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Abstract: Wildfire has significant impact on plant phenology. The plants’ phenological variables,
derived from time series satellite data, can be monitored and the changes in satellite imagery may
be used to identify the beginning, peak, and end of the growing season. This study investigated the
use of remote sensing data and land surface phenology (LSP) parameters to evaluate the impacts
of fire. The LSP parameters included the start of growing season (SOS), the length of the growing
season (LOS), the end of the growing season (EOS), maximum greenness of the season (Gmax), and
minimum greenery in the season (Gmin) in the fire-impacted, semiarid oak forests of Iran. These LSP
parameters were extracted from multitemporal normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI2) data, acquired from MODIS sensor images in Zagros of the Ilam
province in western Iran. By extracting LSP indices from the NDVI and EVI2 data, the indices were
compared between burned forest areas, areas surrounding the burned forests, and unburned areas
and for timesteps representing pre-fire, fire (i.e., year of fire), and post-fire (i.e., 2 years) conditions. It
was found that for the burned area, there were significant differences in Gmax and the day that Gmax
occurred. Furthermore, there was also a significant difference in Gmin between the pre- and post-fire
conditions when NDVI was used and a significant difference between Gmax when EVI2 was used.
The results also showed that in both time series there was a significant difference between the burned
and control area in terms of Gmax. In general, the results showed that the fire had a negative effect
on LSP, but in the two years after the fire, there were signs of forest restoration. This study provides
necessary information to inform forest and resource conservation and restoration programs.

Keywords: land surface; phenology; forest fire; remote sensing; mathematics; machine learning;
wildfire; natural hazard; natural disasters; sustainable development goals

1. Introduction

Forest fires are one of the destructive factors and causes of forest degradation around
the world [1–3]; hence, researchers and forest managers have identified the need to study
the impacts of different fire intensities and histories in forested landscapes [4–7]. The forests
of Zagros cover the northwestern to southeastern region of Iran and are considered as
sub-Mediterranean forests. These forests provide a unique habitat for valuable species,
such as the Persian oak (Quercus brantii L.), which is the dominant tree species, as well
as habitats for other plant and animal species [8–10]. However, the increasing number of
fires that were reported in the region over the past decade [11,12] have posed a serious
threat to biodiversity and has changed the structure of these forests [13,14]. Although
the ecological effects of fires on natural ecosystems have been widely studied, there is
relatively little information about their impacts on the phenology of the ancient oak forests
of western Iran. Plant phenology involves studying the lifecycle of plants (e.g., budbreak,
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leafing, flowering, fruiting, and leaf coloring), whereby the information about these lifecycle
events and their timing provide useful indicators for monitoring climatic and environ-
mental change [15,16] and understanding the relationships between seasonal changes and
vegetative characteristics [17,18]. Furthermore, the phenological responses of plants to
global climate change has been an increasingly important area of scientific research [19,20].
Although many ecologists have monitored and documented plant phenology in the field,
scientific and technological advances have now made it possible to characterize plant
phenology at wider spatial and temporal scales using cost-effective and time-efficient
methods [21,22]. For example, advances in remote sensing have provided the necessary
tools to study plant phenology—especially in environments with limited access, where
direct measurements in the field are impractical [23,24]. Furthermore, multitemporal im-
agery, acquired by satellite sensors, provides the means to monitor vegetation dynamics
throughout the ecosystem [25,26]. These advances have led to the emergence of a new
scientific subdiscipline, land surface phenology (LSP) [27,28], which leverages a suite of
vegetative indices to understand the seasonal patterns in plant phenophases. Over the past
decades, LSP techniques have gained considerable attention due to their ability to analyze
satellite-derived vegetative indices over time; provide information needed to determine
the timing of vegetative growth [29]; and describe the interaction between vegetation and
climate [30].

