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Abstract: Recognizing initial degradation levels is essential to planning effective measures to restore
tropical forest ecosystems. However, measuring indicators of forest degradation is labour-intensive,
time-consuming, and expensive. This study explored the use of canopy-height models and or-
thophotos, derived from drone-captured RGB images, above sites at various stages of degradation in
northern Thailand to quantify variables related to initial degradation levels and subsequent restora-
tion progression. Stocking density (R2 = 0.71) and relative cover of forest canopy (R2 = 0.83), ground
vegetation (R2 = 0.71) and exposed soil + rock (R2 = 0.56) correlated highly with the correspond-
ing ground-survey data. However, mean tree height (R2 = 0.31) and above-ground carbon density
(R2 = 0.45) were not well correlated. Differences in correlation strength appeared to be site-specific
and related to tree size distribution, canopy openness, and soil exposure. We concluded that drone-
based quantification of forest-degradation indicator variables is not yet accurate enough to replace
conventional ground surveys when planning forest restoration projects. However, the development
of better geo-referencing in parallel with AI systems may improve the accuracy and cost-effectiveness
of drone-based techniques in the near future.

Keywords: forest degradation; forest ecosystem restoration; UAVs; drones; photogrammetry; structure
from motion

1. Introduction

In 2021, the leaders of 145 countries, comprising 91% of the world’s forests, committed
their nations to “conserve forests . . . and accelerate their restoration” and to work collec-
tively to “halt and reverse forest loss and land degradation by 2030” (https://ukcop26.
org/glasgow-leaders-declaration-on-forests-and-land-use/, accessed on 5 February 2023).
This builds on previous global commitments, such as the Bonn Challenge, which aims
to bring 350 million ha of degraded and deforested landscapes into restoration by 2030
(www.bonnchallenge.org/about, accessed on 5 February 2023) and the One Trillion Tree
Initiative platform, created by the 2020 World Economic Forum (www.1t.org, accessed
on 5 February 2023), to support the UN Decade on Ecosystem Restoration (2021–30)
(www.decadeonrestoration.org/, accessed on 5 February 2023). Such ambitious targets
have spurred a myriad of national and regional projects to plant trees on massive scales;
for e.g., in Africa, AFR100 (afr100.org/, accessed on 5 February 2023) and in Latin America,
the 20 × 20 Initiative (initiative20x20.org/, accessed on 5 February 2023). Such schemes
have become major drivers of forest restoration [1–3].

However, the results of such large-scale tree-planting projects are reported almost
entirely as numbers of trees planted or area “restored”, with little regard for meaningful
ecological outcomes, such as biomass accumulation and the recovery of both biodiversity
and ecological functionality to levels similar to those of the reference forest type [4]. For
example, under the Bonn Challenge, plantations and agroforests out represent ecosystem
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restoration by a factor of 2:1, even though the latter sequesters carbon 40 and 6 times more
efficiently than plantations and agroforestry systems, respectively [5]. Meanwhile, natural
tropical forest-cover loss continues apace [6].

Poor monitoring and evaluation of tree-planting projects have sometimes resulted in a
failure to learn from past mistakes, such as planting unsuitable species on unsuitable sites,
poor seed sourcing, insufficient planting stock, and lack of weed control [7]. It has even
resulted in the disturbance of surrounding natural forest remnants [8,9]. Consequently,
inadequate monitoring is recognized as a major problem with restoration projects [9,10].

Crucial to the success of restoration projects is firstly the recognition of different levels
of forest degradation to plan the most appropriate restoration strategies [11,12], and sec-
ondly, quantification of subsequent forest ecosystem recovery. Various indicator variables
have been proposed for this purpose (e.g., stocking density, carbon storage, vegetation
cover, biodiversity, soil erosion, fragmentation, invasive species, fire, configuration and
proximity of remnant forest, etc.) by many research teams [12–14]. However, the high
labour intensity of measuring such variables is a major constraint. Teams of field workers
usually cover only very small sample plots, from which estimates for entire sites are extrap-
olated, often with substantial error limits. Furthermore, field teams can disturb the very
variables they seek to measure, e.g., by trampling tree seedlings.

