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Abstract: Using regression-based, bootstrapped equivalence tests, and remeasured inventory plot
data from thousands of plots across California, we found that the Forest Vegetation Simulator (FVS),
as typically used out-of-the-box, overpredicts carbon sequestration in live trees that remain alive ten
years later by 27%, on average. We found FVS growth prediction sensitive to forest type and FVS
variant, with the largest overpredictions occurring in stands within the North Coast variant, growing
on the lowest site class, having ages that are unknown or between 50 and 100 years, and that are
within governmentally designated reserved areas or on national forests. Direction and magnitude of
errors are related to the stand attributes; these relationships point the way towards opportunities
to improve the underlying growth models or calibrate the system to improve prediction accuracy.
Our findings suggest that forest managers relying on out-of-the-box FVS growth models to forecast
carbon sequestration implications of their management of California forests will obtain estimates that
overstate the carbon that can be sequestered under light-touch or caretaker management, potentially
leading to management decisions that fail to deliver the expected carbon sequestration benefits—a
failure that could take a long time to recognize.
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1. Introduction

In response to the threat of climate change, climate policies often highlight forest
ecosystems as both a critical carbon sink and at risk from increased environmental stress
accompanying climate change [1,2]. Policies for financing sustainable forest management
across borders have evolved from programs aimed at reducing deforestation in the global
south (e.g., Rainforest Alliance, REDD) to programs crediting forests anywhere for the
carbon they store and sequester via carbon markets (e.g., REDD+, California Compliance
Market Forest Offset Protocol). The scale of capital interested in reducing global emissions,
and the potential for relatively cheap sequestration and storage in forests as offsets, have
placed a spotlight on forests as Natural Climate Solutions [3]. In practice, revenue from
carbon offsets can pay forest owners for keeping forests intact (avoided conversion), ex-
panding or preventing loss of forests through re/afforestation, or increasing density of
forest stocks through improved management [4]. The most common type of carbon offset
by number of projects and tons credited in the United States for both the compliance and
voluntary markets is this latter approach to offsets known as Improved Forest Management
(IFM [5]. IFM offsets assign credit to changes in management (e.g., increasing rotation
length, reducing harvest intensity, etc.) that increase carbon sequestered and provide
an associated climate benefit. Outside of monetizing carbon for forest management, the
largest forest ownership by area and volume in the United States is the network of public
forestlands managed by the Forest Service, which are not currently eligible for carbon
credits. Despite the absence of carbon sequestration from the current list of objectives
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guiding the agency, the Forest Service recognizes the importance of maintaining forests
as a net carbon sink; over the past decade, the Forest Service has indicated that increasing
carbon sequestration is part of their plan to mitigate climate change [6]. Arguably, the
policy interest in forests and the need for accurately characterizing carbon dynamics is now
greater than it has ever been.

Developing carbon-focused management plans and participating in a market for
carbon credits requires consistent and accurate accounting of forest carbon stores and
sequestration into woody biomass. For IFM offsets sold in the California Compliance
Market, this is more than USD 1.7 billion worth of forest offsets predicated on the ability of
projects to maintain the initial above-average inventory [7]. Despite progress in developing
comprehensive forest carbon stock and flux maps, data necessary for the more granular,
project-level decision making needed for carbon markets are often limited in geographic and
temporal extent [8]. The most accurate practical approach to assessing carbon stocks relies
on forest inventory measurements of tree height and diameter. Accurate flux measurement
depends on either continuous measurement of canopy gas exchange or taking the difference
of two or more stock measurements collected at different times, which is more temporally
coarse but also more feasible over large areas. Retrospective analyses based on forest
inventory assessments of carbon dynamics have only recently become possible with the
availability in the U.S. of remeasured forest inventory data from a spatially balanced sample
of all forested lands [9]. To credit current and future carbon sequestration, offset markets
rely on periodic forest inventories and selected, peer-reviewed growth and yield models.
For example, an IFM offset project can be inventoried as infrequently as once every twelve
years. Over that interval, the project can rely on growth and yield models to estimate carbon
stocks and flux to document management tradeoffs against anticipated carbon benefits [10].
As forest carbon remains central to climate policy, the accurate performance of these growth
and yield models should also be viewed as central to climate policy. Validating the accuracy
of growth and yield models is an important step in connecting forest management with an
honest characterization of climate benefits to support informed decisions about forests.

The Forest Vegetation Simulator (FVS) is one of the models approved by all carbon
offset registries that accept Improved Forest Management [11–14]. The FVS has been
developed and supported by the United States Department of Agriculture Forest Service
for over three decades, developed to evaluate treatments to help managers make plans that
address various forest objectives. This individual tree, distant-independent (not requiring
spatial referencing of trees) empirical growth and yield model is widely used to predict
stand dynamics, with and without management, in forests covering all ownerships across
the United States [15]. The base FVS model predicts growth in tree diameter and height
and the probability of mortality over a user-selected period for each tallied tree within
a sampled stand. The aggregated projections of tree growth and mortality can be used
to estimate future carbon stocks and stock change, as a proxy for carbon flux. Several
extensions to the FVS have been developed to account for changes in growth and carbon
dynamics that might be expected under climate change, fire disturbance, and infestations
by insects and pathogens [16–18]. The full FVS system can be used to evaluate, for example,
how forest carbon dynamics and other objectives for the forest would respond to different
choices for rotation length, stand density management, and harvest operations to support
strategies that maximize credit for forest carbon sequestration [19].

Forest management strategies aimed at maximizing carbon credits may vary by lo-
cation and context. This results in IFM carbon offset protocols avoiding prescriptive
specifications about what management qualifies as “improved”. Instead, they offer latitude
for demonstrating, via rigorous analysis, both the current trajectory of carbon stocks and
how this would change under silviculture designed to enhance climate benefits. Silviculture
enhancing climate benefits could include increased retention of previously sequestered
carbon or new sequestration, such as storage of additional carbon both in the forest and
in harvested wood products and solid waste disposal sites. Some researchers who use
the FVS to strategize which types of management can optimize future carbon have re-
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ported that limiting forest management through avoiding harvest, lengthening rotations,
or maintaining near-maximum retention will result in greater climate benefits via reduced
emissions and increased sequestration [20,21]. The FVS was developed for evaluating
different management scenarios, and yet carbon-focused management often suggests non-
management, most notably on national forests. The validity of FVS-based analyses depends
on both analyst assumptions and the FVS generating accurate predictions of forest carbon
trajectories. As the FVS is increasingly used to simulate growth without management,
our expectations concerning continued (baseline) carbon sequestration are dependent on
its predictions.