Phenological variables derived from time series satellite data can reflect changes
in the start, end, or length of the vegetation growing season within a spatiotemporal
context [31,32]. The timing and extent of the vegetation greenness provide insight into
the vegetative response to changes in environment and management strategy [33]. Here,
LSP techniques involve the calculation of vegetative indices, such as maximum seasonal
greenness (Gmax) and minimum seasonal greenness (Gmin) to characterize vegetative
growth processes [34]. It is also important to recognize that LSP-based indicators are
strongly influenced by land disturbance, such as land degradation, land use change, and
human activity [35,36]. In addition, another key factor that affects LSP includes wildfire,
which can cause significant and sudden changes in forest composition and long-term
forest dynamics [37,38]. Despite the usefulness and application of LSP techniques, their
application has yet to be studied in the semi-arid forests of Iran.

Modern methods for monitoring fire behavior over wide large extents rely upon sen-
sors mounted on terrestrial satellites. One of the remote sensing products commonly used
to monitor fire activity is the MODIS sensor, which is a medium-resolution sensor that
provides information at medium to high spatial resolutions for mapping and monitoring
fire [39,40]. Among the many spectral indices that have been used, the most common
include Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation In-
dex (EVI2) [41,42]. Multiple studies have shown changes in LSP in various terrestrial
ecosystems post-fire [32,37,43–48], wherein the changes are influenced by the severity and
duration of the fire, as well as the type of vegetation in a region. Hence, by using remote
sensing data, it is possible to apply LSP techniques to evaluate and understand the sen-
sitivity of ecosystems to fire—especially given the increasing frequency of fires in recent
decades and the current trend of climate change [49,50]. Given that the potential for fire
is greater in arid and semi-arid regions, it is important to use post-fire monitoring tools
to facilitate an understanding of the vegetation recovery process post-fire. This has led to
the development of new approaches and technologies for extensive monitoring of these
areas [51–56]. Due to the role of phenology in monitoring and predicting the timing of life
cycle events of plants, phenology has gained particular importance in the current global
change research. However, the use of phenological data in environmental protection and
management is still poorly understood. Therefore, this study was conducted to investigate
the phenological changes of the land surface after the fire using vegetation indices. The
results can support the provision of protection and rehabilitation measures in fire-affected
areas by increasing and improving the awareness of the existing conditions using remote
sensing-based monitoring. Specifically, the objectives of this study were (1) to determine if
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fires cause delays in the phenological phases of the start of the growing season (SOS) and
the end of growing season (EOS); (2) to evaluate the impact of fires on vegetative greenness
in the semiarid ecosystems of Iran; and (3) to compare the suitability of NDVI and EVI2 in
evaluating the impact of fires on LSP.

2. Materials and Methods
2.1. Study Area

This study was carried out in the natural landscapes of Ilam province in western
Iran. As recorded by the Natural Resources Department of Ilam Province, this region has
experienced fires between 2014 and 2020 (Figure 1). The study area is located 46◦14′15′′ E to
47◦38′40′′ E longitude and 33◦49′33′′ N to 32◦58′12′′ N latitude. Here, the elevation ranges
from 472 to 1275 m above mean sea level. The climate is described as sub-Mediterranean
and semi-arid temperate and has dry summers and mild-to-cold winters. Based on meteo-
rological information, the average temperature varies from 16.9 ◦C in the north to 21.5 ◦C
in the southwest and the average annual rainfall is 500.3 mm per year. The vegetation is
dominated by Persian oak (Quercus brantii Lindl.) and various other subdominant wood
species, such as Crataegus pontica C. Koch, Pistacia atlantica Desf., Acer monspessulanum L.,
and Daphne mucronata Royle. The forest undergrowth is comprised of various annual and
perennial species. The combination of climatic conditions and vegetation puts this region
at risk of fires each year.
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2.2. Identification of Fire Impacted Areas

To investigate the impact of fires on land cover phenology, fires were first identified
from natural habitats (e.g., forests and pastures). Here, 13 large fires that occurred in the



Forests 2023, 14, 590 4 of 19

province between 2014 and 2020, and with an area of >45 ha, were selected. Information
on the fires was registered and mapped by the Department of Natural Resources of Ilam
Province. To evaluate the effects of the fire on the boundaries of the burned areas, which
were less impacted by fires, a buffered region of 500 m from these burned areas was
investigated. This was used as the ‘buffer zone’ treatment for our comparisons with the
fire-impacted treatment. Furthermore, reference areas (i.e., control) were established at
>500 m from each burned area. The reference areas were selected with the purpose of
controlling the impacts of changing environmental (e.g., vegetation and topography) and
climatic conditions (Figure 1).