The use of unmanned aerial vehicles (UAVs or drones) addresses these problems by
rapidly covering entire sites (without the need to extrapolate from samples). They record
far more detailed images than high-altitude remote-sensing platforms (e.g., planes and
satellites) can, since they can fly close to forest canopies [15,16]. Consequently, drones are
fast becoming the preferred platform for gathering data for forest restoration planning
at the site level [17]. Furthermore, their use encourages the direct participation of local
stakeholders, who may have difficulty accessing and analysing time-relevant aerial or
satellite images [18].

Sensors commonly attached to drones for forest monitoring include visible-light (RGB)
cameras, multi- and hyper-spectral cameras and light detection, and ranging devices (li-
dar). Multi- and hyper-spectral cameras have been used to measure leaf area index (LAI),
vegetation index (VI), etc. [19,20], and lidar is useful for capturing forest structure [21].
However, these technologies are very costly and technically difficult to use and interpret.
In contrast, high-resolution RGB cameras come as standard on off-the-shelf drones. Fur-
thermore, advances in “structure from motion” (SfM) photogrammetry now enable the use
of RGB imagery to generate 3D forest models that are almost as good as those achieved
by lidar [22]. SfM derives distance from parallax—the positional shifts of the same point
between two or more photographs, taken from slightly different viewpoints [23,24]. It is
available in several image-possessing software packages (e.g., Agisoft Metashape, Pix4D,
DroneDeploy, OpenDroneMap (ODM), etc.). With SfM, various forest attributes can be
detected (e.g., tree-top points, tree-crown boundaries, canopy height, etc.), from which
several others can be derived (e.g., canopy cover, diameter at breast height (DBH), biomass,
carbon stock, etc.) [25–28].

SfM has been tested mostly where canopy cover is low and visibility of forest structure
is high [26,27,29]. Few studies have been conducted in denser and more structurally
complex forests, where visibility through to the forest floor is low [25,28]. Furthermore,
no trials have compared the performance of SfM across a spectrum of different forest
degradation levels. Such an evaluation is necessary if the technique is to play a useful role
in helping to plan site-appropriate restoration strategies and to monitor restoration success
or failure thereafter.

Consequently, the objective of the pilot study, presented here, was to determine if a
consumer-grade drone with an onboard RGB camera could be used to generate canopy-
height models and orthophotos, within which indicator variables of forest degradation
could be quantified and different levels of degradation distinguished.
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2. Materials and Methods
2.1. Study Sites and Equipment

Five sites, representing a range of degradation levels, were selected in the Chiang
Mai and Lampang provinces, northern Thailand. Details of the sites and their acronyms
are presented in Table 1, while their locations are shown in Figure 1, and orthophotos
are presented in Figure 2. All sites were established by Chiang Mai University’s Forest
Restoration Research Unit (FORRU-CMU) to test various forest restoration techniques.
Consequently, their history was known, as were the restoration treatments that had been
applied (Table 1). The sites ranged in age from 0 to 8 years since tree planting. Distur-
bances before restoration ranged from severe—a quarry site after mining—to abandoned
agricultural sites and fire-damaged sites.
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Figure 1. Location of the 5 study sites in the Chiang Mai and Lampang provinces, northern Thailand.
White lines are province boundaries within Thailand.

The BMSM, ML, and BPK, were all former upland evergreen forest sites, above
1200 m a.s.l. These sites were cooler and wetter (mean annual rainfall, 1736; tempera-
tures from 4.5 ◦C in December to 35.5 ◦C in March [30]) compared to the other two sites.
The BMM site, formerly mixed evergreen-deciduous forest [31], at moderate elevation
(601 m a.s.l.), was drier (1119.2 mm mean annual rainfall) and warmer (11.0–41.0 ◦C) (data
from Chiang Mai meteorological station). As was the LP site (former bamboo-deciduous
forest [31]), 1196 mm mean annual rainfall, 8.2–43.0 ◦C temperature range (data from
Lampang A meteorological station).
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Table 1. Details of the 5 study sites in northern Thailand.

