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Abstract: As the most intuitive manifestation of land use/land cover change, the spatio-temporal
evolution of landscape patterns has significant implications for optimizing regional landscape pattern
and land use management. Based on multi-period remote sensing data, we selected an optimal
scale (570 m) and used the geographic detector model to analyze the spatio-temporal changes in
the landscape pattern of a typical hilly area (Yujiang District, Yingtan City, Jiangxi Province) in
southern China. The results showed that from 2009 to 2018, the area of urban land, other construction
land, rural residential land, and cultivated land expanded by 33.27%, 21.23%, 19.42%, and 1.07%,
respectively. In contrast, the area of grassland, forest land, and water area shrank by 18.18%, 5.41%,
and 2.19%, respectively, over the past 10 years. At the landscape level, the patch shape became
more complex over time, with increased landscape fragmentation and diversity. At the class level,
cultivated land, forest land, and grassland tended to be fragmented, whereas rural residential land
exhibited an aggregation tendency. Slope gradient, gross regional product, and distance from major
highways had a strong ability to explain the spatial differences in landscape pattern change. The
results of this study enable a dynamic understanding of landscape pattern evolution in typical
hilly areas in southern China and provide a reference for landscape pattern optimization in similar
geomorphic settings.

Keywords: landscape pattern; spatio-temporal evolution; geodetector; Yujiang District

1. Introduction

Human land use patterns across spatio-temporal scales influence land use/cover
change, which is most directly reflected in the spatio-temporal evolution of landscape
patterns [1]. A landscape pattern is the arrangement of different types and quantities of
landscape elements in spatial structure and location. It is the ultimate manifestation of
the combined action of natural and socio-economic factors over complex spatio-temporal
scales [2,3]. Landscape metrics can highly generalize and explain landscape pattern change,
providing an important tool to study landscape pattern evolution [4,5].

The rapid development of remote sensing technology and geographic information
systems has enabled research into regional landscape pattern evolution using landscape
metrics based on multi-period land use remote sensing image data, which has become a
popular topic of land use change in landscape ecology. A growing number of studies have
been conducted, including the analysis of land use dynamic evolution, the identification
and evaluation of landscape ecological risk areas, and the prediction of future landscape
pattern development. The previous studies are mainly concentrated in rapidly urbanized
areas and eco-environmentally sensitive and vulnerable areas [6–8].

In China, Ma et al. [9] investigated the dynamic evolution of the landscape pattern of
the Yangtze River Economic Belt and its eco-environmental effects. They found a spatial
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dislocation between regional natural landscape and artificial landscape in terms of the
development level. In contrast with the artificial landscape, the natural landscape showed
decreased aggregation and increased fragmentation and diversity. Additionally, Zuo
et al. [10] characterized the spatio-temporal variation in landscape ecological risk based
on an optimal scale in the southwest mountainous area of Hubei Province, where the
Three Gorges Hydraulic Project is located. An overall downward trend was observed for
landscape ecological risk in the study area, with a staggered distribution of localized high
risk and low risk.

Furthermore, Calvo-Iglesias, M.S.et al. [11] described the change in farmland landscape
patterns across northwestern Spain over the past 40 years based on landscape metrics
analysis, and landscape fragmentation was identified to be the most important factor
leading to the transformation of different types of landscape patches. Despite the myriad of
studies on regional integrated landscape patterns, less is known about the overall landscape
pattern and variation in class-level landscape metrics at the county scale.

Unraveling the key factors driving landscape pattern evolution is necessary to ascer-
tain its underlying mechanisms, which has significant implications for landscape layout
optimization and rational land use arrangement [12]. Kefalas et al. [13] identified distinct
factors driving land use cover change in natural vegetation areas and artificial planting
areas on Mediterranean islands. Ma et al. [14] characterized periodic landscape pattern
changes in the Shule River Basin in northwestern China over the past 30 years. Due
to subjective and objective reasons, it is difficult to collect a full set of the natural and
socio-economic factors that drive landscape pattern change.