2.3. Acquisition of Remote Sensing Data

To analyze the effects of fire on forest phenology from 2014 to 2020, time-series MODIS
imagery was acquired for the burned, buffered, and control areas and used to evaluate the
daily ground cover. Here, the MOD09GA and MOD09GQ MODIS products were acquired.
Both MODIS products have a daily temporal resolution; however, the MOD09GQ data
were distributed at a 250 m spatial resolution while the MOD09GA data were at a 1 km
spatial resolution. The MOD09GA data were resampled to a 250 m spatial resolution using
a nearest-neighbor approach to ensure comparability with the MOD09GQ product. Both
the MOD09GQ and MOD09GA data had two bands: Band 1 (red; 620–670 nm) and Band 2
(near infrared; 841–876 nm)—both of which were radiometrically and atmospherically
corrected. Using these two bands, NDVI [57] and EVI2 [58] were calculated as follows:

NDVI = (NIR − Red)/(NIR + Red) (1)

EVI2 = 2.5 × s (NIR − Red)/(NIR + 2.4Red + 1) (2)

where NIR and Red represent the reflectance values for the near-infrared and red bands.
The NDVI varies between−1 and +1, wherein large positive values indicate high vegetative
greenness, while smaller positive values indicate lower vegetative green [59,60]. Values
close to 0 often correspond to bare rock or earth, while negative values are usually caused
by clouds, snow, ice, or water [61]. One limitation of NDVI is that different environmental
processes may result in the same value; for example, if fire causes the transition of pastures
to shrublands, the NDVI may remain constant because the amount of productive biomass
remains constant [62,63]. To address the limitation of NDVI, EVI2 was also included in
this study due to its improved sensitivity for areas with high biomass; furthermore, its
decreased sensitivity to atmospheric influences and the background signal of the canopy
improves its ability to support the monitoring of vegetation [64,65]. In many studies, NDVI
and EVI2 have been useful for LSP characterization. Given the large number of images
that were required to be processed, the daily temporal resolution was reduced to a 3-day
resolution where the best imagery for every three days was retained. The data reduction
process assumed that changes in forest surface phenology over the course of three days
were negligible and would not affect the accuracy of LSP parameters [66]. As a result, the
NDVI and EVI2 were calculated for 540 images acquired between February to October and
from 2014 to 2020. To filter the data and reduce the noise in the calculation of phenological
criteria, a Savitzky–Golay filter was applied. This filter was described by Jonsson and
Eklundh [67].

2.4. Land Surface Phenology Parameters

The NDVI and EVI2 were used to calculate LSP indices, which corresponded to the
start of the growing season (SOS), end of the growing season (EOS), length of the growing
season (LOS), maximum greenness of the season (Gmax), and minimum greenness of
the season (Gmin) during the time before a fire and two years post-fire for the burned,
buffer, and control areas. As presented in Figure 2, adapted from [17], these LSP metrics
were calculated based on the NDVI and EVI2 time series and based on the maximum or
minimum change in the pixel magnitude curve [68].
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To prepare a phenological map and investigate the LSP changes due to the fire while
accounting for the effects of climatic and environmental factors, each LSP parameter was
calculated for the before and after the fire periods using the following equations [34]:

LSP anomaly = LSP after fire in reference − LSP before fire in reference (3)

LSP change = (LSP after fire − LSP before fire) − LSP anomaly (4)

Here, the LSP anomaly shows the effect of climatic factors on LSP changes and the
degree of LSP changes before and after the fire in the control area. Figure 3 shows the
methodological framework of this study. Here, the daily data were first converted to
three-day data to reduce the volume of data; the vegetation indices were produced; lastly,
LSP indices, using the time series data and filter, were calculated.