As resource decisions with long-term consequences for the global climate are increas-
ingly reliant on models like the FVS, the need for robust model validation that exposes
model bias and error has never been more important. A recent uptick in publications
addressing model validation notwithstanding, fewer than one percent of published mod-
eling studies focus explicitly on validation [22], perhaps owing to limited access to the
consistently measured, longitudinal forest data that is essential for the robust evaluation of
model performance. The recently published remeasurement data from permanent Forest
Inventory Analysis (FIA) plots are ideal for evaluating the validity of FVS growth pre-
dictions, as they provide a spatially balanced, statistically representative foundation for
assessing FVS performance for multiple variants, forest types, and myriad sizes and species
of trees [17].

Previous evaluations of the FVS reported both under- and overpredictions of tree
growth, with sign and magnitude varying by model variant, species, and tree size [23–27].
An important motivation for evaluating errors in FVS predictions is to identify conditions
where it may be necessary to recalibrate and otherwise improve the model. In some cases,
when deviations between predicted and actual growth exceed what is needed for the FVS
to be useful, re-engineering of model components may be advisable [28]. The FVS is not
one model; each of its 22 variants applies to a non-overlapping, geographically distinct area
within the United States, and with multiple component models, parameterizations, and
assumptions believed to be appropriate for the species, forest types, and environmental
attributes within the area to which the variant applies [17]. Only a few of these have been
formally validated against observed tree growth. Notably, we were unable to find any
studies evaluating FVS predictions of tree growth in California. This study appears to be
the first formal validation of multiple FVS variants using a consistent, spatially balanced
sample of longitudinal observations of forest growth, which presents the opportunity to
compare prediction errors across variants, as well as species and stand characteristics.

This paper reports the performance of the FVS when used to project forest carbon
stocks and flux. This is an important area of research given the increasing use of FVS as a
carbon calculator in support of carbon market offset projects. We evaluated the four FVS
variants that account for 99% of California’s forest land and for which no FVS validation
exists. Specifically, we sought to address the following questions:

1. Are 10-year FVS projections of carbon stocks equivalent to field measured carbon stocks?
2. Are FVS predictions of growth in carbon equivalent to observed growth over 10 years?
3. If stocks or growth are not equivalent,

a. Which types of forest lands generate predictions with the greatest departures
from observed values?

b. Which species and tree sizes lead to predictions with the greatest departures
from observed values?

2. Materials and Methods
2.1. Study Area Description

We analyzed data from 3340 FIA plots that met criteria for inclusion (plots for this
analysis sampled forest land that remained forest land, contained live trees at the initial
visit, and were neither treated nor disturbed by fire), downloaded from the public Forest
Inventory and Analysis Database (FIADB) repository (version 7.0, California file, part of
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the Pacific Northwest Work Unit, at https://apps.fs.usda.gov/fia/datamart/datamart.
html (accessed on 10 February 2023)) representing nearly all forested lands in California
(Figure 1). These forests span a broad range of productivity classes and forest types, from
redwood to California mixed conifer, and include dry forests dominated by oak and pinyon–
juniper, where carbon stocks, and growth, are typically much lower. Based on the FIA
measurements at the initial visit (2001–2009), when these plots were installed under the
annual inventory design, which samples the forest over a ten year cycle via annual panels
of plots that are subsequently remeasured in the next ten-year cycle, most forest carbon
can be found on Federal lands, except in the Klamath Mountains (NC) variant, where
private forests hold more carbon (Table 1). The largest carbon stocks tend to be on forests
in the 50–100-year age class, perhaps because these account for the plurality of forest area,
except for in the Western Sierra Nevada (WS) variant, where carbon stocks are greatest in
100–150-year-old forests. Including the entire state in this analysis offered the opportunity
to evaluate the performance of multiple FVS variants across diverse forest landscapes.
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Table 1. Live tree carbon stocks observed at the remeasurement visit and flux calculated as stock
change between the installation and remeasurement visits, computed using FIA’s system of allometric
models for tree carbon for trees observed, at both visits, to be live and growing on land classified as
forest, by stand age class and variant, and proportions of carbon stocks by owner group (dark green
is national forest, light blue is other public, and grey is private).

Summary Carbon Stock by Variant and Stand Age

FVS Variant Ownership
Proportion

Stand Age
(Years) n

Aboveground
Live Carbon
(Mg/Hectare)

Inland California
and Southern
Cascades (CA)
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50–100 327 7,701,272

100–150 275 8,853,684
150–200 160 4,932,200

>200 201 6,252,942
Multi-age or

unknown 230 1,603,264

Total 3126 73,296,163

2.2. The Forest Inventory and Analysis Database Description

To model forest growth in the FVS, and to discover the drivers of model validity, we
relied on data from three tables in the FIA database (The Forest Inventory and Analysis
Database: Database Description and User Guide for Phase 2 (version 9.0.1)): Plot (for loca-
tion attributes such as elevation and applicable FVS variant), Condition (for site attributes
such as ownership, forest type, site class, and evidence of disturbance and management),
and Tree (species, diameter, and height) [29]. Most of these data are collected in the field by
experienced forest inventory crews operating within a rigorous quality assurance frame-
work; computed attributes (e.g., tree volume and carbon) are calculated as part of the FIA
compilation in the months following completion of an annual data collection panel.

The FIA’s average sampling intensity in California is a nominal one plot per
2387.6 hectares. Each plot consists of three component plot sizes, the area of which is
distributed equally around four sample points: four 2 m radius microplots, totaling 1/75th
acre, to sample trees 2.5–12.6 cm dbh; four 7.3 m radius subplots, totaling 1/6th acre, to
sample trees between 12.7 cm and 60.96 cm; and four 17.9 m radius macroplots, totaling 1
acre, to sample trees larger than 60.96 cm in diameter (Supplemental Figure S1). On plots
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containing more than one ownership class, land use, forest type, reserve status, stand size
class, or stand density class, these differences are mapped in the field, subject to minimuim
size and width requirements, as distinct “conditions”, each with its own set of condition
attributes and a “condition proportion” that accounts for the mapped area of the condition
relative to the full plot footprint. Plots without such condition mapping have a single
condition.