Site Restoration
Initiated Site History Longitude Latitude Altitude

(m a.s.l.)

Area,
No. Circular
Sample Plots

Ban Mae Sa Mai 2012

Upland evergreen forest, cleared for
agriculture, abandoned in the 1990′s,
invaded by herbaceous weeds, and
subsequently burnt multiple times;
planted with framework tree species in
2007; burnt in 2010 and replanted in 2012

98◦50′57′′ 18◦51′22′′ 1247 m 1.07 ha
10 plots

Mon Long 2014

Upland evergreen forest, impacted by
fire; enrichment planting with
framework tree species amongst
scattered remnant mature trees in 2014

98◦50′28′′ 18◦55′20′′ 1290 m 1.03 ha
10 plots

Ban Pong Krai 2016

Upland evergreen forest cleared for
agriculture undergoing natural
regeneration; planted with framework
tree species in 2016

98◦48′19′′ 18◦55′52′′ 1408 m 2.69 ha
10 plots

Ban Meh Meh 2020

Mixed evergreen-deciduous forest
cleared for agriculture and used for
domestic elephant browsing; some
natural regeneration from surrounding
remnant forest, complemented with
planting framework tree species in 2020

98◦52′53′′ 18◦54′13′′ 601 m 0.41 ha
8 plots

Lampang 2019

Limestone quarry floor; vegetation and
top soil removed; benches (terraces)
planted with native forest tree seedlings
1 year previously

99◦35′23′′ 18◦33′12′′ 419 m 0.66 ha
8 plots
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To compare ground data with those derived from drone imagery, circular sample
plots (5 m radius) were laid out randomly across the 5 study sites: 8 or 10 plots at sites of
<1 ha or >1 ha, respectively. The centre points of each plot were marked with red-black
plates (Figure S1). Where tree cover obscured the centre point markers, additional markers
were placed in canopy gaps, with the distance and direction to the centre-point markers
being determined by a theodolite. Azimuth and distance among the points were calculated
using the stadia method [32,33], such that plot centre points could be accurately placed on
ortho-mosaic maps (orthophotos) derived from the drone imagery.

2.2. Data Acquisition—Ground Surveys

During ground surveys, the heights of all trees (taller than 0.5 m) in each circular
sample plot were measured with an extension pole (for small trees) or laser rangefinder
(for trees >8 m tall). Girth at breast height (GBH, 1.3 m above ground level) was measured
using a tape measure. Tree-crown size was measured by a tape measure from below: length
(longest distance)×width (perpendicular to length). In each sampling plot, percent ground
cover of vegetation and exposed soil + rock was estimated by eye.

2.3. Data Acquisition—UAV Aerial Image Acquisition

Aerial surveys by drones were performed using a consumer quadcopter (DJI Phantom®

4 Pro (P4P)) (SZ DJI Technology Co., Shenzhen, China), taking RGB photographs with
its on-board camera (1-inch, 20-megapixel CMOS sensor) mounted on a gimbal, which
compensates for drone movement to produce sharp images. This drone is ideal for forest
surveys [34] due to its relatively low cost, light weight and reasonable flight time (up to
about 25 min). Object-avoidance sensors in all directions (except above) and AI-assisted
landing enables safe landing and takeoff through small forest gaps.

Flight-planning software, LITCHI (https://flylitchi.com/, accessed on 5 February
2023), was used to fly the drone 50 m above ground level in a pre-programmed grid pattern
over each site, with distance between grid lines (15–20 m), flight speed (10–13 m/s), and
photograph frequency (3–5 s) adjusted to achieve 75%–80% overlap and sidelap between
adjacent photographs and to complete each mission within the capacity of one battery
(25–30 min). Details of the flight missions are provided in Table S1. Drone flights covered
the entire sites, from which image data were extracted for each circular sample plot,
surveyed on the ground.