2.5. Statistical Design

The temporal effects of the fire (i.e., before the fire, directly after the fire, and 2 years
after the fire) on each of the LSP parameters were determined using individual one-way
analysis of variance (ANOVA) for the burned, buffered, and control areas. A Duncan’s new
multiple range test was carried out to provide statistical comparisons of the mean values of
each LSP parameter between the treatments. Furthermore, an independent Student’s t-test
was used to compare between NDVI and EVI2 values.
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3. Results

After preparing the NDVI and EVI2 indices from the MODIS imagery, and extracting
the phenological characteristics (i.e., Gmax, Gmin, SOS, EOS and LOS) using NDVI and
EVI2, the values of each LSP parameter were compared between the pre-fire, directly after
fire, and 2-years post fire timesteps and between the fire, buffered (i.e., region within a
500 m distance from the fire), and control regions (i.e., region beyond a 500 m distance from
the fire).

3.1. Impacts of Fire on Land Surface Phenology
3.1.1. Normalized Difference Vegetation Index (NDVI)

The results from the analysis of variance showed that in the burned area, there was a
significant difference between, Gmax, the Gmax Day, and Gmin between the before and
after fire periods. With respect to the other characteristics, such as the Gmin Day, SOS, EOS
and LOS, there were no significant difference observed. There was a significant difference
in terms of Gmax between the pre-fire period, immediate after the fire, and the two-year
period after the fire. However, there was no significant difference with the pre-fire period,
indicating that the forests were experiencing recovery from the fire. For Gmax Day and
Gmin, there was a significant difference (p < 0.05) between the pre-fire and the second year
after the fire. For the buffered zone, the results also showed that there was a significant
difference before and after the fire for only Gmin; however, no significant differences were
observed in relation to the other properties. There was also a significant difference between
the time of the fire and two years after the fire (Table 1). For the control area, as expected,
no significant difference was observed between before and after the fire.
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Table 1. Results of ANOVA testing for temporal impacts of fire on LSP parameters using a Duncan
test and comparison of NDVI values.

Mean Years p Value Region LSP

0.474 (a) Before the fire
0.025 * Burned Gmax0.387 (b) After the fire

0.454 (a) 2 years after the fire

105.3 (a) Before the fire
0.048 * Burned Gmax_day112.5 (ab) After the fire

119.9 (b) 2 years after the fire

0.191 (ab) Before the fire
0.049 * Burned Gmin0.165 (b) After the fire

0.205 (a) 2 years after the fire

192.22 (a) Before the fire
0.971 Burned Gmin_day195.62 (a) After the fire

194.67 (a) 2 years after the fire

56.30 (a) Before the fire
0.152 Burned SOS59.69 (a) After the fire

66.25 (a) 2 years after the fire

154.43 (a) Before the fire
0.977 Burned EOS155.54 (a) After the fire

155.17 (a) 2 years after the fire

98.13 (a) Before the fire
0.347 Burned LOS95.85 (a) After the fire

88.92 (a) 2 years after the fire

0.197 (ab) Before the fire
0.059 * Buffer Gmin0.173 (a) After the fire

0.212 (b) 2 years after the fire

0.46437 (a) Before the fire
0.19 Buffer Gmax0.4183 (a) After the fire

0.4715 (a) 2 years after the fire

106.26 (a) Before the fire
0.133 Buffer Gmax_day1110.31 (a) After the fire

118.67 (a) 2 years after the fire

106.26 (a) Before the fire
0.199 Buffer Gmin_day110.31 (a) After the fire

118.67 (a) 2 years after the fire

57.48 (a) Before the fire
0.979 Buffer SOS57.31 (a) After the fire

57.08 (a) 2 years after the fire

155.57 (a) Before the fire
0.838 Buffer EOS152.54 (a) After the fire

153.50 (a) 2 years after the fire

98.09 (a) Before the fire
0.872 Buffer LOS95.23 (a) After the fire

96.42 (a) 2 years after the fire

* Indicates significant differences (* p < 0.05) between treatments (years since fire) in each of the burned and buffer
areas. Values with different letters in each column have a significant difference at the 0.05 level.

