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Abstract: The leaf traits measured in multiple species are known to vary between seasons, but there
is a knowledge gap relating to the seasonal variability and environmental adaptation of plants in
tropical rainforests. To investigate the dynamics of the functional traits of dominant species in
tropical rainforests and the differences in their adaptation strategies to seasonal drought, the results
of this study can provide a scientific basis for tropical rainforest conservation resource protection.
Six dominant species, including three trees (Hopea reticulata, Vatica mangachapoi, and Diospyros chunii)
and three vine plants (Ancistrocladus tectorius, Phanera khasiana, and Uvaria sanyaensis), in tropical
lowland rainforest in the Ganzaling Nature Reserve of Hainan province were selected as study objec-
tives. The key leaf traits were studied using the paraffin section method, leaf epidermis segregation
method, and Li-6400 portable photosynthesis system in June, September, December, 2019, and March,
2020. Results showed that significant differences in photosynthetic physiology and morphological
and structural parameters among species, as well as seasonal variability, were observed in leaf
photosynthetic physiology, but not in leaf morphological or structural parameters. A phenotypic
plasticity index (PPI) analysis revealed more variability in leaf photosynthetic physiology (Average
PPI = 0.37) than in leaf anatomical structure and morphology (Average PPI = 0.26), suggesting that
they adapt to seasonal changes primarily by regulating photosynthetic physiological parameters
rather than leaf morphology or anatomical structure. The dominant trees were found to have higher
water use efficiency, leaf dry-matter content, and smaller leaf areas compared to vine plants. This
indicates that the dominant tree species depend on high water use efficiency and leaf morphological
characteristics to adapt to seasonal changes. The majority of leaf anatomical structure parameters
associated with drought tolerance were higher in the three dominant vine species, indicating that the
dominant vine species adapted to drought stress primarily by altering the leaf anatomical structure
This study provides information on how tropical rainforest plants adapt to seasonal drought as well
as supporting the protection of tropical rainforest ecosystems.

Keywords: tropical rainforests; leaf trait; seasonal drought; leaf anatomical structure; photosynthesis

1. Introduction

Global forest health is at risk from climate change as a result of drought and heat-
induced tree mortality [1]. Drought—induced by climate change—has received particular
attention due to its potential threat to various ecosystems. Previous studies have suggested
that aridity drives ecosystem thresholds worldwide [1,2], and Amazon carbon sinks decline
after droughts; increased evaporative demand is caused by increasing temperature due
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to climate change [3]. It is widely recognized that global ecosystems, including tropi-
cal rainforests, are facing drought risks. As a result, this poses a great challenge to the
conservation of rainforests. The photosynthetic and hydraulic characteristics of forests
influence resistance and resilience to drought stress across a wide range of ecosystems,
and the diversity of functional traits has been shown to affect forests’ resilience to drought
stress [4,5]. Thus, preserving the diversity of the functional traits of rainforests is important.
Prior to that, it is crucial to understand the differences in functional characteristics among
tree species.

Leaves play a crucial role in the exchange of carbon, water, and energy between the
atmosphere and land [6]. To adjust to different habitats, plants show different anatomical
traits, leaf photosynthetic characteristics, and morphological traits [7,8]; leaf functional
traits (such as SL, SD, and SLA) are adaptive traits in tree species and characterize the pop-
ulation/species drought resistance and/or water retention ability [9]. It is widely known
that leaf traits are capable of characterizing plant function, and therefore are widely used to
evaluate a plant’s response to differing environmental conditions, such as drought, shade,
and nutrient deficiency. In response to seasonal changes or stress, photosynthetic physio-
logical factors such as leaf water potential, transpiration rate, and water use efficiency were
regulated, as well as structural traits (e.g., anatomical structure) and morphological traits
(e.g., surface area). In previous studies, leaf traits varying between seasons was widely mea-
sured in multiple species and various forests across a variety of regions [6,8,10–13]. These
seasonal variations are commonly attributed to changes in the environment conditions, and
each functional trait responds to the changing conditions differently. For instance, Populus
euphratica exhibits seasonal fluctuations and temperature dependence on photosynthetic
parameters and stomatal conductance at the leaf scale [13]; Amazonian forests exhibit
seasonal and drought-related changes in leaf area profiles influenced by height and light
conditions [12].