Previous research has explored the mechanisms driving landscape pattern evolution
mainly using traditional models based on qualitative analysis, correlation analysis, and
regression analysis, which have limitations such as strong subjectivity, strict application
conditions, and poor scale suitability [15–18]. Compared with the traditional models, the
geographical detector model (geodetector) can more accurately identify the mechanisms
driving landscape pattern evolution, given its ability to detect spatial differentiation. It
determines the relative influence of an independent variable on the dependent variable
based on the similarity in their spatial distribution, and as such, identifies the key factor
driving the spatial differentiation in the dependent variable [19,20].

The Yujiang District, located in northeastern Jiangxi Province, is a transition zone from
the Wuyi Mountains to the Poyang Lake plain in China. As a typical hilly county, Yujiang
District is part of an important passage connecting the mainland to the southeastern coastal
area, so its ecological function cannot be ignored. Based on multi-period remote sensing
data, we selected the optimal scale for landscape analysis of Yujiang District to explore the
spatio-temporal changes in the overall landscape pattern and different landscape classes in
terms of landscape fragmentation, patch shape, and diversity. We additionally adopted the
geodetector to identify the major factors driving landscape pattern evolution in the study
area. Findings of this research advance the understanding of landscape pattern dynamics
in typical hilly areas and contribute to sustainable landscape planning and management as
well as effective use and ecological protection of land resources in southern China.

2. Materials and Methods
2.1. Study Area

Yujiang District (28◦04′–28◦37′ N, 116◦41′–117◦09′ E) is located in the middle and
lower reaches of the Xinjiang River, in Yingtan City, Jiangxi Province, China. It is a narrow
land area that extends from south to north. The terrain is generally high in the north and
south but low in the middle, and it can be divided into the northern hills, central valleys,
and southern hills (Figure 1). The major land use types are cultivated land and forest land.
This area has a subtropical monsoon climate with annual averages of 17.6 °C and 1788 mm
in terms of temperature and rainfall, respectively. By the year 2018, the population had
reached 399,900 and the gross regional product was 13.983 billion yuan. Owing to its
excellent location for transportation, the study area has a total road length of 1231.3 km.
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Figure 1. Geographical location of the study area—Yujiang District, Yintan City, Jiangxi Province, China.

2.2. Data Sources

The 2009, 2013, and 2018 land remote sensing data of Yujiang District were retrieved
from a remote sensing monitoring database of China’s land use provided by the Resource
and Environment Science and Data Center, Chinese Academy of Sciences (https://www.
resdc.cn/, accessed on 5 October 2022). We obtained the data by man–machine interactive
visual interpretation using ENVI software (Harris Geospatial Solutions Inc., Broomfield,
CO, USA) combined with field investigation. The data accuracy was 30 m × 30 m, and the
Kappa coefficients of data interpretation in all three periods were >80%, which met the
application requirements.

According to the land use classification system of the Resource and Environment
Science and Data Center, we classified land use types in the study area using the Extract by
Mask tool in ArcGIS v10.2 software (Environment System Research Institute Inc., Redlands,
CA, USA) based on the boundary vector map of Yujiang District combined with the
actual situation of land use. There were eight land use types: cultivated land, forest land,
grassland, urban land, rural residential land, other construction land, water area, and
unused land. Digital elevation model (DEM) data were downloaded from the Geospatial
Data Cloud (http://www.gscloud.cn, accessed on 5 October 2022) with a spatial resolution
of 30 m.

Socio-economic data (total population and gross regional product of 2009–2018) were
derived from the Statistical Yearbook of the Yujiang District Statistics Bureau. Meteo-
rological data (average annual rainfall and temperature of 2009–2018) were obtained
from the China Meteorological Data Service Center (http://data.cma.cn, accessed on
5 October 2022).

2.3. Land Use Change Analysis

Analysis of the dynamic change in land use types is essential for understanding the
trend of land use change. We used a transfer matrix to analyze the transfer direction and

https://www.resdc.cn/
https://www.resdc.cn/
http://www.gscloud.cn
http://data.cma.cn
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quantity of different land use types in Yujiang District across three periods (2009, 2013,
2018). The general form of the land use transfer matrix was selected based on published
studies [21,22].