Figures 4 and 5 further illustrate the difference between the LSP criteria using NDVI
for periods before and after the fire. Due to the fire, the Gmax for all burned areas and for
>90% of buffered areas decreased; furthermore, the Gmin for >83% of the burned areas
and >66% of fire buffered areas also decreased. Both Gmax and Gmin were reduced due to
fire—in >83% of the burned and buffered areas, the fire delayed the occurrence of Gmax.
In the case of Gmin day, the opposite was true, with 50% of Gmin burnt areas occurring on
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the day before the Gmin day and before the fire, which meant that the fires resulted in an
earlier Gmin day. In most cases, the fire delayed the Gmin day.
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The start of the growing season remained unchanged for 40% of the burned areas and
delayed the onset of the growing season from 3 to 50 days for 45% of the burned areas but
did not change the start of the growing season for 75% of the buffered areas. However, for
60% of the fires that occurred, the fire resulted in an earlier end to the growing season and
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thus reduced it as well. Overall, in burnt areas, the fires delayed the start of the growing
season by 4.58 days and accelerated the end of the growing season by 0.6 days, resulting
in a reduction of the growing season by an average of 2.5 days. In the buffered areas, the
length of the growing season was reduced by 3 days because of fire.

3.1.2. Enhanced Vegetation Index (EVI2)

When using EVI2, only Gmax resulted in a significant difference when comparing
between the pre-fire and year of the fire; however, after two years, the EVI2 returned to
pre-fire levels. When compared with using NDVI for evaluating LSP changes, EVI2 was
less sensitive (Table 2). Figure 6 shows the boxplots of Gmax for each time step. Based
on the results, there was a significant difference between the year of the fire with the year
before the fire and two years after the fire. Figure 7 also shows the map of changes in LSP
characteristics due to fire. Similar to the NDVI results, the EVI2 metric produced Gmax
values that were 93% lower and Gmin values that were 83% higher for the burned areas in
comparison with the buffer areas. In reviewing the results using EVI2, it was found that at
the beginning of the growing season in burned areas, >80% of burned areas were delayed
by 3 to 10 days and had an average delay of 5 days. When compared with the end of the
growing season, which had an average delay of 3 days, there was a reduction in the length
of the growing season by about 2 days due to fire—similar to the findings when NDVI was
used. The reduction of the growing season due to fire in buffer areas was approximately
equal to a decrease of 0.1 days.

Table 2. Results of ANOVA testing for temporal impacts of fire on LSP parameters using a Duncan
test and comparison of EVI2 values.

Mean Years p-Value Region LSP

0.758 (a) Before the fire
0.025 Burned Gmax0.662 (b) After the fire

0.764 (a) 2 years after the fire
Values with different letters in each column have a significant difference at the 0.05 level.
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3.2. Comparison of Land Surface Phenology

The results of comparing LSP indices between the burned, buffered, and control areas
after the fire showed that for both indices, despite the difference between the areas, only
Gmax had significant differences. Based on the results, there was a significant difference
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between the burned and control areas based on NDVI and EVI2; however, there was no
significant difference between the burned and buffer areas, as well as the buffer and control
(Table 3). The Gmax boxplot between the burned, buffered, and control areas is also shown
in Figure 8.

Table 3. Results of ANOVA testing between the burned, buffered, and control areas after fire using a
Duncan test. Different letters show statistically significant differences between variables.

Mean Region p Value Index LSP

0.391 (a) Burned
0.049 NDVI Gmax0.41 (ab) Buffer

0.447 (b) Control

0.656 (a) Burned
0.048 EVI2 Gmax0.682 (ab) Buffer

0.749 (b) Control
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3.3. Comparison of NDVI and EVI2

This study showed the potential for differences in LSP when NDVI and EVI2 were
compared using an independent t-test was used. The results showed that the only LSP
indicator that consistently resulted in a significant difference between the year of fire and
two years after the fire, for both NDVI and EVI2, was Gmax. Here, the Gmax values from
the NDVI and EVI2 indices had p-values of 0.014 and 0.008, respectively. The boxplots of
these two indices are shown in Figure 9, which show that the values obtained from the
EVI2 were higher than those of the NDVI.
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4. Discussion
4.1. Influence of Fires on NDVI and EVI2

The results showed significant differences in LSP parameters when calculated using
NDVI and EVI2—especially with Gmax—for the pre- and post-fire conditions. The results
also showed a higher sensitivity of NDVI for detecting the difference in LSP parameters
in comparison with EVI2. Many studies have emphasized the usefulness of NDVI in
comparison with other indices [69–73]; for example, Falahatkar et al. [74] found that the
NDVI was more correlated with broadleaf species because they have wider leaves and the
way their leaves grow causes greater reflection from the leaf surface. As a result, this may
possibly explain the effectiveness of NDVI for determining LSP parameters—especially
given the prevalence of broadleaf species throughout the study.

4.2. Influence of Fires on Vegetative Greenness

By comparing the greenness criteria between the pre- and post-fire conditions, it was
observed that there was a significant difference between Gmax, Gmin, and Gmax (day) in
the burned areas where Gmax and Gmin were reduced in the burned areas. To a lesser
extent, a decrease was also observed in the buffer zone; however, the magnitude of the
change was lower when compared with the burned areas. A delay in Gmax was seen in
>83% of the burned areas and a delay in Gmax for 50% of the burned areas. As expected, the
Gmin was higher in the early years; however, Gmax was the opposite, whereby two years
post-fire, there were signs of vegetation restoration. Comparing the greenness between the
areas, a significant decrease was observed between the burned and control areas, which was
also expected due to the destructive behavior or the fire. Although studies, such as Zhang
et al. [34], have also shown a decrease in greenness due to fires, few studies examined the
impact of fires on phenology, as most studies were related to the temporal dynamics of
plant growth (e.g., SOS, EOS, and LOS).

One potential factor for the reduced vegetative greenness could be due to the presence
of therophyte and invasive species as they are able to establish their own structural system,
multiply rapidly, and dominate the environment. However, these species have a limited
lifespan and vegetative cover; therefore, the tree species are still able to regenerate the
fire-impacted landscape and have the potential to regenerate the forest into a pre-fire state.
Other studies have also reported the predominance of therophytes during fires [75,76]. It
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should also be noted that satellite imagery was used to classify land cover for the entirety
of pixels; hence, if the imagery lacks a sufficiently fine spatial resolution, it would not be
able to detect sub-pixel changes in vegetation—especially therophyte and invasive species
in the burned areas, which often have low volumetric coverage, as well as high-pitched
canopies. The lower-canopy is also less detectable by satellites, which may decrease the
greenness [76].

4.3. Impact of Fire on Growth Time

The results showed a delay in SOS, which was followed by an earlier EOS, thus
reducing the vegetation growing season. The results of our study showed immediate,
negative effects on vegetative phenophases—although these effects were not significant.
Although our findings were consistent with numerous other studies, e.g., [77–85], other
studies found contradictory results, e.g., [86–88]. The reason for these differences may
have been related to the dependence of the phenological cycle on environmental factors
and stressors, such as drought, fire, soil erosion, and soil properties, as well as climatic
and anthropogenic (e.g., land use and land cover change). Although the climatic impacts
on phenological processes are undeniable, e.g., [89–92], in some cases, forest disturbances
may override the climatic factors [76]—especially in forests. As a result, the impact of fire,
in some cases, depends on the environmental conditions prior to the fire wherein more
productive forests, prior to a fire, are likely to remain productive after a fire. However, this
was not the case here as the forests had an initially thin cover. According to Staver et al. [93],
in forests with a canopy cover of <40%, the fire may impact plant growth pathways
where the heat from fire may disrupt reproductive structures and processes, such as
flowering, germination, and fruiting [94]. Furthermore, the fires may damage roots and
rhizomes needed for post-fire reproduction [95] or even destroy the seed bank of the
species. Some fires also cause soil degradation via loss of soil nutrients, structure, and
microorganisms [96–98].

Post-fire, some species are unable to adapt to the new environmental conditions and
are eliminated [75]. Thus, only species that are resilient to fire remain, such as the oak
species (a dominant species in the Mediterranean), which is effective in regeneration well
after a fire. Barton and Poulos [99] reported that in Arizona, USA, pine forests that were
impacted by fire were converted into forest stands that were dominated by oak and oak
shrubs. This study demonstrated the regenerative capacity of the oak species. It should also
be noted, however, that the methods used for this study did not allow for the identification
of individual species and that the LSP parameters may also have been influenced by the
presence of other woody or herbaceous plants. This study also showed that fires resulted
in an overall acceleration of the EOS and where the change in EOS was greater than that of
the changes in SOS. Fire may shorten the end of the growing season. This may be related
to the change in diversity of plant species [34] and their distribution following the fire in
different ecosystems, such as temperate deciduous forests [100] and broad-leaved mixed
forests [101]. However, it is also important to recognize the uncertainties in estimating
and evaluating EOS due to the complex interactions between climatic, environmental, and
human factors compared with other phenophases [102]. It is possible that the earlier EOS
could be attributed to the reduction of tree cover, which would lead to a decrease in canopy
level and the delay in canopy development due to the fire. Furthermore, the aging of trees
may also be affected; for example, Fuller et al. [103] found that areas with relatively low
canopy closure aged earlier than for dense canopy forests; Miombo. Cho et al. [104] showed
that phenological changes at the end of the growing season were usually determined by a
fraction of tree cover in the South African savannah forests.

As the canopy coverage decreases, the soil temperature naturally increases and has a
direct effect on soil temperature. In deciduous forests, the temperature may be negatively
correlated with the history of EOS because temperature increases the root respiration by
trees and without sufficient soil moisture, there is less water uptake, thereby causing an
earlier EOS. Despite the importance of temperature as a control of EOS [105], it should
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be noted that the leaves of deciduous trees need a certain accumulated temperature for
growth and the increase in pre-season temperature causes the leaves of the trees to reach
the required accumulated temperature in a shorter time, resulting in earlier wilting dates
EOS [105,106]. For this study area, which is mostly dominated by herbaceous and invasive
plants because of fire, the warmer temperatures during the season accelerated the end of
the growing season, which is consistent with Fu et al. [105]. Furthermore, the acceleration
of EOS affected subsequent events [107] and hence, there was a negative relationship
between SOS and EOS. It was also possible that, due to the fire, there was a corresponding
decrease in soil moisture, which limited vegetation growth and suppressed ecosystem
productivity [107].

5. Conclusions

This study examined how multitemporal remote sensing data could be used to evalu-
ate the impact of fire on LSP in a semiarid forest ecosystem. Amongst the LSP parameters,
the Gmax for both vegetation indices (NDVI and EVI2) was significantly different between
the year of the fire and two years after the fire. It was also observed that the fire had a
negative impact on SOS and EOS by delaying SOS and accelerating EOS; however, the
impacts of the fire were more evident on the vegetative greenness. These results were
expected given the semiarid conditions of the region. The results also showed that NDVI
was more sensitive in detecting the differences in LSP in comparison with EVI2. Although
the study highlighted the destructive impacts of fire, there were also signs of vegetation
restoration two year after the fire. This may be related to the presence of oak as a dominant
species, which has a high potential for resprouting. Although this may seem promising, the
fires change the form of oak forests from a mature state to a coppice state; as a result, the
techniques used in this study provide the means to guide monitoring of forest resources
and inform management strategies that facilitate forest regeneration.
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