Seasonal drought has a significant impact on plant growth, water physiology, nutrient
cycling, and gene expression [14–18]. For example, seasonal drought reduces the physio-
logical functions of the leaves of tropical tree species in Panama and affects the stomatal
conductance of tropical forest leaves, which in turn reduces the photosynthesis and growth
rate of plants [18]; seasonal drought also leads to a reduction in soil moisture, which affects
transpiration in subtropical coniferous forests [16]. Seasonal drought is considered one of
the most important factors determining the plant communities on Hainan Island’s tropical
lowland rainforest ecosystem [19]. The dominant species, whether they are trees, shrubs,
or vines, should be able to cope with seasonal drought. An earlier study suggested that
bamboo species from this site adjust their leaf traits to seasonal drought conditions [20]. It is
also possible for dominant trees and vines to adapt their leaf traits to seasonal drought, yet
it is unclear that there are variations among species in leaf trait-based response mechanisms.

In this study, six dominant species, including three trees (Hopea reticulata, Vatica
mangachapoi, and Diospyros chunii) and three vine plants (Ancistrocladus tectorius, Phanera
khasiana, and Uvaria sanyaensis), were selected to determine their key leaf traits, including
gas, morphological, and structural parameters, thus fostering analysis of their adverse
adaption strategy to seasonal drought. We hypothesized that (1) there are species and
seasonal differences in leaf functional traits (photosynthetic physiology and morphological
and structural parameters) of dominant species in tropical rainforests; (2) photosynthetic
physiological parameters are the important leaf trait variations through which dominant
species adapt to seasonal changes in their environment; (3) there are differences in envi-
ronmental adaptation strategies between trees and vines. The findings could contribute
to the understanding of the survival and adaptation strategies of tropical plant species in
rainforests, as well as provide a scientific basis for the conservation and use of rainforest
plant resources.
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2. Materials and Methods
2.1. Study Site

The study site (109◦40′4” E, 18◦23′2” N, altitude 202 m; Figure 1) is located in Ganzaling
Nature Reserve on Hainan Island, China, which is located at the junction of Sanya City
and the southern part of Baoting County. It is a lowland hilly landform, with a slope <
50◦ and an altitude of 50–681 m. The soil parent material is granite, the rock exposure
rate is 10%, and the sand content is approximately 20%. The study area experiences a
tropical marine monsoon climate with an annual rainfall of 1200–1800 mm and alternating
wet and dry seasons. Over 90% of the rainfall occurs during the wet season, from May to
November, and the dry season from December to May of the following year experiences low
rainfall (Figure 2). The average annual temperature is 24 ◦C. Tropical lowland secondary
rainforests originally covered the area. In the different vegetation layers, the dominant
species are summarized as follows: the dominant tree species include H. reticulata, D. chunii,
V. mangachapoi, etc.; the dominant shrub species include Licuala spinosa, Ixora hainanensis,
Ardisia lindleyana, etc.; the dominant herbaceous species include Scleria terrestris, Blechnum
orientale, Alpinia oblongifolia, etc.; the dominant vine species include A. tectorius, P. khasiana,
U. sanyaensis, palm vines, etc.
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2.2. Materials

Six dominant species, including three trees (H. reticulata, V. mangachapoi, and D. chunii)
and three vine plants (A. tectorius, P. khasiana, and U. sanyaensis), were selected as study
objectives (Figure 1). H. reticulata, a Grade II national protected plant, is found only in
Ganzaling (our experimental site) in China as well as Vietnam. Mature H. reticulata trees
can reach a height of 15 m. V. mangachapoi, a Grade II national protected plant, is an
indicator species in tropical rainforests. The mature V. mangachapoi tree can reach a height
of approximately 20 m. D. chunii is an endemic species native to China, found only in Sanya,
and grows to a height of 4–7 m. A. tectorius is a moderately shade -loving species with long
hook-shaped structures that can grow up to 10 m. A sun-loving species, P. khasiana, climbs
up to the canopy of the rainforest. It is over 20 m in length. U. sanyaensis is a shade-loving
species that grows in the understory and measures only 5 m in length.
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2020).