2.4. Landscape Metrics and Moving Window Analysis

A range of landscape metrics were used to analyze landscape pattern change in Yujiang
District with regard to landscape fragmentation, shape, and diversity [23]. At the class level,
we selected the largest patch index (LPI), patch density (PD), mean patch area (MPS), edge
density (ED), and landscape shape index (LSI). At the landscape level, we selected the LPI,
PD, ED, MPS, LSI, aggregation index (AI), and Shannon evenness index (SHEI). As such,
landscape pattern change was analyzed from the perspective of landscape fragmentation
(LPI, PD, MPS), patch shape (ED, LSI), and diversity (AI, SHEI) using Fragstats v4.2.1
software (Department of Forest Science, Oregon State University, Corvallis, OR, USA) [24].

Moving window analysis can spatialize and visualize the landscape metrics, for which
the choice of window size is crucial. If the window is too small, the local characteristics of
the landscape may mask its overall characteristics, leading to insufficient image continuity.
If the window is too large, the loss of landscape information may result in fuzzy images [25].
To avoid irrational window size settings that would increase the spatial heterogeneity in
landscape patterns, we set different window lengths and generated the corresponding
change maps of four landscape metrics (LPI, LSI, AI, SHEI). We then used the Create
Fishnet and Extract Multi Values to Points tools of ArcGIS v10.2 to extract landscape metric
values from the created Fishnet Label. Further, we used the GS+ software (Gamma Design
Software, LLC., Plainwell, USA) to simulate the semi-variograms of landscape metrics
under different window lengths and then calculated their nugget–sill ratios to determine
the optimal moving window size.

An odd multiple of 30 m was used as the moving window size and a total of 12 window
radii were set within the interval of 90–810 m (Figure 2). When the window length ranged
between 450 and 630 m, variation in the nugget–sill ratios of LPI, LSI, AI, and SHEI
diminished. Accordingly, 570 m was determined to be the optimal window size for moving
window analysis. The window moved from the upper left of the study area to analyze
the whole study area. The generated landscape metrics map was then analyzed using the
Raster Calculator in ArcGIS v10.2 to obtain the spatial change map of landscape metrics for
2009–2013 and 2013–2018.
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2.5. Landscape Driving Factor Selection and Geographic Detector Model

The evolution of landscape patterns is a historical synthesis of human activities and
natural elements. Considering that Yujiang District is a typical hilly area in southern
China, we selected elevation, slope gradient, and slope direction as natural driving factors.
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As human activities are important factors influencing the landscape pattern, we selected
population density, gross regional product, and distances from major railways, highways,
and waterways as socio-economic driving factors. Additionally, meteorological elements
cannot be ignored for their impact on the overall landscape pattern, so average annual
precipitation and temperature were selected as climate driving factors.

The geodetector developed by Wang et al. [19] can quantitatively describe the stratified
heterogeneity of geographical elements, identify the factors driving spatial differentiation
in geographical phenomena, and determine the relative contribution of various factors.
The model consists of four detector modules: the ecological detector, factor detector,
interaction detector, and risk detector. We used the factor detector module to analyze
the contribution of various factors driving the change in the overall landscape pattern in
Yujiang District. Because this model necessitates the input of a discrete categorical variable
as the independent variable X, we discretized the continuously changing independent
variable factors into 10 categories based on the natural breakpoint method. Then, we
determined the explanatory power of each driving factor X in relation to the spatial change
of class-level landscape metric Y in 2009–2018 based on the q statistic (Equation (1)). The
range of q values is 0 ≤ q ≤ 1, and a larger q value is indicative of a stronger explanatory
power of factor X [26].

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 (1)

where L is the category of driving factor X; Nh and N are the numbers of units in layer h and
in the whole domain, respectively; and σ2

h and σ2 are the variances of class-level landscape
metric Y for layer h and for the whole domain, respectively.