We modeled each FIA condition as mapped at the installation visit (Time 1) in the
FVS as a “stand”, and all the trees projected by the FVS on that condition, or observed at
the remeasurement, were assigned the site context values observed on the condition at
the Time 1 visit. Carbon stocks and carbon growth of all trees on a condition are summed,
weighted by the inverse of the plot size on which they were sampled and adjusted for the
condition proportion observed at Time 1 to arrive at carbon stock and flux due to growth
for the condition. We refer to FIA conditions as stands, consistent with FVS terminology, for
the remainder of this paper. To examine the role of tree size and species on FVS prediction
performance, we also performed a tree-level validation of carbon stock and flux.

Under the enhanced annual inventory system [30] that began in California in 2001, FIA
plots in the western US are visited and assessed at ten-year intervals, with ten percent of the
plots (one panel) receiving a visit each year. This analysis includes all FIA plots in the annual
inventory system that were first assessed in one of the nine panels assessed in 2001–2009
and remeasured approximately ten years later (remeasurement intervals for 9 percent of
plots depart from the intended 10 years, typically by not more than 1–2 years, owing to
delays presented by logistical challenges such as denied access and wildfire closures).

We sought to test the FVS’s capacity to predict forest growth in the absence of manage-
ment and large-impact disturbance because, while those influences can be modeled in the
FVS and the performance of those model functions is of interest, the specific form of those
disruptions to growth (e.g., fire severity, kind of thinning regime) could not be determined
from the FIA data with sufficient precision to parametrize in FVS simulations. Stands for
which crews implementing the remeasurement visit coded fire disturbance or any kind of
human-initiated tree removal or surface disturbance (e.g., prescribed fire, chaining) during
the remeasurement period were dropped, as were stands that changed status from forest to
non-forest (conversion) or vice versa (reversion) between inventory visits, based on codes
in FIADB’s TREE_GRM_MIDPT table. These filtering rules removed 709 stands, mostly
owing to fire disturbance or management activity. Where stands were coded as having
≥25% of the trees or sample area affected by insects, disease, weather damage, or geologic
disturbances damage between inventory visits, we coded a binary, non-fire disturbance
attribute to have available as an explanatory factor but did not drop them from the analysis
set. Stands that had any type of observable treatment during the remeasurement period
were removed to ensure that comparisons with our “grow-only” FVS model runs would
include only stands that did, in fact, grow-only. The ten percent of live trees that, for a
variety of reasons (e.g., forking, swelling, an active wasp nest), had diameter measured
at other than breast height at one or both visits, as indicated by the “Diameter Check”
code in the Tree table, were removed because diameter is a critical input for FVS growth
simulations and the FVS is not designed to adjust diameters collected at non-standard
heights (Figure 2). These trees were removed only after the FVS modeling so that their
presence as competitors for resources would be reflected in modeled stand growth. The
filtered dataset contains 69,480 trees on 3024 stands representing 42 different forest types
and located as all or portions of 2920 plots.



Forests 2023, 14, 604 7 of 21

Forests 2023, 14, 604  7  of  22 
 

 

them from the analysis set. Stands that had any type of observable treatment during the 

remeasurement period were removed to ensure that comparisons with our “grow-only” 

FVS model runs would include only stands that did, in fact, grow-only. The ten percent 

of live trees that, for a variety of reasons (e.g., forking, swelling, an active wasp nest), had 

diameter measured at other than breast height at one or both visits, as indicated by the 

“Diameter Check” code in the Tree table, were removed because diameter is a critical in-

put for FVS growth simulations and the FVS is not designed to adjust diameters collected 

at non-standard heights (Figure 2). These trees were removed only after the FVS modeling 

so that their presence as competitors for resources would be reflected in modeled stand 

growth. The filtered dataset contains 69,480 trees on 3024 stands representing 42 different 

forest types and located as all or portions of 2920 plots. 

 

Figure 2. Data and workflow diagram for validation analysis. 
Figure 2. Data and workflow diagram for validation analysis.

2.3. Modeling Tree Growth with the Forest Vegetation Simulator

FIA data for the 2001–2009 panels were prepared for modeling in the FVS by loading
them into the Bioregional Inventory Originated Simulation Under Management (BioSum)
version 5.87 software, which assigned the correct FVS variant for each plot and generated
FVS input files for each variant that could be used to perform a grow-only simulation for the
remeasurement period (Figure 1) [31]. There were 1301 stands in the WS variant, 867 stands
in the Inland California and Southern Cascades (CA) variant, 603 stands in the Klamath
Mountains (NC) variant, and 347 in the South Central Oregon and Northeast California
(SO) variant. We did not model the 16 stands in the Central Rockies (CR) variant because
that variant contains <1% of eligible stands in California and any conclusions reached
based on such a small sample would not be generalizable to the variant, which covers many
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states. The four variants (WS, CA, NC, and SO) were combined with what turned out to
be the actual (as opposed to targeted 10-year) remeasurement periods (from as short as 8
to as long as 12 years) to create 18 variant/remeasurement period combinations that were
simulated separately with appropriate specifications for the variant and growth period.

To evaluate FVS performance in estimating volume and carbon growth in live trees
that remained alive, and volume and carbon stocks at the end of the growth period, we
initiated an FVS simulation in the Suppose user interface (version 2.08) with no forest
management activities—what we call a “grow-only run”. We supplied all required and
virtually all optional FVS stand and tree-level inputs (e.g., diameter, height, crown ratio,
and, via computations within BioSum, FVS compatible site index) (Figure 2). We avoided
any customization or adjustments. Although some users have developed custom adjust-
ments (e.g., overrides to the maximum allowable stand density index for a species via
FVS’s SDIMAX keyword) to achieve more realistic projections, we chose not to use these,
consistent with our goal of evaluating the performance of the FVS “out-of-the-box”. We
also did not provide the previous diameters or heights that FVS can use as a basis for
model calibration, because these were not consistently available in our dataset, which
comprised FIA initial installation visit data, and are not typically available for most users.
The simulations projected tree growth over the remeasurement period, then “cut” all trees
so that when “cutlists” were subsequently loaded into BioSum, volume and biomass would
be automatically calculated via FIA-curated equations embedded in BioSum. This ensured
that carbon estimates for both projected and observed growth in tree diameter and height
would be calculated via the same system of equations. The purpose of this validation was
to compare the policy-relevant predictions (i.e., of volume and carbon) associated with
modeled diameter and height growth, not the impact of volume and biomass allometry
choices by the FIA and FVS programs.