2.3. Experimental Design and Sampling

Before experiments, 3–5 individuals with similar growth status per species were
selected and marked as sample plants. They were well protected during the experiments.
Leaf samples were collected from these marked plants in mid-June, mid-September, and
mid-December 2019 and March 2020 for leaf trait measurements (Table 1). Photosynthetic
parameters were measured on a sunny day, and the youngest branch at 1.6 m above ground
level was selected at five locations in the canopy: east, west, south, north, and center; the
developed mature leaf (penultimate 4th leaf at the end of the branch) was selected on the
branch.

Table 1. Symbols and abbreviations for leaf traits and their measurement information.

Abbreviation Description Unit Measurement (Time;
Sample no.)

Pn Net photosynthetic rate µmol m−2 s−1 Jun., Sep., Dec., Mar.; 5
Gs Stomatal conductance µmol m−2 s−1 Jun., Sep., Dec., Mar.; 5
Ci Intercellular carbon dioxide concentration µmol mol−1 Jun., Sep., Dec., Mar.; 5
Tr Transpiration rate µmol m−2 s−1 Jun., Sep., Dec., Mar.; 5

WUE Water use efficiency µmol mmol−1 Jun., Sep., Dec., Mar.; 5
Ls Stomatal limitation / Jun., Sep., Dec., Mar.; 5

VPD Vapor pressure deficit KPa Jun., Sep., Dec., Mar.; 5
AQE Apparent quantum efficiency mol mol−1 Jun., Sep., Dec., Mar.; 5

Pnmax Maximum photosynthetic rates µmol m−2 s−1 Jun., Sep., Dec., Mar.; 5
LSP Light saturation point µmol m−2 s−1 Jun., Sep., Dec., Mar.; 5
LCP Light compensation point µmol m−2 s−1 Jun., Sep., Dec., Mar.; 5
Rd Dark respiration efficiency µmol m−2 s−1 Jun., Sep., Dec., Mar.; 5
LT leaf thickness µm Jun., Sep., Dec., Mar.; 5

USCT Upper stratum corneum thickness µm Jun., Sep., Dec., Mar.; 5
UET Upper epidermal thickness µm Jun., Sep., Dec., Mar.; 5
LET Lower epidermal thickness µm Jun., Sep., Dec., Mar.; 5
PTT Palisade tissue thickness µm Jun., Sep., Dec., Mar.; 5
STT Spongy tissue thickness µm Jun., Sep., Dec., Mar.; 5
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Table 1. Cont.

Abbreviation Description Unit Measurement (Time;
Sample no.)

SAFVB Sectional area of first-vascular bundle mm2 Jun., Sep., Dec., Mar.; 5
DSVB Diameter of second-order vascular bundle µm Jun., Sep., Dec., Mar.; 5

SASVB Sectional area of second-order vascular bundle mm2 Jun., Sep., Dec., Mar.; 5
DBAVB Distance between adjacent vascular bundle µm Jun., Sep., Dec., Mar.; 5

SL Stomata length µm Jun., Sep., Dec., Mar.; 5
SW Stomata width µm Jun., Sep., Dec., Mar.; 5
AS Area of single stomata µm2 Jun., Sep., Dec., Mar.; 5
SD Stomata density number mm−2 Jun., Sep., Dec., Mar.; 5
AP Percent of stomata area % Jun., Sep., Dec., Mar.; 5
LA Leaf area cm2 Jun., Sep., Dec., Mar. 3

