Lattice Structure and Spatial Network Models Incorporating into Simulating Human-Mediated Dispersal of the Western Conifer Seed Bug Populations in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data and Parameters
2.1.1. Field Data
2.1.2. Transportation of Forest Products
2.1.3. Closeness to the Highway Network
2.1.4. Traffic Load
2.1.5. Distribution of Sapling Farms
2.1.6. Habitat Preference
2.2. Model Development
2.2.1. Overview
2.2.2. System Definition
2.2.3. Life Events in LSM
2.2.4. Passive Movement
2.2.5. Movement Because of Forest-Product Transportation
2.2.6. Active Movement
2.2.7. Population Dynamics
2.2.8. Linking LSM and SNM
2.2.9. Parameters
2.2.10. Initial Conditions
2.2.11. Output Data
2.2.12. Stochasticity
3. Results
3.1. Advancement Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebhold, A.M.; Tobin, P.C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 2008, 53, 387–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, H.; Matthias, R. Dynamic Modelling of Diseases and Pests; Springer: New York, NY, USA, 2009. [Google Scholar]
- Yoon, C.S.; Kim, H.G.; Park, J.D.; Choi, W.Y.; Choi H., J.; Cheong S., W. First record of the Western conifer seed bug, Leptoglossus Occidentalis Heidemann (Heteroptera: Coreidae) in Korea. J. Environ. Sci. Int. 2012, 21, 1009–1013. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.E.; Lee, H.J.; Kim, M.J.; Ban, Y.G.; Kim, D.Y. Leptoglossus occidentalis (Hemiptera: Coreidae) occurrence, potential habitats, and COI diversity in South Korea. J. Asia-Pac. Biodivers. 2020, 13, 35–45. [Google Scholar] [CrossRef]
- Barta, M. Biology and temperature requirements of the invasive seed bug Leptoglossus occidentalis (Heteroptera: Coreidae) in Europe. J. Pest Sci. 2016, 89, 31–44. [Google Scholar] [CrossRef]
- Ecology, N.I.O. Investigating Ecological Risk of Alien Species (IV); National Institute of Ecology: Seocheon, Republic of Korea, 2017. [Google Scholar]
- Lee, D.-S.; Lee, T.-G.; Bae, Y.-S.; Park, Y.-S. Occurrence prediction of Western conifer seed bug (Leptoglossus occidentalis: Coreidae) and evaluation of the effects of climate change on its distribution in South Korea using machine learning methods. Forests 2023, 14, 117. [Google Scholar] [CrossRef]
- Bates, S.L.; Borden, J.H.; Kermode, A.R.; Bennett, R.G. Impact of Leptoglossus occidentalis (Hemiptera: Coreidae) on Douglas-fir seed production. J. Econ. Entomol. 2000, 93, 1444–1451. [Google Scholar] [CrossRef]
- Fent, M.; Kment, P. First record of the invasive Western conifer seed bug Leptoglossus occidentalis (Heteroptera: Coreidae) in Turkey. North-West. J. Zool. 2011, 7, 72–80. [Google Scholar]
- Parlak, S. An invasive species: Leptoglossus occidentalis (Heidemann) how does it affect forestry activities? Kast. Üniversitesi Orman Fakültesi Derg. 2017, 17, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.J.; Son, D.; Choo, H.Y.; Park, C.G. The first record on Leptoglossus occidentalis (Hemiptera: Coreidae) in Korea, a potential pest of the pinaceous tree species. J. Asia-Pac. Entomol. 2013, 16, 281–284. [Google Scholar] [CrossRef]
- Liebhold, A.; Halverson, J.; Elmes, G. Gypsy Moth invasion in North America: A quantitative analysis. J. Biogeogr. 1992, 19, 513. [Google Scholar] [CrossRef]
- Shigesada, N.; Kawasaki, K. Biological Invasions: Theory and Practice; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Vinatier, F.; Tixier, P.; Duyck, P.F.; Lescourret, F. Factors and mechanisms explaining spatial heterogeneity: A review of methods for insect populations. Methods Ecol. Evol. 2011, 2, 11–22. [Google Scholar] [CrossRef]
- Lee, S.D.; Park, S.Y.; Park, Y.S.; Chung, Y.J.; Lee, B.Y.; Chon, T.S. Range expansion of forest pest populations by using the lattice model. Ecol. Model. 2007, 203, 157–166. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Park, Y.S.; Jeoung, C.S.; Choi, W.I.; Kim, Y.K.; Jung, I.H.; Shigesada, N.; Kawasaki, K.; Takasu, F.; Chon, T.S. Spatially explicit model applied to pine wilt disease dispersal based on host plant infestation. Ecol. Model. 2017, 353, 54–62. [Google Scholar] [CrossRef]
- Chon, T.S.; Lee, S.H.; Jeoung, C.; Cho, H.K.; Lee, S.H.; Chung, Y.J. Individual-Based Models. In Handbook of Ecological Modelling and Informatics; Wit Press: Boston, MA, USA, 2009; pp. 99–123. [Google Scholar]
- Xia, C.L.; Chon, T.S.; Takasu, F.; Choi, W.l.; Park, Y.S. Simulating Pine Wilt disease dispersal with an Individual-Based Model incorporating individual movement patterns of Vector Beetles. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, L.R.; Mumford, J.D.; MacLeod, A.; Harwood, T.; Grabenweger, G.; Leach, A.W.; Knigh, J.D.; Baker, R.H.A. Unveiling human-assisted dispersal mechanisms in invasive alien insects: Integration of spatial stochastic simulation and phenology models. Ecol. Model. 2010, 221, 2068–2075. [Google Scholar] [CrossRef]
- Robinet, C.; Roques, A.; Pan, H.; Fang, G.; Ye, J.; Zhan, Y.; Sun, J. Role of human-mediated dispersal in the spread of the pinewood nematode in China. PLoS ONE 2009, 4, e4646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinet, C.; Rousselet, J.; Roques, A. Potential spread of the pine processionary moth in France: Preliminary results from a simulation model and future challenges. Ann. For. Sci. 2013, 71, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Global Biodiversity Information Facility (GBIF). Available online: https://www.gbif.org/occurrence/download/0074706-200613084148143 (accessed on 5 August 2022).
