of the LP. Secondly, the above-mentioned
areas have low redundancy in the investment of area (Appendix A, Figure A3c), investment
(Appendix A, Figure A3d), and households (Appendix A, Figure A3e) for SLCP and, at the
same time, the deficiency in eco-effects such as VFC, VCS, and SR is also low (Appendix A,
Figure A4a–e). As a result, the conversion rate between input and eco-effects output of
SLCP in the above areas is higher, so the EEoSLCP is also higher.

4.3. Analysis of the Spatial Correlation of EEoSLCP

ESDA of the EEoSLCP showed that there was a significant positive spatial correlation
between the EEoSLCP among counties in the LP. This not only proves once again that there
is an obvious spatial clustering characteristic of the EEoSLCP in each county (Figure 6) but
also further indicates that there is a strong spatial dependence of the EEoSLCP in some
counties. However, according to the change of global Moran’s I index (Figure 7), the global
Moran’s I index showed a downward trend from 2002 to 2006, indicating that the spatial
dependence of EEoSLCP in each county of the LP showed a weakening trend. This may
be because, in the initial stage of the implementation of SLCP, various places are still in
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the exploratory stage and, with the implementation of SLCP moving forward, the gap
between the implementation technology and management level of the program gradually
appears [87,88], which leads to the increasing relative difference in the spatial EEoSLCP
implementation in each county, and the spatial dependence is gradually weakened. The
global Moran’s I index showed an increasing trend from 2006 to 2015, indicating the
increasing spatial dependence of the EEoSLCP in each county of the LP. This may be
due to the fact that all localities have learned from the previous program implementation
experience at this stage and, by actively learning from the surrounding counties with high
eco-efficiency [78,89], the level of program implementation technology and management
has been improved, and the eco-efficiency has been improved. Thus, the relative spatial
difference of eco-efficiency in each county continues to narrow and the spatial dependence
is gradually enhanced.

Further, from the local autocorrelation results of the EEoSLCP in each county on the
LP, it can be seen that the neighboring counties mostly show “H-H” or “L-L” clustering,
and the number of counties with “H-H” clustering is expanding, while the number of
counties with “L-L” clustering is decreasing (Figure 8). The range of the H-H cluster area
has been expanding along the H-H cluster area at the early stage of SLCP implementation
(Figure 8), probably because the southern and southeastern counties of the LP have at-
tracted neighboring counties to learn afforestation and management experience through the
demonstration effect [78,89], which has led to the increasing conversion rate of the inputs to
the eco-effects output of SLCP, thus promoting the improvement of the EEoSLCP. The scope
of the L-L cluster area gradually shrinks along the L-L cluster area at the beginning of SLCP
implementation, which may be related to the warning effect brought by the low efficiency
counties. Officials in some counties have been punished for poor implementation of SLCP
and corruption [73]. The resulting warning effect will motivate officials in L-L catchment
counties to take the initiative to learn from the experience of neighboring counties with high
eco-efficiency, improve engineering and management levels, and increase the conversion
rate of SLCP inputs eco-efficiency, which in turn has led to improved eco-efficiency.

4.4. Limitation and Future Directions

Nonetheless, this study has several limitations. First, in terms of the temporal selection
of the study, due to the limitation of data acquisition, we only assessed the eco-efficiency
of the first round of SLCP implemented in 314 counties in the LP from 2002 to 2015.
However, the Chinese government has started to implement a new round of SLCP after
2015, so what is the eco-efficiency of the new round of SLCP implemented from 2015 to
the present? How does the eco-efficiency of the two different periods compare? All of the
above questions need to be addressed in our future research. Second, in the selection of eco-
efficiency output indicators of SLCP, we have selected the core indicators that are commonly
used and easily quantified by academia. However, a comprehensive measurement of the
EEoSLCP may need to include more eco-efficiency output indicators of SLCP, such as
sandstorm prevention, flood mitigation, air purification, etc., which will be the direction
of further research on the measurement of EEoSLCP. Third, in the analysis of the drivers
of the ecological efficiency of SLCP, this study uses a combination of qualitative and
quantitative methods to analyze to some extent the possible reasons that may affect the
spatial and temporal evolution of the EEoSLCP, but the SLCP is a complex socioeconomic
ecological system project, which requires us to explore the inner mechanism and driving
mechanism of the spatial and temporal evolution of the EEoSLCP through the establishment
of econometric models in future studies.

5. Conclusions and Policy Implications
5.1. Main Conclusions

“The UN Decade on Ecosystem Restoration 2021–2030” strategy and China’s “carbon
peaking and carbon neutrality” strategy marked the beginning of a large-scale ERP. At
the same time, the full-scale ecological restoration project also implies a large investment
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of capital, labor, and other resources. However, the scarcity of resources determines that
we have limited resources to invest in ERPs and failure to convert the limited resources
into ecological restoration effectiveness in the implementation of ERPs will hinder the
realization of the above two strategic goals. To this end, we take the world’s largest ERP, the
SLCP, as an example and evaluate its eco-efficiency, with a view to summarizing the lessons
learned and then providing reference for improving the resource utilization efficiency
in the implementation of ERPs under resource constraints, and ultimately promoting
the realization of the above two strategic goals. This study takes LP, the core region of
SLCP implementation, as the study area, and uses the DEA-BCC model to measure the
EEoSLCP of LP counties based on the SLCP input–output data of 314 counties in LP and,
on this basis, the KDE and ESDA methods are used to portray and identify the time-series
dynamic evolution pattern and spatial pattern evolution characteristics of EEoSLCP from
a two-dimensional perspective in time and space, respectively. The major findings were
as follows:

(1) The ecosystem of LP has been greatly restored after the implementation of SLCP and
the ecological environment in the territory has been greatly improved. Using 2002 as
the base period for SLCP implementation, VFC, VCS, SR, WC, and Biod in the region
were all enhanced to varying degrees during 2002–2018.

(2) The EEoSLCP of LP is low and there is still more room for improvement. In terms
of the temporal variation of EEoSLCP, although EEoSLCP has been maintained at a
low level, it has generally shown a fluctuating upward trend. In terms of the time-
series dynamic evolution of EEoSLCP, there were marked variations in the EEoSLCP
between LP counties, with obvious polarization, and a “bimodal” evolution pattern of
“low–low clustering and high–high clustering”, which is similar to “club convergence”,
is gradually developed with time.

(3) The EEoSLCP in the LP is spatially distributed with regular differences. In terms of
spatial distribution, high-efficiency counties are mainly concentrated in the eastern,
southern, and western regions, while low-efficiency counties are mainly concentrated
in the central, northern, and western regions, and the overall spatial distribution of
eco-efficiency is gradually decreasing from southeast to northwest, and from south
to north. In terms of spatial change, the number of high-efficiency and medium-
high efficiency counties is increasing, while the number of low-efficiency counties is
decreasing.

(4) The EEoSLCP in each county of the LP has a strong spatial dependence and a relatively
stable trend in terms of time. In terms of local autocorrelation, the EEoSLCP in each
county of the LP shows two correlation trends: “H-H” cluster and “L-L” cluster. H-H
clusters are mainly concentrated in the western, southern, and northeastern regions,
while L-L clusters are mainly concentrated in the central, northern, and northeastern
regions. In terms of spatial and temporal changes, the H-H cluster area is expanding
and the L-L cluster area is shrinking.

5.2. Policy Implication

The results of this study can provide three policy implications for the implementation
of ERPs around the world. The details are as follows:

(1) Do the top-level strategy for the implementation of ERPs. Through scientific demon-
stration, reasonable planning, and farmers’ will, determine the ERPs’ implementation
area and, on this basis, determine the ERPs’ implementation tree species according
to the natural conditions of local vegetation growth. For example, the EEoSLCP in
the northwestern part of the LP is low due to improper selection of SLCP tree species
and, in order to improve eco-efficiency, drought-tolerant shrubs (grasses) should be
planted and the original vegetation restored in this area.

(2) Establish a dynamic evaluation mechanism for the eco-effects and ecological efficiency
of ERPs, increase the matching of effect and efficiency, and improve the efficiency of
resource utilization. For example, in order to improve the EEoSLCP, the SLCP input
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should be reduced for the central and western counties of the LP, and increased for
the eastern and southern counties of the LP.

(3) Set up a typical example of a successful ecological restoration area to play a demonstra-
tion and guiding role. In the implementation of ERPs, it is necessary to make good use
of the spatial dependence between neighboring regions, strengthen cooperation and
communication between regions, and build an ecological restoration community. For
example, in the LP region, H-H cluster type counties should continue to make use of
the agglomeration advantages of strong alliances to move towards the goal of higher
ecological efficiency of the SLCP, promote the high-quality development of projects,
and play a leading role in demonstration; L-H outlier type counties should proactively
learn from neighboring high-efficiency counties about SLCP management techniques
and experiences. In the implementation of the SLCP, the L-L cluster type counties in
the northwest need to base their strategy on local resource endowment and natural
conditions, plan tree planting areas, follow the principle of tree species suitability,
plant trees in places suitable for tree growth, plant shrubs in places suitable for shrub
growth, and reasonably choose trees and shrubs to be planted together to create a
compound ecosystem of multiple symbiosis. Meanwhile, the L-L cluster type counties
in the center need to reduce land inputs to avoid wasting resources; H-L cluster type
counties, while continuing to maintain their own ecological efficiency of the SLCP,
should also make use of their accumulated experience of SLCP implementation to
guide neighboring low efficiency counties, jointly improve the ecological efficiency of
SLCP, and be a good role model.
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Appendix A

Table A1. Global Moran’s I value and its test results of EEoSLCP in the LP from 2002 to 2015.

Year Moran’s I Z p

2002 0.518 *** 14.532 0.000
2003 0.481 *** 13.490 0.000
2004 0.470 *** 13.192 0.000
2005 0.424 *** 11.911 0.000
2006 0.414 *** 11.637 0.000
2007 0.432 *** 12.123 0.000
2008 0.420 *** 11.807 0.000
2009 0.494 *** 13.857 0.000
2010 0.484 *** 13.588 0.000
2011 0.504 *** 14.137 0.000
2012 0.534 *** 14.964 0.000
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Table A1. Cont.

Year Moran’s I Z p

2013 0.496 *** 13.924 0.000
2014 0.499 *** 13.985 0.000
2015 0.565 *** 15.852 0.000

Note: *** denote statistical significance at 1%, 5%, and 10%, respectively.
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