LDMC Leaf dry-matter content g kg−1 Jun., Sep., Dec., Mar.; 3
SLA Specific leaf area m2 kg−1 Jun., Sep., Dec., Mar.; 3

2.4. Leaf Traits Measurements
2.4.1. Gas Exchange Parameter Measurements

Leaf photosynthesis capability was examined by measuring the instantaneous values
of the gas exchange parameter. Net photosynthetic rate (Pn), stomatal conductance (Gs),
intercellular CO2 concentration (Ci), and transpiration rate (Tr) were determined on the 3–
5th fully expanded leaves (from the apex) in mid-June, mid-September, and mid-December,
2019, and March, 2020. Pn values were recorded using an LI-6400 portable photosynthesis
system (Li-Cor Inc., Lincoln, NE, USA). To obtain stable measurements and simulate
actual external environmental conditions, in accordance with actual light conditions under
different irradiance treatments, photosynthetic photon flux density (PPFD) at the leaf
surface was set at 1000 µmol m−2 s −1. Water use efficiency (WUE) was calculated as WUE
= Pn/Tr. The meteorological data were recorded with the LI-6400 portable photosynthesis
system, including air temperature (Ta; ◦C), air relative humidity (RH; %), and ambient
CO2 concentration (Ca). The stomatal limitation value (Ls) was then calculated using the
following formula: Ls = 1 − –Ci/Ca. The water vapor pressure deficit (VPD; kPa) was
calculated according to the formula [21]:

VPD = 0.611 × exp(
17.27 × Ta
Ta + 237.3

) × (1 − RH)

To further assess leaf photosynthesis capabilities and shade tolerance, the light re-
sponse curve was established, and then these data were analyzed to calculate apparent
quantum efficiency (AQE), maximum photosynthetic rates (Pnmax), light saturation point
(LSP), light compensation point (LCP), and dark respiration efficiency (Rd) using a pho-
tosynthesis calculation software (version 4.11) based on a non-rectangular hyperbolic
model [22]. In this experiment, the PPFD was set to the following gradients: 2400, 2000,
1800, 1600, 1400, 1200, 1000, 800, 500, 200, 50, and 0 µmol m−2 s−1, and the CO2 concentra-
tion was set to 400 µmol mol−1.

2.4.2. Morphological Determination

Leaf dry matter content is an index of mass investment in photosynthetic organs that is
positively correlated with leaf density and negatively correlated with plant growth [23,24].
Specific leaf area (SLA, the ratio of leaf area to leaf dry mass) and leaf dry matter content
(LDMC, the ratio of leaf dry mass to fresh mass) of mature leaves was measured to analyze
their adjustments in organic matter and energy partitioning to the varying environments.
Leaf area was determined by scanning the leaves with an Epson perfection V19 scanner
and calculating the area in the leaf area calculation program (version 1.1); leaf dry matter
content was calculated by cutting off the petioles of mature leaves, soaking them in water
for 12 h, absorbing the water from the leaf surface with absorbent paper, and weighing the
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saturated fresh weight, then killing at 105 ◦C and drying at 80 ◦C to constant weight, and
weighing the dry weight. LDMC = dry weight (g)/saturated fresh weight (kg); SLA = leaf
area (m2)/dry weight (kg).

2.4.3. Anatomical Measurements

Paraffin sections of the leaves were prepared for anatomical measurements, and the
material was softened, de-watered and immersed in wax, embedded, sectioned, stained
with red-solid green, and sealed with neutral resin. The sections were observed and
photographed under an Osmia PH50-3M100 light microscope, and each tissue structure
index was measured using ImageView image analysis software. The following indices were
measured: leaf thickness (LT), upper cuticle thickness (USCT), papillae thickness (MPT),
upper epidermal thickness (UET), lower epidermal thickness (LET), number of vesicular
cells (NBC), cross-sectional area of vesicular cells (SABC), cross-sectional area of single
spindle cells (SAFC), cross-sectional area of primary vascular bundles (SAFVB), diameter of
secondary vascular bundles (DSVB), and 12 secondary vascular bundle cross-sectional area
(SASVB), and secondary vascular bundle spacing (DBAVB). For each species, 30 statistical
index values were taken in each observation.