2.4. Tree-Level Carbon and Volume Stocks and Growth

To evaluate nominally 10-yr predictions of carbon stocks, we compared live tree,
non-foliar, above-ground carbon, calculated as half of DRYBIOT (total above-ground tree
biomass, oven-dry weight), computed using PNW-FIA’s standard equation system, for tree
diameters and heights projected from Time 1 (the installation visit) by FVS to the measured
diameters and heights of those trees at Time 2 (the FIA remeasurement visit). Volume
growth predictions were based on PNW-FIA’s VOLTSGRS attribute (gross volume total
stem, which includes all bole wood from ground to tip). We expected that projected stocks
would not differ greatly from observed stocks for such a short (~10 years) projection period
because for stands free of disturbance and treatment, the predicted growth increment
would typically be small relative to stocks, and most of the variation in Time 2 stocks
would track variation in Time 1 stocks. Of greater interest is the performance of the FVS
in predicting carbon accumulation, in other words, the rate at which carbon becomes
sequestered in live trees. We calculated this, for volume and carbon, as “Annual Growth
Increment” (Equation (1)).

Annual Growth Increment
(

Mg/ha

yr

)
=

[FIA Time 2 or FVS Modeled − FIA Time 1](Mg/ha)

Remeasurement period length(yr)
(1)

Regional calculations of biomass for each tree in the PNW FIA unit derive bole (stem)
wood biomass from cubic foot volume (VOLTSGRS) and species-specific wood density [32];
branch and bark biomass are calculated from equations developed for that tree’s species or
a related one [33,34]. Carbon and volume are closely related because bole wood, the basis
for volume calculation, accounts for about 80 percent of the carbon in the above-ground
portions of a tree, on average, and 65 percent when also considering the belowground por-
tions. All units not in Système International d’unités (SI) were converted before analyzing
results using the “measurements” package in R [35].
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tree bole wood carbon (Mg) =


(

Volume( f t3)× wood density
(

lbs
f t3

))
2000

(
pounds

short ton

)
/0.9071(

short ton
long ton

) (2)

2.5. Stand-Level Carbon and Volume

FVS projected and FIA Time 2 observations of tree volumes and carbon were aggre-
gated to stand (FIA condition) level as weighted sums using the ratio of trees per acre
unadjusted (TPA_CURR_UNADJ) and condition proportion (CONDPROP) from Time 1 as
the weight (Equation (3)). TPA_CURR_UNADJ is the inverse of the plot size on which a
tree was sampled; for example, a tree between 12.7 cm and 60.96 cm in diameter at Time 1
was sampled on a 1/6-acre subplot, so it would have TPA_CURR_UNADJ = 6. However,
if that tree existed on a condition covering only half of the plot (CONDPROP = 0.5), then
for the purpose of carbon density calculation on a per-acre basis that sample tree repre-
sents 12 trees. Volume and carbon were calculated as a density (i.e., expressed on a per
hectare basis).

Stand stock or growth = ∑
all trees

tree stock or growth × TPA_CURR_UNADJ
CONDPROP

(3)

For both Annual Growth Increment and Time 2, we removed extreme outliers (ob-
servations that exceeded the 3rd quartile plus three times the interquartile range [IQR])
from the remainder of the analysis as they do not appear to be linked to any aspect of FVS
projection. Excluding these extreme outliers removed less than 3% of observations, for a
total of 3118 trees that were outliers due to either the FIA observation or the FVS prediction.

2.6. Validation through Evaluation of Bias and Accuracy

The first validation diagnostics are numerical descriptions of bias and accuracy of
carbon and volume growth and stock values. Bias, or the systematic error, is the average
deviation of repeated estimates from the true value (Equation (4)) [36]. Bias shows the
direction of systematic model deviation: in this context, negative signs for bias mean that
FVS overpredicts the growth observed on FIA plots. The RMSE is also scale-dependent
but will always be positive—it is a measure of accuracy, sensitive to outliers, where higher
RMSE values indicate lower model accuracy (Equation (5)). Bias and RMSE are the first
steps in understanding FVS model accuracy relative to the FIA observations and, in the case
of bias, the direction of model deviation. Bias and RMSE are reported for the stand-level
carbon and volume Time 2 stocks, the corresponding annual growth increments, and a
relative growth measure, defined here as percent of initial (Equation (6)).

Bias =
n

∑
i=1

(actuali − predictedi)/n (4)

RMSE =

√√√√ n

∑
i=1

(actual(FIA)i − predicted(FVS)i)
2

n
(5)

Percent o f Initial =
time 2 (predicted or observed)

time 1 measurement
× 100 (6)

2.7. Equivalence Tests

Equivalence testing has been demonstrated as a robust method for evaluating model
outputs [37,38]. This approach reverses the conventional null hypothesis assumption that
corresponding sets of modeled and observed data are similar and assumes, instead, that
they are distinct, thereby shifting the burden of proof onto the modeled data [37]. To
test this hypothesis of dissimilarity, a regression-based, two one-sided equivalence test
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(TOST) compared the observed data with the mean-shifted FVS modeled data. This TOST
is repeated twice: once to compare intercepts and again to compare the slope against a 1:1
slope. The intercept TOST tests for agreement between the mean observed and predicted
value. The slope TOST tests for agreement between the plot of modeled and observed data
and a 1:1 slope. A slope from the fitting of the modeled to observed data that is near 1
indicates high model accuracy across the range of observations and suggests validation of
model structure—or that the model is accurate for the “right” reasons [28,37].

H0. The observations are dissimilar; FVS is not predicting FIA-observed values within the defined
Smallest Effect Size of Interest (SESOI) (e.g., +/−10%) of FIA observations for slope or intercept.

H1. The observations are similar, FVS is predicting FIA-observed values within the SESOI of
FIA observations.