2.4. Data Processing and Analysis

Open Drone Map (ODM) (https://www.opendronemap.org/webodm/, accessed on 5
February 2023), an open source photogrammetry toolkit, hosted and distributed on GitHub,
was used to process the drone imagery from each site into 3D point clouds and meshes,
using an SfM algorithm. From these were generated 2D orthophotos, a digital terrain model
(DTM) (representing ground topography) and a digital surface model (DSM) (representing
the upper surfaces of objects). The latter two are types of digital elevation model (DEM)
in raster format, with each pixel identified by its 3D coordinates. Consequently, a canopy-
height model (CHM) (height above the ground) was derived by subtracting the DSM from
the DTM (Figure S2). Orthophotos were compiled by aggregating overlapping images
and removing radial distortion, resulting in completely vertical image maps. Between 250
and 400 pictures, generated at each site (depending on site size), were processed. DSMs
and DTMs were generated at a resolution of 2 cm, and orthophotos were generated at a
resolution of 1 cm—the highest precision achievable with images from the P4P camera.
The texturing data term for the 3D mesh, which affects orthophoto quality, was set to
“area mode”, prioritizing images covering the largest area (recommended by the tool’s
developers for forest surveys). Elevation information from CHMs and colour information
from orthophotos were the main variables used to assess forest degradation levels. The
overall processes are described in Figure 3.

https://flylitchi.com/
https://www.opendronemap.org/webodm/
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2.5. Deriving Variable Values from Collected and Processed Data

To derive stocking density (tree stems per hectare) from CHMs, tree-top points were
determined using the package ‘ForestTools’ [35] (Figure S3). It works by applying a
‘variable window-filter algorithm’, which assumes that higher trees have wider crowns.
The algorithm spreads circular windows, centred on each pixel sequentially of radius
related to pixel height above ground. If the centre point is the highest pixel in the window,
then it determines that point as a tree-top [35] (Figure S3). Tree-top points, thus detected,
were counted in each plot and compared with the number of trees recorded in the ground
surveys. Since small trees were obscured by the forest canopy, more were detected in
ground surveys than in drone-derived photos. The number of undetected trees increased
with increasing numbers of detected trees and with increasing canopy cover.
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Therefore, a multiple regression model (Equation (1)), combining these two variables,
was used to predict stocking density in sample plots and across the entire site (site-wide)
from drone images:

t′ = −1.09 + 0.28t + 0.15cc (1)

where t′ is the adjusted number of detected trees; t is number of detected trees, and cc is
the % relative canopy cover area.

To estimate percent forest canopy cover, ground vegetation, and exposed soil + rock
in drone-derived images, individual tree-crown edges were drawn on the CHMs using
the ‘marker-controlled watershed segmentation (mcws)’ function in ‘ForestTools’ [35]. It
delineates tree-crown boundaries by detecting the lowest height along projections radiating
out from the tree-top points, where one tree-crown meets another or where the ground is
detected. Minimum crown height was set at 0.5 m above the ground to prevent confusing
ground vegetation with crown foliage. Detected tree-top points worked as markers of
individual tree-crowns so that neighbouring or merged tree-crowns could be distinguished
(Figure S4). Total canopy cover was calculated as the sum of detected tree-crown areas and
expressed as a percent of sample-plot area.

From ground-based measurements of tree-crown dimensions, crown projected areas
(CPA, m2) of individual trees were calculated. In each plot, all the CPAs were summed
and converted to a percent of the plot area (Equation (2)). To deal with overestimation
due to the overlapping crowns, we used Equation (3), as recommended by Moeur [36],
Crookston and Stage [37], McIntosh et al. [38], and Adesoye and Akinwunmi [39], which
relates increasing overlap with increasing total crown cover:

C′ = 100

(
n

∑
i = 1

(CPAi)

)
A−1 (2)

C = 100
[
1− exp

(
−0.01C′

)]
(3)

where C′ is the percent canopy cover without accounting for overlap. CPAi is crown
projected area of individual trees (m2). A is the given area of the site (m2). C is the percent
canopy cover accounting for overlap.

In the orthophotos, ground vegetation and tree-crowns were similar in colour. Con-
sequently, delineated tree-crowns, derived as described above, were overlayed on the
orthophotos and their pixels subtracted from the image. Remaining pixels were then
classified as exposed soil or weedy vegetation using the ‘colour threshold’ tool of Image-J
(https://imagej.nih.gov/ij/index.html, accessed on 5 February 2023) to vary filters for pixel
hue, saturation, and brightness (HSB). Finally, all the pixels were classified as tree-canopy,
ground vegetation, or exposed soil + rock. The relative cover of these three elements could
then be compared between drone-derived images and ground survey estimates (Figure 4).

Max, mean, and median tree heights were measured directly in the ground sur-
veys and derived from tree-top points, detected in the CHMs from drone-derived photos.
Drone-derived above-ground carbon density (ACD) and basal area (BA) were estimated by
applying Jucker et al.’s (2018) [40] regional allometric model for aerial data sets and Asian
tropical forests (Equation (4)) to the mean top-of-canopy height (TCH) of each sample plot,
derived from the CHM. A mean wood density value of 0.52 g/cm2 was applied, from the
recent study of Pothong et al. (2021) [41] for forests in northern Thailand:

ACD(MgC/ha)Regional = 0.567× TCH0.554 × BA1.081 ×WD0.186 (4)

where TCH is the mean top-of-canopy height (m); WD is the local average wood den-
sity [41]; and BA is stand basal area (m2/ha) = 1.112× TCH, modeled by Jucker et al.
(2018) [40].

https://imagej.nih.gov/ij/index.html
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From the ground survey, above ground biomass (AGB) was calculated by applying the
allometric model for northern Thailand (Equation (5)) (recently developed by destructive
sampling [41]):

AGB(kg) = 0.134×
(

D2·H·WD
)0.847

(5)

where D is diameter at breast height of individual tree trunks. H is height of individual
trees. WD is wood density = 0.52 g/cm2, local average, studied by Pothong et al. (2021) [41].

AGB was converted to ACD using Equations (6) and (7):

AGB(kg/ha) = AGB
(

kg/78.54 m2
)
÷ 78.54 m2 × 10, 000 m2 (6)

ACD(MgC/ha) = AGB(kg/ha)× ρ÷ 1000 kg (7)

where ρ is the local average carbon content = 0.44, Pothong et al. (2021) [41].
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2.6. Statistical Analysis

Pearson’s correlation coefficient was used to compare ground-derived with drone-
derived values of each corresponding variable. Root mean square error (RMSE) was also
calculated to check the size of differences between ground and aerial survey data. Sig-
nificant differences in stocking density among study sites were determined to establish
whether relationships between ground-derived and drone-derived data were similar
across sites.

One of the disadvantages of ground-based surveys is that results for sites are extrap-
olated from small sample areas to estimate site-wide value, whereas drones can rapidly
survey entire sites without the need for sampling and extrapolation. Consequently,
sample-focused results from the drone survey were compared with directly assessed
site-wide results.
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Tree-size-frequency histograms were constructed for each study site to explore the
influence of the proportion of small trees on tree detection in drone imagery (and hence
stocking density estimates), since small trees are more likely to be obscured by taller ones
when viewed from above.

3. Results

Figure 5 shows that, when estimating from sample-plot data, predictions of tree-top
counts in CHMs from the multiple regression model successfully predicted measured
stocking density in only 2 of the 5 sites (BPK and LP) and substantially and significantly
underestimated it at the other 3 sites (by 51%, 42%, and 66%, at BMSM, ML, and BMM,
respectively). Differences in percent frequency of tree size class among the sample plots
from ground surveys are shown in Figure 6. A summary of ground-survey data is present
in the Supplementary Materials (Table S2).
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Figure 5. A comparison of mean stocking density estimates at Ban Mae Sa Mai (BMSM), Mon Long
(ML), Ban Pong Krai (BPK), Ban Meh Meh (BMM), and the Lampang quarry (LP), among ground-
and drone-based surveys of sample plots only (SG and SD, respectively) and site-wide drone-based
assessments (drone estimates from the multiple regression model). Drones estimates from the mean
values within rows, not sharing the same superscript, are significantly different (p < 0.05). † Site-wide
estimates are absolute values (hence no superscripts). Asterisks indicate a significant difference
between two methods: * (p < 0.05); *** (p < 0.001). NS = non-significant.

Stocking density, derived from tree-top points in the CHMs, correlated weakly with
that derived from numbers of individual trees counted during ground surveys (R2 = 0.12)
(Figure 7 Left). Adjusted stocking density, calculated from the model, was much more
highly correlated (R2 = 0.71) with stocking density calculated from on-ground tree counts.
The root mean square error (RMSE) was 493 trees per hectare, about 4 trees per 5-metre-
radius plot (Figure 7 Right).
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Figure 6. Percent frequency of tree size classes from ground surveys in sample plots for each
site. (BMSM): Ban Mae Sa Mai; (ML): Mon Long; (BPK): Ban Pong Krai; (BMM): Ban Meh Me;
(LP): Lampang.

Relative cover of the three ground-cover elements (tree canopy cover, ground vegeta-
tion, and exposed soil + rock) (Figure 8) detected from drone-derived data were all highly
correlated with ground-survey data. Percent canopy cover was the most highly correlated
(R2 = 0.83), followed by ground vegetation (R2 = 0.71), and exposed soil + rock (R2 = 0.56)
(Figure 9).
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square error; r = Pearson’s correlation coefficient. Each point represents one circular sample plot.
Sites are indicated by the shape and shading of the points.
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Figure 8. Percent of three ground-cover elements averaged from sample plots. (BMSM): Ban Mae
Sa Mai; (ML): Mon Long; (BPK): Ban Pong Krai; (BMM): Ban Meh Me; (LP): Lampang. (SG):
Sampled ground survey; (SD) Sampled drone survey; (SWD) Site-wide drone survey of each whole
site. a–c within each row, comparing sites, means without a common superscript significantly
differ (p < 0.05); † Absence of significance symbols for SWD, as these are not mean values but
absolute values.
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Figure 9. Scatter plots of the percent of three ground-elements. (Left) Percent canopy cover.
(Right) Percent ground vegetation. (Lower) Percent exposed soil + rock. (CHM): Canopy-height
model; (RMSE): Root mean square error; (r): Pearson’s correlation coefficient.

Tree height variables, derived from the CHM, were weakly correlated with the same
measured in ground surveys (max, mean, and median tree height in each circular sam-
ple plot) (Figure 10). Highest correlation between drone-derived and ground data was
achieved for max tree height (R2 = 0.51). Mean tree height reduced the influence of outliers,
despite the weak correlation (R2 = 0.31), and was a better measure than median tree height
(R2 = 0.23). Furthermore, RMSE of mean height was lower (3.3 m) than for maximum
(4.1 m) and median (3.5 m) height.
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Figure 10. Scatter plots of tree height variables: (Left) Max height. (Right) Mean height. (Lower)
Median height. CHM = Canopy-height model; RMSE = Root mean square error; r = Pearson’s
correlation coefficient.

CHM-derived ACD (from mean top-of-canopy height and stand basal area in each
plot) was not correlated with the ACD calculated from ground-survey data (R2 = 0.24)
(Figure 11 Left). When stocking density was included in the multiple regression model,
correlation increased (R2 = 0.45) and RMSE was reduced (8.86 MgC/ha) (Figure 11 Right).
However, overestimation of drone-derived ACD was evident in the more degraded sites:
LP and BMM. Different patterns of error were found at each study site; for e.g., ACD tended
to be underestimated in the BMSM plots but overestimated in the ML plots.
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Figure 11. Scatter plots of ACD: (Left) ACD from CHM. (Right) Adjusted ACD from a multiple
regression model, with ACD and stocking density from CHM. ACD = Above-ground carbon density;
CHM = Canopy-height model; RMSE = Root mean square error; r = Pearson’s correlation coefficient.

4. Discussion

The novelty of this research lies in the application of a cost-effective off-the-shelf drone
with an RGB camera and open source software to distinguish degradation levels in trial
plots of known age since the initiation of forest ecosystem restoration.

Four out of six variables derived from drone imagery were well correlated (R2 > 0.55)
with the corresponding variables measured on the ground: stocking density (R2 = 0.71);
relative cover of the three ground-cover elements, i.e., canopy cover (R2 = 0.83); ground
vegetation (R2 = 0.71); and exposed soil + rock (R2 = 0.56). However, the other two, i.e.,
mean tree height (R2 = 0.31), and ACD (R2 = 0.45), were not highly correlated. These
two variables were calculated from absolute height values in CHMs, whose low accuracy
might be due to the absence of geo-referencing, such as ground control points (GCPs). In
contrast, stocking density and percent canopy cover were well correlated, because those
were derived from comparative heights in CHMs by algorithms.

One of the advantages of drone surveys is that entire sites can be surveyed rapidly.
Intuitively, this should give a more accurate assessment of degradation-related variables
than sampling, particularly for more severely degraded sites, where large remnant trees are
distributed sparsely and can greatly skew data where they occur in sample plots. However,
our study was equivocal in this respect, with inconsistent differences between the site-wide
and sample-based estimates. In terms of stocking density, differences between these two
estimates (Figure 5) in the less degraded sites (BMSM, ML, and BPK) were smaller (less
than 25%) compared with the more degraded sites, i.e., BMM (254.6%) and LP (116.5%).
The largest difference between site-wide and sample-based canopy cover estimates was at
BMM (151.2%) (Figure 11), although, in contrast, the difference between the two methods
at the most degraded site (LP) was small.

One of the most serious limitations of using RGB data from drone imagery is that large
canopy trees obscure smaller understory trees. Furthermore, when the camera settings are
correct for exposure of the sunlit upper canopy, trees in the much darker understory are
substantially underexposed and can hardly be seen. Furthermore, tall ground vegetation
may obscure the smallest trees, which may be detected in ground surveys but not in
drone imagery.

Drone and ground tree-counts were well correlated (Figure 7). Ground and drone
counts did not differ significantly at BPK and LP. However, only about half of the trees
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at BMSM, ML, and BMM were detectable in drone imagery. The size and nature of the
differences between ground and drone tree counts (Figure 5) appeared to be site-specific.

In the least degraded sites (BMSM and ML), obscurement of the trees in drone imagery
was probably due to high tree-crown cover (73.19% and 88.50%, respectively, Figure 8),
caused by high representation of large trees (Figure 6). Although use of the multiple regres-
sion model (which combined the number of detected trees with canopy cover) reduced the
underestimate of trees from drone imagery, it failed to fully predict the number of hidden
trees. This problem may be overcome in the future by the use of lidar sensors, which are
better at revealing forest understorey structure than RGB cameras [19]. However, at present,
they are prohibitively expensive.

In contrast, at the more heavily degraded BMM site, where there were few trees taller
than 10 m (Figure 6) to obscure smaller trees, stocking density was still underestimated by
65.69% in drone imagery. This may have been due to high weed cover; BMM supported
highest weed cover for all the sites (83.41%, Figure 8). The weeds were particularly tall and
dense at the BMM site. Since such a large percentage of trees were in the smallest size class
(78% shorter than 2.99 m, Figure 6), it is highly likely that weeds obscured the majority of
trees present in this site.

High detection of trees at BPK might be explained by the low numbers of small trees
(only 9% of total trees are 1.00–2.99 m tall, Figure 6). Such a lack of small trees could
be explained by the trees planted in 2016 having grown up to larger size classes and the
hindrance of natural regeneration due to a lack of nearby natural forest as seed sources.
Hence, most trees were in 5.00–10.99 size classes, which could be easily distinguished in
drone imagery.

At LP, although the majority of trees were small, there were no large tree-crowns to
obscure them (Figure 6). Weed cover was relatively sparse and not very tall. Furthermore,
there were large areas of exposed mine substrate, where smaller trees showed up well
against the plain grey/brown background.

GCPs are marked points on the ground, recognizable from above, whose precise coor-
dinates are measured by GPS receivers with enhanced precision, e.g., Real-Time Kinematic
(RTK) or Post-Processing Kinematic (PPK) GPS receivers. GCPs are used as thumbtacks for
geo-referencing drone data, to achieve a high degree of (i) global accuracy, corresponding
to the actual coordinate system and (ii) local accuracy for measurements in DEMs and
orthophotos [42–44].