3. Results
3.1. Land Use Change

In 2009, the major land use types in Yujiang District were cultivated land (42.89%)
and forest land (38.02%). Grassland, water area, rural residential land, and urban land
only accounted for 1.19%, 8.14%, 6.21%, and 0.98% of the total study area, respectively. At
this stage, the study area was dominated by agriculture and forestry with a low level of
urbanization (Figure 3, Table 1). In 2018, the land use showed substantial changes, as indi-
cated by the increased area of urban land (by 33.27%), other construction land (by 21.23%),
and rural residential land (by 19.42%), and the decreased area of forest land (by 5.41%),
grassland (by 18.18%), and water area (by 2.19%). In the past 10 years, construction land
area expanded considerably, whereas forest land, grassland, and water areas all decreased.

From 2009 to 2013, urban land and rural residential land encroached on the surround-
ing cultivated land at relatively high rates, and the resulting changes were most pronounced
in urban areas such as Dengbu Town and Jinjiang Town (Figure 4). In total, the area of forest
land, cultivated land, and grassland shrank by 1096.34, 55.83, and 81.34 ha, respectively.
From 2013 to 2018, land use change occurred at remarkably higher rates than that observed
between 2009–2013. Forest land and grassland showed the largest transfer-out area of
817.55 and 119.66 ha, respectively. In contrast, the area of urban land and rural residential
land expanded by 208.6 and 277.72 ha, respectively. Spatially, the conversion of cultivated
land and grassland to urban land mainly occurred around the urban area and other central
towns, extending in a divergent manner to the northern and southern mountainous areas.
The conversion of other land use types mainly occurred in the central flat area, with low
intensity but high dispersity.
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Table 1. Change of land use structure in Yujiang District from 2009 to 2018.

Year Variable Cultivated
Land

Forest
Land

Grass
Land

Water
Area

Urban
Land

Rural
Residential

Land

Other
Construction

Land

Unused
Land

2009
Area (hm2) 39,936.34 35,403.39 1105.71 7581.81 913.03 5778.28 2027.72 359.73
Ratio (%) 42.89 38.02 1.19 8.14 0.98 6.21 2.18 0.39

2013
Area (hm2) 39,880.51 34,307.05 1024.36 7562.00 1008.20 6622.76 2337.91 363.21
Ratio (%) 42.83 36.85 1.10 8.12 1.08 7.11 2.51 0.39

2018
Area (hm2) 40,362.47 33,489.49 904.70 7415.85 1216.79 6900.48 2458.19 358.03
Ratio (%) 43.35 35.97 0.97 7.96 1.31 7.41 2.64 0.38

2009–2013
Area of change (hm2) −55.83 −1096.34 −81.34 −19.81 95.17 844.48 310.19 3.48

Change ratio (%) −0.14 −3.10 −7.36 −0.26 10.42 14.61 15.30 0.97

2013–2018
Area of change (hm2) 481.95 −817.55 −119.66 −146.15 208.60 277.72 120.28 −5.19

Change ratio (%) 1.19 −2.44 −13.23 −1.97 17.14 4.02 4.89 −1.45

2009–2018
Area of change (hm2) 426.13 −1913.89 −201.01 −165.96 303.77 1122.20 430.47 −1.71

Change ratio (%) 1.07 −5.41 −18.18 −2.19 33.27 19.42 21.23 −0.47

3.2. Landscape Pattern Change
3.2.1. Landscape Fragmentation

From 2009 to 2018, the LPI and MPS decreased by 7.00% and 12.44%, respectively,
whereas PD increased by 14.21% at the landscape level, indicating an increasing trend of
landscape fragmentation in the study area. At the class level, the LPI mainly increased in
urban land, rural residential land, and other construction land, whereas the opposite trend
was observed for grassland, cultivated land, and water area (Figure 5). Among them, the
LPI of rural residential land showed the largest increase, from 0.2067 to 0.3927 (89.99%),
with a 14.35% increase in the LPI of other construction land. The LPI of grassland decreased
the most, from 0.08 to 0.04 (nearly 50%), with a 6.9% decrease in the LPI of cultivated land.

In the past 10 years, PD showed an upward trend across all land use types, with
the largest increase recorded for urban land (450.78%), followed by forest land (27.12%),
grassland (24.42%), other construction land (22.58), and rural residential land (15.03%;
Figure 5). Excluding rural residential land, the MPS of all land use types variably decreased,
and the largest decreases were observed for urban land (75.89%), grassland (34.15%), and
forest land (25.00%).