The TOST evaluates equivalence by treating model underprediction or overprediction
as two independent tests; model predictions failing on just one side of the test means the
model is not equivalent. The Smallest Effect Size of Interest (SESOI) sets the “cutoff” level
of equivalence expressed as a percentage deviation from the mean observed value. This
SESOI value is selected before conducting a TOST and can be interpreted as the maximum
acceptable difference between observed and predicted values before the model would be
considered not capable of offering reliable predictions for the purposes for which it is used.
We conducted three TOSTs, with equivalence thresholds of 5%, 10%, and 25% that are
consistent with previous validations of FVS predictions of tree growth [23,28,37]. We per-
formed a non-parametric bootstrap with 1000 replications to develop confidence intervals
around our observation means to see if the predictions fall within our region of equivalence
using the “equivalence” package in R Studio using an alpha level of 0.0125 [38–40]. If
our SESOI-constructed Equivalence Levels do not fall within the bootstrap-constructed
Confidence Levels, then the null hypothesis of dissimilarity is supported. A TOST rejection
of the null hypothesis of dissimilarity for slope or intercept at either equivalence level can
be interpreted as an equivalence between FVS predictions and FIA observations at that
equivalence level. The null hypothesis of dissimilarity should be rejected for both slope
and intercept for a model to be considered equivalent.

2.8. Using Stand-Level Models to Diagnose Systemic Forest Vegetation Simulator
Prediction Errors

Because land management style and vegetation type may account for patterns of
over-or underprediction, investigation of these patterns could highlight opportunities for
model refinement. We identified five condition-level variables that might drive FVS errors:
(i) FVS variant, (ii) site class, (iii) stand age, (iv) reserve status, and (v) land ownership. We
transformed stand age as a categorical variable by classification into 50-year bins.

To evaluate the influence of these five variables on model error, we fit a multiple linear
regression model. This regression predicts carbon growth increment using potentially
explanatory stand-level variables and interaction terms for whether the data point is
observed or modeled. Adding interaction terms allow us to fit a linear model with different
effects for the FVS and FIA values. This helps tease out the differences for how different
values within categories, such as stand age or site class, influence FVS errors in predicting
carbon growth increment. When the FVS value exceeds the FIA value, overprediction is
indicated; underprediction is indicated when the reverse is true.

The dataset for regression analysis contains two entries for each stand: one with
FIA-observed growth as the dependent variable and one with FVS-modeled growth, with
all explanatory variables identical and a binary, “run” variable indicating whether the
record’s dependent variable is FIA-observed or FVS-modeled. The linear model controls for
differences in explanatory variables such as stand density, site conditions, and initial stocks
of forest carbon to predict the FVS-modeled or FIA-observed growth. Along with the run
variable, FIA Time 1 value, and the five variables used as interaction terms, several other
variables, drawn from both the FIA database and FVS computed values from the initial visit,
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were included: Structure Class, Aspect, Slope, Basal Area, Stand Density Index, Number of
Strata, Total Cover, Quadratic Mean Diameter (QMD), Stratum 1 DBH, Forest Type, and
Other Disturbance, a variable noting if there was a non-fire disturbance impacting over
25% of the trees or sample area during the remeasurement interval.

Using a Stepwise algorithm based on AIC from the “stats” base package in R, we
dropped variables identified as reducing model fit if they were not also a component of
an interaction term variable of interest [39]. Because the initial set of variables included
some that may be largely redundant (e.g., highly correlated metrics of density which are
often collinear), we also used variance inflation factor (VIF) to identify and further remove
density and geophysical variables with VIF > 10. The final list of variables included the
run variable, FIA Time 1, the five interaction terms (e.g., run by site class, variant, stand
age, reserve status, and land ownership), Structure Class, Aspect, Slope, Total Cover, QMD,
Stratum 1 DBH, and Forest Type. Site class was one variable that regularly emerged as
having a high VIF, suggesting unsurprisingly high collinearity with other variables. For
example, productivity is not independent of ownership. We did not drop site class as a
predictor variable, despite such collinearity, because we believed it important to explore
patterns of FVS error across an explicitly defined productivity gradient.

The regression is implemented using the “lm” function in the R, also in the “stats”
package, and model fit diagnostics are done using the R package “olsrr” [39,41]. Data were
organized for analysis using the “tidyverse” package and plots were made using “ggplot2”
packages in R [42,43]. Because the interaction terms and the number of covariates make
it difficult to interpret the coefficients in the linear model output, we used a prediction
function to graph the mean predicted values for each category of interest. The output linear
model was then used to predict and compare growth values for the FVS versus FIA using
the “emmip” function in the “emmeans” package in R [44]. The final linear model was
significant at a 0.01 cutoff with an adjusted R-squared of 0.67.

2.9. Tree-Level Evaluation: How Does Error Vary by Tree Diameter and Species?

To further evaluate the trends of where bias was observed at the stand level, we used
the tree-level measurements to test whether some species or diameter ranges might tend
to have greater errors when predicting growth. This information could help prioritize
opportunities to improve model predictions. For example, the growth model parameters
for a particular species might need updating.

We expected that tree diameter class and species might be important predictors of FVS
performance because the FVS relies on tree size relative to the rest of the trees in a stand
to calculate growth and allocate mortality, and because for some less common species,
growth equations from other species are applied, potentially opening opportunities for
less accurate growth predictions for certain species [17]. We created five diameter classes
to subset the trees: (i) 2.5 to 12.7 cm, (ii) 12.7 to 25.4 cm, (iii) 25.4 to 53.34 cm, (iv) 53.34 to
76.2 cm, and (v) greater than 76.2 cm. To analyze the role of species in tree-level errors, we
selected the top six species by both sample tree frequency—Pseudotsuga menziesii (Douglas-
fir), Abies concolor (white fir), Pinus ponderosa (ponderosa pine), Notholithocarpus densiflorus
(tanoak), Quercus chrysolepis (canyon live oak), and Calocedrus decurrens (incense-cedar), and
by tree volume, which added Sequoia sempervirens (redwood), Abies magnifica (California
red fir), and Pinus jeffreyi (Jeffery pine) for a total of nine species. These subsets (for tree
size and species) formed the basis of additional equivalence tests, replicating the analytic
approach already described for stand level analysis. Subsets where the null hypothesis
of dissimilarity cannot be rejected provide an indication of species and sizes for which
out-of-the-box FVS simulation of carbon growth may not be valid.

3. Results
3.1. Bias and RMSE

Considering all forests in California, FVS predictions of carbon flux in live trees that
remained alive ~10 years later were 0.05 Mg/ha/year greater than observed (Table 2). The
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10-year FVS does not produce projections of carbon flux equivalent to field measured carbon
flux. In a state with 12.9 million hectares of forest, this implies a 6.45 Tg overestimation
of carbon flux into live trees over the ten-year remeasurement period. The negative signs
for bias for both volume and carbon measurements point to FVS overprediction relative
to observed growth. Because carbon and volume are recorded in different units and
measure different entities (i.e., above-ground live wood and bark versus only bole wood),
we calculated relative growth to determine if bias and RMSE are similar between volume
and carbon. The rest of this paper presents the findings only for carbon because the relative
growth metric showed that relative growth of volume was very close to that of carbon in
both bias and RMSE.

Table 2. Bias and RMSE results for stand-level above-ground, non-foliar, tree carbon (wood and bark)
and bole wood volume, comparing Time 2 (stocks predicted ~10 years forward), Relative Growth
(relative growth as a percent of initial stocks), and Annual Growth Increment.

Bias Statistics

Carbon Volume

Measure Time 2
(Mg/ha)

Relative
Growth

(%)

Annual
Growth

Increment
(Mg/ha/yr)

Time 2
(m3/ha)

Relative
Growth

(%)

Annual
Growth

Increment
(m3/ha/yr)

Bias −0.50 −27.20 −0.05 −1.58 −27.73 −5.63

RMSE 1.49 241.76 0.15 5.42 245.32 19.25

3.2. Equivalence Tests

The TOST intercept results show that the FVS predicted growth increments are not
within 10% of the FIA observations at the mean, and the slope result indicates a lack of
agreement across stand-level predictions with measured values (Table 3 and Figure 3). The
FVS predictions of growth in carbon are not equivalent to observed growth over 10 years.
FVS annual growth predictions are equivalent at the 25% level for mean values (intercept
test) but not across the range of stand-level predictions (slope test). The predicted carbon
stocks pass equivalence tests at the 5%, 10%, and 25% equivalence levels, so FVS projections
of carbon stocks, one decade into the future, appear to be valid at the testing thresholds we
assumed. For the growth TOSTs that fail to reject the null hypothesis of dissimilarity, we
find the proportion of bootstrapped Confidence Levels falling below the Equivalence Level.
The larger proportion of the bootstrapped Confidence Level being below the Equivalence
Level is consistent with the negative bias results discussed previously, and it confirms that
the FVS overpredicts growth rate and stocks relative to observations recorded on FIA plots.
As a robustness check, to investigate whether low productivity (<20 ft3/ac/year growth)
forests may account for at least some of the underprediction, we repeated the equivalence
tests after removing these stands (those with site class = 7). After this change, the Annual
Growth Increment passed the slope test, but only at the 25% equivalence level.

Table 3. Equivalence test outcomes for intercept and slope for Time 2 (stand-level above-ground,
live-tree, non-foliar carbon stocks) predicted ~10 years forward and Annual Growth in those stocks
at 5, 10, and 25% smallest effect size of interest (SESOI). Blackened boxes indicate tests that failed to
reject the null hypothesis of dissimilarity.

Result of Carbon Intercept Test

SESOI Metric Mean
Observed

Mean
Predicted Hypothesis CI Lower CI Upper EI Lower EI Upper Bootstrap

Below
Bootstrap

Within
Bootstrap

Above

5%
Time 2 12.26 12.76 Reject 12.2 12.31 12.12 13.4 0% 100% 0%
Annual
Growth

Increment
0.21 0.26 Not

Reject 0.2 0.21 0.25 0.27 100% 0% 0%
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Table 3. Cont.

Result of Carbon Intercept Test

SESOI Metric Mean
Observed

Mean
Predicted Hypothesis CI Lower CI Upper EI Lower EI Upper Bootstrap

Below
Bootstrap

Within
Bootstrap

Above

10%
Time 2 12.26 12.76 Reject 12.2 12.31 11.48 14.04 0% 100% 0%
Annual
Growth

Increment
0.21 0.26 Not

Reject 0.2 0.21 0.23 0.28 100% 0% 0%

25%
Time 2 12.26 12.76 Reject 12.2 12.31 9.57 15.95 0% 100% 0%
Annual
Growth

Increment
0.21 0.26 Reject 0.2 0.21 0.19 0.32 0% 100% 0%

Result of Carbon Slope Test

SESOI Metric Hypothesis SESOI CI Lower CI Upper EI Lower EI Upper Bootstrap
Below

Bootstrap
Within

Bootstrap
Above

5%
Time 2 Reject 5% 0.98 0.99 0.95 1.05 0% 100% 0%
Annual
Growth

Increment

Not
Reject 5% 0.71 0.77 0.95 1.05 100% 0% 0%

10%
Time 2 Reject 10% 0.98 0.99 0.9 1.1 0% 100% 0%
Annual
Growth

Increment

Not
Reject 10% 0.71 0.77 0.9 1.1 100% 0% 0%

25%
Time 2 Reject 25% 0.98 0.99 0.75 1.25 0% 100% 0%
Annual
Growth

Increment

Not
Reject 25% 0.71 0.77 0.75 1.25 76% 24% 0%
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3.3. Stand-Level Models

Consistent with the FVS overprediction established by the Bias and Equivalence
Tests, the linear model predicts a mean FVS value, 0.259, that is 55% greater than the
mean FIA value, 0.162, in Mg of carbon sequestered per hectare per year (Figure 4). For
the explanatory variables tested with interaction, linear model-output prediction enables
assessment of the FVS effect across those variables. Comparing the interaction term levels
across the FVS variant, site productivity, stand age, reserve status, and ownership, we
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find instances of FVS both over-and under-predicting growth. The differences between
the mean FVS- and FIA-predicted increments on these interaction plots are the differences
between FVS outputs and FIA observations, holding all other variables constant.
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3.3.1. Variant

FVS underpredicts growth for the Southern Cascades (CA) and South Central Oregon
and Northeast California (SO) variants by 10% of the FIA predicted values, and overpredicts
by 22% of the FIA values for the Western Sierra Nevada (WS) and 44% for the Klamath
Mountains (NC) variants. Most of California’s forest carbon stocks are within the NC and
WS variants (Table 1). Given the modest degree of underpredictions in CA and SO relative
to the over predictions, particularly for the NC variant, FVS predicted carbon accumulation
rates are most inaccurate for the regions with greatest forest carbon stocks.

3.3.2. Site Productivity

For Site Class values of 2 through 7, the FVS overpredicts. FVS error increases as site
productivity decreases, (and site class, an ordinal variable that increases as annual volume
productivity decreases, increases), with the error greatest for site class 7 where the difference
is statistically significant and the FVS overpredicts by 60% of the predicted FIA value. For
the most productive lands (site class = 1), the FVS understates stocks and growth, though
their overlapping standard error bars suggest this difference is not statistically significant.
The progressive decrease in FVS prediction accuracy as site productivity decreases suggests
an opportunity to build in a calibration or correction for FVS predictions.

3.3.3. Stand Age

FVS overpredicts growth for all age cohorts, with overprediction less (<4%) for the
under 50-years cohort and greatest for the 50–100- and 100–150-year-old cohorts. Older
cohorts may be dominated by stands that have experienced little or no active management.
The FVS was developed to support decisions about management by projecting the results
of alternative management activities that are more common in young-growth stands. Older
stands under “caretaker” grow-only management may be less well represented in the data
used to fit the FVS model. The stands that did not have an age recorded (categorized
as age cohort “NA”) exhibit FVS over-prediction similar to that for the 50 to 100- and
100–150-year-old cohorts.

3.3.4. Reserve Status

The FVS overstates growth for both unreserved and reserved forests, though overpre-
diction is greater for reserved forests (15%) than for unreserved forests (9%). Our analysis
holds all other factors constant for these predictions, and we are only evaluating predictions
for stands not managed over the growth interval; however, if less management drives
greater discrepancy, it is certainly the case that there is less management on reserved forests
(by law, there should be none).

3.3.5. Ownership

The FVS overpredicts across ownership groups; on national forests and “other public”,
the overprediction is, respectively, 18% and 15% above predicted FIA values. Overpredic-
tion is less for private lands (4%).

3.3.6. Tree-Level Models

Tree-level equivalence tests for all trees produced results consistent with what we
observed at the stand level. FVS predictions of carbon stocks in stands projected forward
~10 years are equivalent to FIA observations of those stocks within 10% equivalence levels
at the means (intercept) and across the range of observations (slope) (Table 4). Annual
Growth predictions are equivalent to FIA values at 25% equivalence levels for the mean
predictions, but not for the range of predictions agreement tested by the slope. For all
the tree and diameter subsets, except for Sequoia sempervirens (redwood), annual growth
was underpredicted, the tests failed to reject the null hypothesis of dissimilarity and had
bootstrap results indicating FVS overstatement of tree growth, given that these failed the
null hypothesis below the mean.
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Table 4. Tree-level equivalence test results for above-ground, non-foliar, tree carbon stocks predicted ~10 years forward and annual carbon growth for subsets of
diameter groups and species. Blackened boxes indicate tests that failed to reject the null hypothesis of dissimilarity. The black box with the white asterisk indicates
the test where the bootstrapped sample is above the equivalence region.

Intercept
Test Full DBH <12.7 DBH

12.7—25.4
DBH

25.4—53.34
DBH

53.34—76.2 DBH >76.2 Douglas-fir Ponderosa
Pine White Fir Tanoak Canyon

Live Oak
Incense-

cedar Redwood CA Red Fir Jeffery
Pine

Number of
Observa-

tions
69,480 5700 29,510 16,699 9512 8059 10,048 4957 9058 4606 4802 3778 2195 3179 3292

Result of Carbon test 10%
Time 2
Annual
Growth *

Result of Carbon test 25%
Time 2
Annual
Growth

Slope Test Full DBH <12.7 DBH
12.7—25.4

DBH
25.4—53.34

DBH
53.34—76.2 DBH >76.2 Douglas-fir ponderosa

pine white fir tanoak canyon live
oak

incense-
cedar redwood CA red fir Jeffery pine

Result of Carbon test 10%
Time 2
Annual
Growth

Result of Carbon test 25%
Time 2
Annual
Growth
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Exploring the diameter and species subsets, the species subsets are better at producing
FIA-observed growth than diameter class subsets. Douglas fir, ponderosa pine, and white
fir in the FVS are predicting FIA carbon stocks and growth at the means better than the
all-species-combined tree dataset and better than any of the diameter class subsets. Within
the diameter subsets, the smallest diameter class, representing trees less than 12.7 cm in
diameter, is producing FVS stock and growth predictions that are the most dissimilar to the
FIA observations.

4. Conclusions

As society increasingly relies on forests to mitigate climate change, notwithstanding
their own vulnerability to a changing climate, the need for accurate modeling of changes in
forest carbon stocks with time and prospective management becomes ever more pressing.
Accuracy improvements begin with rigorous validation of existing models against quality-
assured, longitudinal sequences of forest measurements. Ideally, such data consist of a
field-collected sample that represents all forest conditions for which modeling projections
are needed. We initiated such a validation effort for the FVS covering nearly all the forests
in California, a state with outsized forest policy ambitions, and one with a very large and
spatially balanced, longitudinal sample of the forests that grow there. We included only
the set of stands that did not receive management during the decade-long remeasurement
period, a set we dubbed grow-only, because we wanted to have many observations of
FIA data that we could assess the FVS against. Moreover, validating FVS predictions for
management activities requires knowing exactly when and what kinds of management
occurred, data which are not readily available. While our validation does not address the
accuracy of FVS projections involving management activity, validation of the base FVS
growth model applies to management scenarios involving any growth projection. We
find that, at least in California, uncalibrated FVS simulations do not accurately predict
growth of carbon or wood volume within a tolerance likely to be considered acceptable
for characterizing carbon sequestration. The average growth predicted by the FVS was
only equivalent to the FIA measured value at the 25% equivalence level. Even at this level,
the slope test failed to reject the hypothesis of dissimilarity, suggesting that the FVS is not
predicting growth equivalently to observed growth across the range of observed values.
While it is hoped that model calibration might allow the FVS to predict a sufficiently precise
growth increment for carbon project evaluation compared to using FVS out-of-the-box, the
potential to apply such calibration is contingent on the available inventory data (e.g., either
prior measurements of the same trees or radial growth cores of multiple trees per species
present), which are not universally available.

FVS predictions of carbon stocks ten years hence, starting from current inventory
data, were within 10% of FIA observations. We found that carbon stock predictions were
equivalent to observations both at the mean and across stands with different beginning
carbon stocks. Using a combination of current inventory and FVS projections may be a
valid approach for short term predictions of carbon stocks (up to 10 years). For practical
purposes, this suggests that the FVS can appropriately be used, for example, to estimate
initial carbon stocks for forests in California, consistent with the California Air Resources
Board’s (CARB) protocol for forest carbon offsets. Because forest inventory data may
predate project initiation by a few years, forest growth models may be used to update
inventory data-based carbon stocks data to the project start date. Our findings suggest that
for such short periods, stock prediction errors may be within acceptable bounds.

While a 10% equivalence for short-term predictions of average carbon stocks might
seem promising for the FVS, the lack of equivalence for growth predictions will compromise
the reliability of multi-decadal forest growth projection. For short projections such as the
ten years we modeled, future stocks are driven much more by initial stocks than by growth
because on average, stocks are large relative to growth. For multi-decade projections,
growth will comprise an increasing share of future stocks, a troubling result given the use
of the FVS to model growth in carbon stocks under the California Air Resources Board’s
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(CARB) protocols, which require that management impacts on carbon sequestration be
accounted for over ten decades. Given the errors introduced by FVS growth prediction
over even a modest ten-year projection, it may be technically infeasible to obtain valid char-
acterizations of management tradeoffs at century timescales. Assigning carbon credits for
activities tracked and predicted over shorter periods is rendered problematic by inaccuracy
in estimates of carbon growth since the most recent inventory.

Our work illustrates how using multiple methods for validation can produce a better
understanding of the nature of model performance. While an essential performance metric,
bias is not the entire story. The linear regression-based equivalence tests offer two paths
for understanding model performance: the intercept and slope tests. From these tests, we
find that the FVS is better at predicting the actual growth observed on FIA plots at the
means than it is for predicting accurately across the range of conditions over the forest. This
means FVS predictions may be performing better at understanding carbon for an average
growing stand, but across the range of stand growth rates, it does not produce results that
track reality.

The findings of the tree-level equivalence tests are both consistent with and depart
from validation efforts undertaken for other FVS variants. In the Lake States variant, errors
were also greatest for the smallest tree diameter classes [25]. These errors predicting the
growth of small-diameter trees should raise red flags for applying the FVS where small trees
are a substantial component of the forest (e.g., actively managed young growth). For species-
specific prediction errors, based on the results of the parametric bootstrap in the equivalence
tests, the growth of only one species, Sequoia sempervirens, was underpredicted by the
FVS. By contrast, Bagdon et al. (2021) found more variability, with some species subsets
accurately predicted by FVS and others under- or overpredicted.

Based on our findings, reliable growth projections will almost certainly require cal-
ibration of the FVS model. The FVS supports relatively automated calibration if there
are previous diameter and height measurements or growth information in the data to be
projected. However, many if not most users are working with temporary, not permanent
plot data, making this calibration difficult unless radial growth cores were collected. Even
with FIA data, there may be too few trees of a species and size class on the plot for cali-
bration to be a viable option. That said, there is little doubt that the FVS, as implemented
out-of-the-box, will not generate reliable predictions of growth. We caution users against
implementing the FVS in this way and alert them to the need to calibrate. Our findings
underscore the need for investment in calibration tools and remeasurement data to support
more reliable predictions.

The FVS was designed to support management decisions and was largely fit using data
from forests that were actively managed and not in late successional status. Our findings
are consistent with the intended use of the FVS, with results most accurate for stands aged
less than 50 years and overprediction being greater for less intensively managed reserved
forests. However, given that more than half of the forests in California receive essentially
no management, and that many if not most carbon projects are linked to benefits assumed
to accrue to drastically lengthened rotations and/or withdrawal from management, the
dearth of forest growth models capable of accurately predicting prospective carbon growth
rates across the full spectrum of forest conditions found in the state is alarming. Inaccurate
growth predictions may lead to management regimes, selected for their climate or carbon
benefit, that fail to deliver anticipated benefits.

These errors in FVS predictions especially impact national forest lands in Califor-
nia. Public land managers aim to deliver on multiple objectives, including promoting
accelerated development of old growth conditions while maintaining high rates of car-
bon sequestration. However, our results suggest that the FVS overstates growth rates in
stands that are older and/or experience less intensive management. Forest plans relying
on the base FVS model without stand-specific calibration may misrepresent potential forest
growth and associated benefits. Claims of increased carbon sequestration in California
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forests, based on out-of-the-box FVS simulations that do not feature active management,
deserve particularly tough scrutiny.

These results do not directly measure the potential for the over-crediting of forest
carbon offsets. However, our work does apply to landowners and advisors considering
deployment of the FVS to evaluate the potential of forest management options to add
forest carbon as a revenue stream. Using a grow-only prescription as a baseline against
which to compare alternative management scenarios in FVS will, on average, lead to an
overprediction of baseline carbon stocks and growth. Significant overpredictions are con-
sistent with work claiming that the FVS introduced over 70% of the modeling uncertainty
when modeling increasing rotation length for Improved Forest Management offsets over
100 years [20]. Reliance on the FVS as a basis for evaluating carbon management tradeoffs
and expected payouts may lead to disappointment among landowners, carbon credit in-
vestors, and enterprises and institutions counting on forests carbon credits to meet climate
goals. Notably, we found FVS accuracy is greater on private lands, which are more actively
managed, than on public lands, which are less so. This is fortunate, in terms of impacts of
FVS accuracy on California’s carbon market, because only private lands are currently eligi-
ble for participation, not the federal lands on which overstatement of carbon sequestration
in the absence of management is most egregious.

Forest carbon protocols and management plans will continue to include options
ranging from caretaker management to lengthened rotations as options for landowners to
consider, while weighing putative climate mitigation benefits against other forest objectives.
Overstated growth rates may enhance the appeal of lengthened rotations and caretaker
management for those who seek to manage for carbon benefits—but such benefits may
be illusory. Federal forest land contains the overwhelming majority of California’s carbon
stocks, much of it in stands with high carbon density. The lack of accurate carbon modeling
capability for these forests poses a significant challenge for planning climate mitigation
responses for these forests. The solution to this problem almost certainly involves better
and more transparent processes for carrying out and documenting calibration. Ultimately,
this will likely include updating the out-of-the-box model, perhaps with refitted equations
based on remeasured FIA plots. Until then, calibration will be essential for any growth
projections intended to inform as to the outcome of management alternatives; even then,
analysts are advised to consider what is now known as to how specific conditions in the
forest being modeled may contribute to FVS growth prediction errors.
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used in FIA.
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