The effectiveness of geo-referencing in increasing the accuracy of canopy height, AGB,
and ACD measurements was demonstrated by Zahawi et al. (2015) [25], using differential
GPS, and by Swinfield et al. (2019) [28], using GCPs. Therefore, it is recommended
that future studies that depend on absolute height values in CHMs should apply geo-
referencing using elevation data. Specifically, the use of GCPs with precise coordinates,
measured by RTK or PPK, is optimal. However, such technologies do not come as standard
on off-the-shelf drones, and they are expensive. Therefore, in order to minimize errors
in the positioning of sample plots in drone imagery in this study, we replaced the use
of GCPs with the stadia method, which was successful at reducing locational error in
sample plot positioning (Figure S5). Using 11 directly visible plots as references, the stadia
method resulted in lower error in the positioning of the sample-plot centre pole (0.11–2.83,
mean 0.79 m ± 0.77 SD) compared with the use of a GPS receiver (2.00–6.28 m, mean
3.71 m ± 1.45 SD). Further research is needed to compare the stadia method with the use
of GCPs and to assess its practicability, since the former does require additional effort
and equipment to measure the distance and direction of ground markers to sample-plot
centre poles.

A barrier to the wider use of drones in forestry is high initial cost, not only of the
drone itself, but also of recruiting technically proficient personnel and providing training.
However, if drones are used long-term, their high initial costs are spread over many projects.
Another issue is the need for complex data processing, requiring advanced software and
long processing times, although the development of AI tools may reduce the time and
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effort needed for these tasks in the near future. Table 2 compares the relative advantages
and disadvantages of using drones compared with conventional ground-based surveys.
Further research is needed to quantify the relative cost-effectiveness of the two techniques.

Table 2. Comparison between ground and drone survey methods.

Cost Type Ground Survey Drone Survey

Setup Training
− Relatively simple techniques
− Short training period

− Steep learning curve
− Longer training period

Equipment − Cheaper − More expensive

Data
acquisition

(Field)

Time − More time consuming − Rapid data collection

Labour
(Salary, food)

− 3–4 teams × 2–4 members
− More expense

− 1 team × 3 members
− Less expense

Weather
limitations

− Limited only by severe weather
that may affect worker safety

− Highly sensitive to minor weather changes,
e.g., poor lighting conditions, low clouds, mist,
light rain, wind, etc.

Data
processing

(Lab)
Technique

− Simple spreadsheet
software—free or relatively cheap

− Low power computers adequate

− Advanced software required with
costly licenses

− Powerful computers needed

5. Conclusions

This study aimed to explore practical and accurate solutions, using drones to replace
conventional time-consuming and labour-intensive ground surveys, to help guide the
implementation and monitoring of restoration projects. It focused on the development of
affordable photogrammetric techniques, using RGB photography and open-source soft-
ware, rather than more expensive options (e.g., lidar and hyperspectral data). While the
techniques described worked well for determining stocking density and the relative propor-
tions of ground-cover elements (forest canopy, ground vegetation, and exposed soil/rock),
accurate determination of tree heights and ACD proved more difficult to achieve without
GCPs. Further research is therefore needed to develop an integrated forest-degradation
index that combines multiple variables derived from drone imagery as an alternative to
labour-intensive and expensive ground surveys, particularly in less accessible areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14030586/s1. Figure S1: (Left) red-black ground-marker placed
in the centre of circular sample plots. (Right) red-black ground marker, detected by drone image
sensing; Figure S2: The canopy-height model (CHM, right) was derived by subtracting the digital
terrain model (DTM, centre)) from the digital surface model (DSM, left); Figure S3: Explanation of
the variable window-filter algorithm, used to detect tree-top points; Figure S4: Principle of marker-
controlled watershed segmentation (mcws) algorithm, delineating crown boundaries (adopted from
Fisher, 2014 [44]); Figure S5: Examples of the stadia method and comparisons with GPS-detected
points in orthophotos; Table S1: Drone flight records, weather conditions, and flight-mission settings;
Table S2: Summary of sampled ground dataset.
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