From 2009 to 2013, the change in the LPI was concentrated near the urban area, in
contrast to sporadic changes in other areas. From 2013 to 2018, the LPI changed dramatically
in the central flat area and around traffic trunk lines, with minimal change in the northern
and southern areas (Figure 5). Overall, landscape fragmentation increased in the study
area over the 10-year period and the center of change was around the urban area and in
the central flat area, but a minimal change in landscape fragmentation was noted in the
southern and northern mountainous areas with less human disturbance.

3.2.2. Landscape Patch Shape

From 2009 to 2018, both the LSI and ED increased at the landscape level, by 4.31% and
4.83%, respectively, which indicates that the overall landscape patch shape became more
complicated (Figure 6). At the class level, the LSI values of different land use types showed
variable increases in the past 10 years, among which urban land had the largest increase
(50.53%). A smaller increase was observed for the LSI values of other construction land
and rural residential land, which increased by 11.45% and 4.82%, respectively. The ED of
urban land increased by 73.77%, which is much larger than the increase observed for the
ED of other construction land and rural residential land (22.6% and 14.56%, respectively).
The results indicate that the change in landscape patch shape in the study area was mainly
affected by the change in urban land, other construction land, and rural residential land.
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The spatial changes of the LSI and ED were mainly concentrated in the urban area and
around major traffic arteries, which represented the primary area of patch shape change in
Yujiang District. However, the LSI exhibited a decreasing trend in the central urban area
during 2013–2018 compared with that of the 2009–2013 period (Figure 6), indicating the
regularization of landscape shape.
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3.2.3. Landscape Diversity

From 2009 to 2018, the AI decreased by 0.75% whereas SHEI increased by 2.51%
at the landscape level, indicating an increasing landscape diversity in the study area
(Figure 7). However, the intensity of the diversity change was lower than that of landscape
fragmentation and patch shape change. At the class level, the AI values of most land use
types decreased over the past 10 years, except that the AI of rural residential land increased
by 1.03%.
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3.3. Factors Driving Landscape Pattern Change

Using the factor detector module of the geodetector, we evaluated the explanatory
power of various factors driving the spatio-temporal evolution of the landscape pattern in
the study area. Based on four selected landscape metrics, the explanatory power of 10 fac-
tors was ranked in the order of X1 > X4 > X9 > X2 > X10 > X5 > X8 > X3 > X6 > X7 (Figure 8).
The factors represented by DEM (X1, X2) which indicates natural surface morphology, as
well as gross regional product (X4, X5) and distance from major traffic highways (X9) which
reflect economic development status, had strong influence on landscape pattern change.
The results indicate that, in addition to natural conditions, human socio-economic activities
posed a profound impact on landscape pattern change. Among the natural factors, average
annual temperature and rainfall had a limited ability to explain landscape pattern change.
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Figure 8. The q-value radar map of factors driving landscape pattern evolution in Yujiang District. X1:
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Distance from major highways; X10: Distance from major waterways. LPI: largest patch index; LSI:
landscape shape index; AI: aggregation index; SHEI: Shannon evenness index.

4. Discussion

In the past decade, the landscape pattern of Yujiang District has changed prominently,
with a strong dependence on local topography and geomorphology. The overall terrain of
the study area is high in the north and south, and gradually becomes gentle toward the
central part. Among its diverse landforms, hills followed by mountains are predominant.
As a typical hilly area in southern China, it has an average elevation of 100–300 m. Therefore,
it is unsurprising that elevation (X1) and slope gradient (X2) represented by DEM are the
key natural factors contributing to the spatio-temporal changes of landscape pattern, which
is consistent with the results of previous studies [27,28]. To ensure a rational layout of
landscape classes such as production, life, and ecology, key constraints that drive landscape
pattern evolution must be taken into account and the scientific layout should be adjusted
based on local conditions [29].

The reform policy of the rural homestead system is another key factor influencing
landscape pattern change in the study area [30]. In 2015, Yujiang District was listed as one
of the first pilot counties to reform the rural homestead system. Before the reform, local
farmers arbitrarily built houses with no planning, keeping houses in close proximity to
neighboring houses. There were serious problems such as households having more than
one house sites and building new houses without demolishing the old ones. All these
phenomena led to disorderly expansion of villages. In recent years, Yujiang District has
vigorously promoted the reform of the rural homestead system to ensure one homestead
for one household and unified planning. The considerably larger increase in LPI (89.99%)
relative to that in PD (15.03%), together with the minor increase in MPS (3.64%) and AI
(1.03%) from 2009 to 2018, indicates aggregation of rural residential land in the study
area. This demonstrates that the rural homestead system reform policy is an essential
factor contributing to landscape pattern optimization in rural residential land [31]. Our
finding is consistent with the conclusion of Fu et al. who investigated the spatio-temporal
changes in rural residential land in Yujiang District before and after the rural homestead
system reform [32]. Further, Yujiang District should continue to promote a new round
of rural homestead system reform and keep optimizing the landscape pattern of rural
residential land.

Appropriate selection of driving factors and analysis models is the key to characteriz-
ing landscape pattern evolution in a given area [33]. To unravel the mechanisms that drive
landscape pattern change in Yujiang District, we quantitatively explain the influence of
various factors on landscape pattern evolution using the factor detector module of geode-
tector. It should be noted that our study still needs to be further improved. First, a range of
natural factors can be selected as independent variables, and the explanatory power of the
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selected variables may be enhanced by analyzing their influence under interactions with
unnatural factors. Additionally, statistics and machine learning can be integrated to build
boosted regression models for correlation analysis between various influencing factors [34].
For example, based on a boosted regression tree model, Wu et al. determined the major
factors influencing the wetland landscape pattern in the Shuangyang River Basin [35].

From the perspective of landscape ecology, the combination of scale effect analysis
with spatial landscape pattern metrics can prevent the loss of information caused by
landscape heterogeneity [36]. In this study, we have fully considered the relationship
between landscape pattern characteristics and scale, and set a total of 12 different moving
window sizes to determine the optimal scale for the study area. This provides effective
methodological support for a thorough analysis of the spatio-temporal evolution of the
landscape pattern in typical low-mountain and hilly areas in southern China. It should be
noted that there are certain differences in the responses of various landscape pattern metrics
to scale effects, and some subjective factors may interfere with the identification of the
change interval of inflection points [37]. Therefore, future studies should pay continuous
attention to theoretical and methodological exploration of the framework for landscape
scale–process–pattern analysis. It is also necessary to improve the accuracy of spatio-
temporal evolution analysis of landscape patterns by a combination of geography- and
ecology-related models and methods.

5. Conclusions

This study quantified and visualized the processes of land use and landscape pattern
change in a typical hilly area in southern China from 2009 to 2018 using ArcGIS v10.2 and
Fragstats v4.2.1 software. The optimal moving window size suitable for the study area
was determine using semi-variogram analysis conducted with GS+ software, which could
eliminate the effect of scale on the original landscape pattern change. Further, the key
factors driving landscape pattern change were identified by using geodetector.

Over the past 10 years, the dominant landscape classes (cultivated land, forest land)
remained unchanged in Yujiang District, whereas other landscape classes changed distinctly.
The expansion of urban land, other construction land, and rural residential land was mainly
concentrated in the urban area and central towns as well as near the major traffic lines. In
contrast, the area of forest land, grassland, and water area shrank over time.

Using an odd multiple of 30 m as the moving window size, a total of 12 window radii
were set within the interval of 90–810 m. The variation in the nudge–sill ratios of landscape
metrics diminished with window lengths of 450–630 m. Accordingly, 570 m was selected as
the optimal window size for the analysis of landscape pattern evolution.

At the landscape level, the study area had a more complex patch shape over time, with
increased landscape fragmentation and diversity. At the class level, cultivated land, forest
land, and grassland all showed landscape fragmentation, whereas urban land exhibited
scattered expansion. The aggregation of rural residential land was closely related to
vigorous promotion of rural homestead system reform and enhanced intensification of
rural land use.

The land use structure and landscape pattern change in the study area were mainly
driven by topographic, socio-economic, and traffic factors. Natural factors such as average
annual temperature and rainfall had minimal influence on the overall landscape pattern.
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