- Balcan, D.; Colizza, V.; Gonçalves, B.; Hu, H.; Ramasco, J.J.; Vespignani, A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [Green Version]
- Chilès, J.P.; Desassis, N. Fifty Years of Kriging; Springer International Publishing: Cham, Switzerland, 2018; pp. 589–612. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Systems. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M.; Bennett, A.F. Identifying wildlife corridors for the restoration of regional habitat connectivity: A multispecies approach and comparison of resistance surfaces. PLoS ONE 2018, 13, e0206071. [Google Scholar] [CrossRef]
- Koerbe, T.W. Leptoglossus occidentalis (Hemiptera, Coreidae), a newly discovered pest of coniferous seed. Ann. Entomol. Soc. Am. 1963, 56, 229–234. [Google Scholar] [CrossRef]
- Bates, S.L.; Borden, J.H. Life table for Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) and prediction of damage in lodgepole pine seed orchards. Agric. For. Entomol. 2005, 7, 145–151. [Google Scholar]
- Lesieu, V. European Invasion of the Western Conifer Seed Bug, Leptoglossus Occidentalis: A Contribution to Improve Understanding of Rapid Invasions; Université d’Orléans: d’Orléans, French, 2015; p. 238. [Google Scholar]
- Ten, B.G.; Van V, G.; Ligtenberg, A. Which sensitivity analysis method should i use for my Agent-Based Model? J. Artif. Soc. Soc. Simul. 2016, 19, 5. [Google Scholar]
Parameters | Description | Values | Sources |
---|---|---|---|
Death rate | 0.7525 | [29] | |
Number of progenies (female) produced per female | 40 | [28] | |
Carrying capacity | 1,200,000/km² | Field experience | |
Allee-effect threshold | 1000 | Tested in the model | |
Contribution ratio of SNM | 0.25 | Tested in the model | |
Slope for determining passive movement for Stage I according to distance to the road in the logistic function | 0.09 | Preliminary test | |
Slope for determining passive movement for Stage I according to traffic load in the logistic function | 0.00007 | Preliminary test | |
Maximum distance for dispersal in the road network for Stage I in passive movement | 470 km/year | Field data | |
Slope for passive movement for Stage II according to traffic load in the logistic function | 0.000035 | Preliminary test | |
Slope for active movement according to habitat preference difference in the logistic function | 0.09 | Preliminary test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Lee, D.-S.; Park, Y.-S.; Heo, M.; Eom, I.-K.; Bae, Y.-S.; Lee, T.-G.; Chon, T.-S. Lattice Structure and Spatial Network Models Incorporating into Simulating Human-Mediated Dispersal of the Western Conifer Seed Bug Populations in South Korea. Forests 2023, 14, 552. https://doi.org/10.3390/f14030552
Zhang X, Lee D-S, Park Y-S, Heo M, Eom I-K, Bae Y-S, Lee T-G, Chon T-S. Lattice Structure and Spatial Network Models Incorporating into Simulating Human-Mediated Dispersal of the Western Conifer Seed Bug Populations in South Korea. Forests. 2023; 14(3):552. https://doi.org/10.3390/f14030552
Chicago/Turabian StyleZhang, Xiaodong, Dae-Seong Lee, Young-Seuk Park, Muyoung Heo, Il-Kyu Eom, Yang-Seop Bae, Tak-Gi Lee, and Tae-Soo Chon. 2023. "Lattice Structure and Spatial Network Models Incorporating into Simulating Human-Mediated Dispersal of the Western Conifer Seed Bug Populations in South Korea" Forests 14, no. 3: 552. https://doi.org/10.3390/f14030552
APA StyleZhang, X., Lee, D.-S., Park, Y.-S., Heo, M., Eom, I.-K., Bae, Y.-S., Lee, T.-G., & Chon, T.-S. (2023). Lattice Structure and Spatial Network Models Incorporating into Simulating Human-Mediated Dispersal of the Western Conifer Seed Bug Populations in South Korea. Forests, 14(3), 552. https://doi.org/10.3390/f14030552