Leaf epidermal sections were prepared through the maceration method using glacial
acetic acid and 30% hydrogen peroxide. Leaf tissues were placed in a decoction bottle
containing glacial acetic acid and 30% hydrogen peroxide, and they were then incubated for
27 h at 60 ◦C. Following the separation of the upper and lower epidermis and leaf tissues,
the dissociated material was removed and transferred to distilled water. After splitting
the upper and lower epidermis with a brush, the washed leaf epidermis was stained with
1% fenugreek and 50% alcohol solution for 5 min, and the slices ware then sealed with
neutral gum. The slices were observed and photographed under an Osmia PH50-3M100
light microscope, and each tissue structure index was measured using ImageView image
analysis software. The stomata length (SL), stomata width (SW), and area of single stomata
(AS) were determined. The stomata density (SD) and percent of stomata area (AP) were
calculated, where SD = number of stomata in the field of view/area of view, and AP = AS
× SD × 100%.

2.5. Statistical Analyses

The phenotypic plasticity index (PPI = (max −min)/max, where max and min repre-
sent mean maximum and minimum values for each leaf trait, respectively) was calculated
separately for each morphological and physiological trait [25]. Differences in plant traits
between seasons and species were evaluated using a Kruskal–Wallis test, followed by pair-
wise multiple comparisons. All statistical analyses were conducted using SPSS software
(ver. 20.0; SPSS Inc., Chicago, IL, USA). Figures were constructed using OriginPro software
(Ver. 2021. OriginLab Corporation, Northampton, MA, USA).

3. Results
3.1. Gas Exchange Parameters Analysis
3.1.1. Instantaneous Gas Exchange Parameter Analysis

A seasonal analysis of gas exchange parameters for six species is shown in Figure 3.
The highest levels of Pn were observed in the rainy season (June or September) for H.
reticulata, V. mangachapoi, P. khasiana, and U. sanyaensis, whereas the highest levels were
recorded in December for D. chunii and A. tectorius. For all six species, Gs, Ci, Tr, and VPD
were highest during the rainy season (from June or September); however, their WUE and Ls
had reversed patterns, with the highest values occurring during the dry season (December
or March). These finding suggesting that the gas exchange parameters such as Pn, Gs, Ci,
and Tr of dominant species in tropical rainforests were higher during the rainy season, but
their WUE performed better in the dry season.
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There was a wide variation among species regarding gas exchange parameters, with
P. Khasiana generally having higher levels of Pn and Gs than other species, whereas V.
Mangachapoi performed at the lowest level, demonstrating that P. Khasiana had a stronger
photosynthetic capacity, while V. Mangachapoi showed a weaker capability. Additionally,
several interspecific and monthly differences in gas exchange parameters of dominant
tropical lowland rainforest species are evident for the other four species.

Considering the comparison of plant life types, the dominant tree species had higher
WUE (6.01 ± 2.16 µmol mmol−1), Ls (0.32 ± 0.08), and VPD (1.38 ± 0.26 KPa) than the
dominant vine species (5.45 ± 1.97 µmol mmol−1; 0.29 ± 0.07; 1.37 ± 0.22 KPa), but their
Pn (3.74 ± 1.21 µmol m−2 s−1), Gs (0.05 ± 0.02 µmol m−2 s−1), Ci (270.65 ± 32.20 µmol
mol−1), and Tr (0.69 ± 0.30 µmol m−2 s−1) were all lower than those of the dominant vine
species (5.12 ± 2.69 µmol m−2 s−1; 0.08 ± 0.05 µmol m−2 s−1; 284.57 ± 29.99 µmol mol−1;
1.03 ± 0.57 µmol m−2 s−1). Based on these findings, tree species exhibited a higher water
use capacity than vine species but exhibited a lower level of photosynthetic capacity.

3.1.2. