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Abstract: Detailed study of historical drought events in North-Central China (NCC) is important
to understand current hydroclimate variability in the background of global warming. Here, we
combined 12 published tree-ring chronologies and 12 dryness/wetness indices (DWI) to reconstruct
dry and wet climate variability across NCC. These 24 proxy records showed similarly significant
responses to warm season (May–June–July–August–September, MJJAS) moisture signals. A new
530-year-long reconstruction of self-calibrating Palmer Drought Severity Index (scPDSI) values for
the warm season in NCC was determined using a nested principal component regression (PCR)
approach. The new reconstruction shows significant correlations with the instrumental MJJAS scPDSI
data across NCC during the period AD 1901–2012. The reconstructed MJJAS scPDSI revealed seven
severe dry/wet events from AD 1470 to 2012. The periods AD 1701–1727 and AD 1985–2011 represent
the longest dry periods, and the drought during the 1920s is identified as the most severe one over
the past 530 years. Our reconstruction shows significant interannual spectral peaks at the frequency
domain of 2–7 years, together with relatively weaker decadal frequencies of 16, 24, and 78 years.
The results of superposed epoch analysis (SEA) show that extreme North Atlantic Oscillation (NAO)
years may modulate drought variability in NCC.

Keywords: tree-ring; dryness/wetness indices (DWI); drought variability; Indo-Pacific; NAO

1. Introduction

Observational data and model simulations commonly suggest that global drought
events are increasingly aggravated due to global warming [1–3], but Sheffield et al. [4] and
Greve et al. [5] have reported that the extent of global aridity has not changed significantly
over the past 60 years. Similar confusion surrounds the magnitude and impact of climate
change in China itself. For example, several studies have shown that China exhibited
a drying trend during this period, and that increased aridity led to water scarcity and
caused detrimental economic impacts [6–8]; however, other studies suggest that there
was no change in dry event frequency in China from the year of 1961 to 2012 [9]. This
discrepancy is likely due to different studies using different gridded datasets [10]; for
example, the Palmer Drought Severity Index (PDSI), the standardized precipitation index
(SPI), and the standardized precipitation evapotranspiration index (SPEI) consider different
climatic factors and are appropriate of specific regions, accordingly, producing conflicting
results. Therefore, the strategies of selecting datasets are crucial, and some types of cli-
mate studies are better than others at accurately modeling historical dry conditions at the
sub-regional scale.

Substantial research has been performed on the climate of North-Central China (NCC,
101–113◦ E, 33–42◦ N) since 1951, with results obtained using different indices (e.g., monthly
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precipitation, surface wetness index, PDSI, and soil moisture retrieval) consistently showing
that the region was extremely arid [11,12]. Instrumental data and observations record an
intensifying drying trend in NCC since the 1950s that was mainly caused by global warming
and a decrease in regional precipitation [13]. Not only that, with increasing anthropogenic
disruption, proxy data showed that river flow rates in the middle of the Yellow River
had reduced substantially since the late 1960s [14]. Drought is one of the principal factors
that limit economic growth, agricultural prosperity, and societal development, such that
variations in hydroclimate in the NCC region have recently attracted much attention in
the literature.

Paleoclimate data can be used to investigate long-term dry/wet variation and can
strengthen our understanding of past and present hydroclimates. The longest dendrocli-
matic reconstruction in China for Asian monsoon rainfall has revealed a long-term decrease
in precipitation in the northeastern Tibetan Plateau (TP) over the past 6700 years [15].
Moisture reconstructions based on tree-ring proxies have been performed for NCC [16–19],
but these reconstructions only extend to several centuries in the past, limiting our under-
standing of the current hydroclimate anomalies with a long-term perspective, although a
few millennial hydroclimate reconstructions are reported for the surrounding areas [20,21].
Moisture-sensitive pollen [22,23], lake sediments [24–26], and speleothems [27–29] could
preserve hydroclimate information over NCC in the past millennium (AD 1000–1999), but
they often have a relatively low temporal resolution.

In this study, we combined 12 previously published tree-ring chronologies and 12 dry-
ness/wetness indices (DWI) records at an annual resolution to develop a new regional-scale
self-calibrating PDSI (scPDSI) reconstruction over NCC for the warm season (May–June–
July–August–September, MJJAS) during the past 530 years. We analyzed the relationships
of our reconstruction with atmospheric oscillations and compared them with other previ-
ously reported hydroclimate records across the surrounding areas.

2. Materials and Methods
2.1. Study Region

The portion of NCC studied here was delimited between 101–113◦ E and 33–42◦ N
(Figure 1), and contains arid, semi-arid, and semi-humid areas, which are climatically sen-
sitive zones and monsoon transitional regions [11,20]. The climate in this area is controlled
by the Asian monsoon, which leads to very dry winter (December–January–February) and
spring (March–April–May) seasons, with substantial precipitation in summer (June–July–
August) and autumn (September–October–November) each year. Calculated precipitation
rates and mean temperatures were determined using data collected from 67 meteorological
stations in our target NCC over the period AD 1951–2012. These data show that 67% of
the region’s annual precipitation occurs from May to September, and the average annual
temperature is 7.8 ◦C. The study area contains the Loess Plateau, the Ordos Plateau, and the
middle reaches of the Yellow River Basin. These unique geographical and physioclimatic
characteristics lead to drought being more common than flood events.Forests 2023, 14, x FOR PEER REVIEW 3 of 14 
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considered in this study. The abbreviation ASML (green line in the small panel) refers to the Asian
summer monsoon limit [30,31].
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2.2. Climate Data and MADA Data

We extracted the temperature and precipitation dataset on a 0.5◦ latitude by 0.5◦

longitude grid from Climatic Research Unit (CRU) TS 4.06 [32] on a monthly basis from
AD 1950 to 2012. Monthly scPDSI data [33] were obtained from CRU from AD 1901
to 2012. Thirty scPDSI grid datasets were employed with a resolution of 0.5◦ latitude
by 0.5◦ longitude, which provided complete coverage of NCC. Positive values of scPDSI
represent wet conditions and negative values represent dry conditions. Averaged warm
season scPDSI data, i.e., May–June–July–August–September (MJJAS), were used to further
analyze the relationships with proxy data (tree-ring and DWI data) in NCC.

The Monsoonal Asia Drought Atlas (MADA) [34] contains spatially gridded data sets of
the PDSI for the months of June, July, and August, covering the areas of Asian summer mon-
soon during the past millennium. This dataset comprised 534 grid points on a 2.5◦ × 2.5◦ grid,
with MADA PDSI reconstructions produced using a network of Asian tree-ring data. We
extracted 17 grid points (Figure 1) adjacent to our tree-ring sites and DWI sites from this
MADA PDSI dataset to compare against our scPDSI reconstruction.

2.3. Tree-Ring Data and DWI Data

We compiled 11 tree-ring width (TRW) chronologies and one tree-ring oxygen isotope
chronology for this study (Figure 1). These tree-ring data provide comprehensive records
of local moisture (i.e., precipitation and/or drought) variations (Table 1, ref. incl. [35–46])
at an annual timescale and provide accurate and continuous data throughout the study
period. These 12 chronologies have variable lengths of 141–395 years and a median length
of 260 years.

Table 1. The 12 moisture-limited tree-ring chronologies across NCC. Correlations are shown between
tree-ring chronologies and averaged May–June–July–August–September scPDSI data for NCC over
the period AD 1901–2012. The results of correlation with scPDSI are marked with one or two
asterisks, which indicate significant correlations at the 95% and 99% confidence levels, respectively.
Abbreviations are as follows: TRW—tree-ring width.

Site Lat. (◦N) Long. (◦E) Type Period
(AD)

Correlation
Coefficient

with scPDSI
Reference

Kongtong 35.54 106.51 TRW 1615–2009 0.377 ** [35]
Guiqing 34.63 104.47 TRW 1618–2006 0.313 ** [36]

Hasi 37.03 104.47 TRW 1698–2012 0.453 ** [37]
Helan 39.08 106.08 TRW 1717–1999 0.296 ** [38]
Taibai 33.57 107.37 TRW 1740–2004 −0.028 [39]

Tianzhu 37.50 102.3 TRW 1750–2009 0.197 * [40]
Shandan 37.95 102.22 TRW 1783–2006 0.242 * [41]
Xinglong 35.78 104.07 TRW 1794–2002 0.416 ** [42]

Songmingyan 35.55 103.3 TRW 1804–2010 0.296 ** [43]
Ordos 39.40 110.7 δ18O 1808–2012 −0.420 ** [44]
Wuwei 37.80 102.7 TRW 1856–2009 0.271 ** [45]

Changlinshan 37.45 103.68 TRW 1860–2000 0.281 ** [46]

* and ** denote confidence levels at 95% and 99%, respectively.

The DWI dataset contains 120 dry/wet grade sites within China that contain data
covering the period AD 1470–2000 [47–49]. Nineteen of these DWI sites have been updated
to the year AD 2008 and seven DWI sites have been added to extend coverage across north-
western China [50]. The DWI dataset contains information from local historical documents
and court proceedings, and thus provides an official record of moisture variability over
the past five centuries in China. The DWI dataset categorizes each year’s drought severity
as either very wet (grade 1), wet (grade 2), normal (grade 3), dry (grade 4), or very dry
(grade 5).
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In our study, we used data from 12 DWI sites located within 101–113◦ E and 33–42◦ N
(Figure 1), although we also note that the DWI series from Hohhot, Tianshui, and Lanzhou
lacked data in 6, 10, and 12 separate years, respectively. The missing data were interpolated
using a regularized expectation maximization method for consistency [51]. The other nine
DWI series data were all integrated and continuous. DWI data from Xi’ning, Lanzhou,
Tianshui, Yinchuan, Yan’an, and Xi’an covered the period from AD 1470 to 2008, whereas
data for the Bailingmiao, Hohhot, Shanba, Eketuo, Taiyuan, and Linfen DWI sites covered
the period from AD 1470 to 2000.

2.4. Methods

An MJJAS mean scPDSI reconstruction was constructed over the NCC study area
using a nested principal component regression (PCR; [52–56]). This approach created a
few nests, considering that the number of available tree-ring and DWI records decreased
before the earliest common year (AD 1860) and after the latest common year (AD 1999) of
the 24 tree-ring and DWI records. We used a sliding window approach for calibration (i.e.,
using 2/3 length of instrumental data over the period AD 1950–1999) and verification (i.e.,
using 1/3 length of instrumental data over the period AD 1950–1999) to produce the final
reconstruction [56]. In each nest reconstruction, the initial calibration interval extends from
AD 1950–1982 with an increment of one year to the final interval AD 1967–1999, creating an
ensemble of 18 reconstruction members. The reduction of error (RE), coefficient of efficiency
(CE), root mean square error (RMSE), and R2 statistics were used to assess the skill of each
nested model [57]. The final scPDSI reconstruction, RE, CE, R2, and RMSE values were
expressed as the ensemble median of the 18 ensemble members.

Spatial correlations between our scPDSI reconstruction and climatic data were ex-
plored using the KNMI Climate Explorer software (Royal Netherlands Meteorological
Institute; https://climexp.knmi.nl/, accessed on 17 March 2023). We used the multi-taper
method (MTM) of spectral analysis [58] to investigate the periodicity of our reconstruction.
The superposed epoch analysis (SEA; [59]) approach was used to assess the influence of
the North Atlantic Oscillation (NAO) on hydroclimate variability in our study region.

3. Results and Discussion
3.1. The scPDSI Reconstruction

An MJJAS scPDSI reconstruction for NCC from AD 1470 to 2012 was generated
using the PCR method (Figure 2). The values of CE and RE for all nests are greater than
zero, which imply that our PCR model passed the validation test and that the scPDSI
reconstruction was reliable. It should be noted that the earlier part of reconstruction that
is solely created by DWI data also has a high skill as the RE and CE are positive, and
the explained variance is higher than 60% during this period (Figure 2b,c). Our scPDSI
reconstruction shows rather consistent interannual variations with the CRU instrumental
scPDSI data over the study region from AD 1950 to 2012, as characterized by a significantly
high correlation coefficient of 0.89 (nyear = 63, p < 0.01) (Figure 3a).

The regional temporal series of moisture anomalies in NCC from AD 1470 to 2012
is shown in Figure 2a. The mean value of our reconstructed scPDSI was 0, which is
within the range of the defined near normal status (−0.5~0.5) [60]. To identify the phases
of wet and dry conditions in reconstruction, positive and negative values indicate wet
and dry periods of the same category [60], respectively. Pluvial and drought events of
the scPDSI reconstruction were recognized by identifying calculated values that were
more than one standard deviation (σ = 0.74) above or below the mean value [61], respec-
tively. The application of a 30-year low-pass filter revealed seven severe dry events at
AD 1479–1499, 1626–1644, 1682–1692, 1701–1727, 1830–1840, 1922–1932, and AD 1985–2011,
with these drought events having more than 10 consecutive years of negative scPDSI anoma-
lies. Additional short-period drought events that lasted less than 10 consecutive years
were also identified during AD 1527–1533, 1580–1588, 1745–1750, 1762–1770, 1809–1815,
1845–1847, 1859–1867, 1876–1884, and AD 1970–1975. Seven wet periods that lasted at least

https://climexp.knmi.nl/
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10 years were recorded during AD 1534–1579, 1589–1608, 1645–1680, 1730–1740, 1778–1795,
1902–1914, and AD 1933–1980. Thus, phases of sustained drought generally lasted longer
than wet periods. The longest dry events occurred in the periods AD 1701–1727 and
AD 1985–2011, which both had 27 consecutive years of drought, and the latter of these
two events was the most severe period of drought since AD 1470. When examined at
annual timescales, the AD 1928 and AD 1964 events were the driest and the most humid
phases, respectively.
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Figure 2. The MJJAS scPDSI reconstruction for NCC region from AD 1470 to 2012. Black and red lines
in (a) are the annual reconstruction and 30-year low-pass filter, respectively. Reduction of error (RE),
coefficient of efficiency (CE), RMSE, and R2 statistics for each nest are shown in (b). The number of
records in ((c), blue) denotes the number of sites where tree-ring chronologies and DWI series, and
the number of PCs (red) denotes the number of principal components used in each nest.
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Figure 3. Panel (a) shows the scPDSI reconstruction (red line) compared with instrumental MJJAS
scPDSI data (black line) over the study region from AD 1950 to 2012. Panel (b) shows the spectral
properties of our reconstruction, where the green, red, and blue lines represent the 90%, 95%, and
99% significance levels, respectively.

3.2. The Comparison with Other Hydroclimate Reconstructions

A comparison of our scPDSI reconstruction with the MADA PDSI reconstruction [34]
produced a significant correlation coefficient of 0.39 (nyear = 531, p < 0.01) during their
common period AD 1470 to 2010. The correlations became stronger (r = 0.44, p < 0.01) and
significant at the 99% level after the serials were processed using a 30-year smoothing over
the past five centuries. This result suggests that there were similar dry/wet fluctuations
identified in each model, particularly during periods of drought (Figure 4a,b). These results
also show that our scPDSI reconstruction accurately reproduced low-frequency variations



Forests 2023, 14, 640 6 of 13

(Figure 4a). Some differences are noted between these two series, such as our reconstruction
reflecting drought conditions from AD 1600 to 1625, whereas the MADA PDSI reconstruc-
tions indicated a wet period. Such differences might be related to differences in proxy data
and the methods employed. Nonetheless, major mega-drought periods were identified in
both reconstructions, particularly in AD 1626–1644, 1922–1932, and AD 1985–2000.
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Figure 4. Comparisons of our scPDSI reconstruction (a) with the MADA PDSI reconstruction
((b), [34]), Northern China Plain precipitation variability ((c), [62]), Northern China precipitation
reconstruction ((d), [63]), and NASM drought variability ((e), [20]). Bold curves indicated the applica-
tion of a 30-year algorithm smoothing during their common period (AD 1470–2010). The common
dry periods were shaded in grey.

Zheng et al. [62] reconstructed the precipitation variability over eastern China (east of
105◦ E, 25–40◦ N approximately) for the period AD 501–2000. A strong significant positive
relationship was found between our scPDSI reconstruction and precipitation variability of
North China Plain (34–40◦ N approximately; Figure 4c; [62]), a sub-region of eastern China,
at annual time scales (r = 0.332, nyear = 542, p < 0.01). A higher correlation was also found
(r = 0.565, nyear = 526, p < 0.01) for the 30-year smoothed data. A similar drought/wet
variation was shown in these two chronologies (Figure 4a,c) during the past 530 years.

We also compared our scPDSI reconstruction with the precipitation variations of the
fringe of the Asian summer monsoon in Northern China (100–120◦ E, 33–45◦ N; [63]) from
AD 1470 to 2000 (Figure 4d), and the two series were significantly positively correlated with
r = 0.601 (nyear = 531, p < 0.01). The dry period in our sequences (Figure 4a) also existed in
Northern China (Figure 4d).

Several drought events (e.g., AD 1626–1644, 1701–1727, and AD 1922–1932) presented
in our reconstruction are consistent with the results of studies performed adjacent to NCC
(Figure 4e; [20]). Such persistent dry conditions likely had a severe impact on society
and its economy at the time. For example, the AD 1626–1644 drought identified in NCC
may have influenced the collapse of the Ming Dynasty in China [64,65], and well-known
droughts recorded in AD 1922–1932 had highly detrimental impacts on agriculture, which
in turn caused extensive social disorder, further famine, and led to the death of 10 million
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people in northern China [66]. A persistent drought disaster was documented in more than
13 provinces in NCC during AD 1876–1884, which was most severe in AD 1876–1878, and
was characterized by over 340 days of non-soaking rain in the Shaanxi, Henan, and Shanxi
provinces [67]. This period of extreme drought led to large-scale migration of climate
refugees, causing a dramatic decrease in the area’s population by approximately 20 million
people [68].

The out-of-phase relationship between our reconstruction and the northern fringe of
the Asian summer monsoon region (NASM; Figure 4e; [20]) reconstruction was found dur-
ing the period AD 1850–2011. It was likely modulated by the temperature increment. It is
noteworthy that the prolonged drought period recorded from AD 1985 to 2011 occurred in
our reconstruction during a period of global warming. This implies that periods of dry con-
ditions in NCC may last for increasingly longer periods in the future as global temperatures
continue to rise, although further research is required to validate this hypothesis.

3.3. The Spatial Representation of Our Reconstruction

We calculated the spatial correlations between our MJJAS scPDSI reconstruction with
temperature, precipitation, and scPDSI from the CRU dataset [32]. This comparison produced
significantly (p < 0.1) negative correlations between our reconstruction and CRU temperatures
in the period AD 1901–2012 (Figure 5a). The strength of this spatial correlation increased during
the recent 60 years of the model, with correlation coefficients ranging from −0.5 to −0.3 (p < 0.1;
Figure 5b). There was a robust and positive spatial correlation between our reconstruction
with CRU precipitation and scPDSI data, as shown in Figure 5c–f. The spatial correlations in
AD 1950–2012 were stronger than those in AD 1901–2012, and correlation coefficients up to
~0.6 (p < 0.1) appeared in our study region (Figure 5c–f). This result suggests that our scPDSI
reconstruction can accurately express hydroclimate variability in the NCC region.
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3.4. Relationships with Large-Scale Climate Modes

The MTM method was used to investigate the spectral properties of our reconstruction
from AD 1470 to 2012 (Figure 3b). Significant spectral peaks were identified with periods of
2–7 years and 24 years at the 99% and 95% levels, respectively. We also found periodicities
of 16 years and 78 years with significance at the 90% level. The dominant oscillations of
2–7 years suggest that dry and wet variability over the study region may be associated with
the El Niño-Southern Oscillation (ENSO; [69]). Figure 6 shows spatial correlations between
our scPDSI reconstruction and sea surface temperature (SST) over their common period.
Significant (p < 0.1) negative correlations (r~−0.5) occurred in the eastern equatorial Pacific
from AD 1950 to 2012 (Figure 6a), which shows that drought variability over the NCC study
region could have been influenced by the ENSO. This is supported by previous studies
that have also shown that SST variation in the eastern equatorial Pacific can significantly
influence the climate in North China [35,37,44,70].
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of our scPDSI reconstruction with the concurrent SST for their common period.

The Pacific Decadal Oscillation (PDO) has similar characteristics with the ENSO, but
occurs at a longer (decadal) time scale [71]. The PDO has two energetic periodicities that
last 15–25 years and 50–70 years [71]. The 16-year and 24-year spectral cycles identified in
our reconstruction may therefore be likely associated with the PDO. The PDO is known
to have been closely related to dry/wet variations within northern China over the last
100 years, with the positive phase of the PDO corresponding to dry conditions in the
region and the negative phase corresponding to wet conditions [72]. The spatial correlation
results shown here for the 10-year running mean record weaker correlations in the eastern
equatorial Pacific region, but still have significantly (p < 0.1) negative values ranging from
−0.5 to −0.3 (Figure 6b).

Hurrell et al. [73] reported that significant interannual variability of the NAO has
periods of 2–3 and 7–8 years. Based on long-term analysis of tree-ring proxy data [57,74],
the reconstructed NAO series also has interdecadal fluctuations with periods of 16–28 years
and 50–88 years. These reported NAO cycles agree with the frequencies determined in our
scPDSI reconstruction. Previous research has shown that there is out-of-phase variation
between the NAO and rainfall in North China [75]. The NAO can significantly impact the
intensity of rainfall in Central Asia and North China, with a weaker NAO corresponding
to wetter conditions and a stronger NAO corresponding to drier conditions [76]. Based
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on dendrochronology, Li et al. [77] also showed that drought variability along the eastern
margin of the Loess Plateau was related to the North Atlantic SST tripolar pattern.

We adopted SEA to determine whether hydroclimate anomalies in our study region
were caused by the NAO (Figure 7). In our study, values of NAO data greater than two
standard deviations (σ = 1) away from the average were defined as extreme events [78]. The
five strongest extreme NAO event years, which specifically occurred in AD 1895, 1917, 1963,
1969, and 1996, were identified and shown in Figure 7a. Our analysis window included up
to five years before and after each NAO event year. These results demonstrate that extreme
NAO years strongly affect drought variability in the NCC region, and that negative NAO
events could cause significantly dry anomalies for the following three years.
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surrounding the NAO event. The shaded region represents the 95% significance level.

In addition, our spatial correlation revealed significant (p < 0.1) negative correlations
that varied strongly after producing a 10-year running mean time series for the Atlantic,
western equatorial Pacific, and Indian Ocean regions (Figure 6b). Therefore, we calculated
the correlation between our scPDSI reconstruction data and precipitation rates in India
from June to September during AD 1950–2012. This analysis produced a significant pos-
itive correlation coefficient of 0.44 (nyear = 63, p < 0.01), which suggested that moisture
convergence in the NCC region may be related to the Indian monsoon. Previous studies
have found that North China drought events are linked to tropical Indo-Pacific climate
variability [36,79], which can trigger changes in monsoon circulation patterns, Walker
circulation, and precipitation over monsoonal Asia [80].

4. Conclusions

In this study, we produced a new MJJAS scPDSI reconstruction based on tree-ring and
DWI data. This reconstruction was developed by applying PCR analysis across NCC for
the previous 530 years. The reconstruction showed that there were seven extreme dry/wet
events that continued for at least 10 years equally. Two of these dry events, which occurred
in AD 1701–1727 and AD 1985–2011, represent the longest dry phases since AD 1470.
Our data show that the driest year within the study period occurred in AD 1928, which
corroborates the results of previous studies, and was associated with significant economic
and societal decline. Spatial correlation patterns revealed that our new reconstruction has a
significantly negative correlation with temperature, but a significantly positive correlation
with precipitation and scPDSI during AD 1901–2012. We also confirm that moisture changes
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in NCC were modulated by large-scale atmospheric circulation; however, more research is
needed to clarify the relationships between large-scale ocean-land circulation and dry/wet
changes in this region.
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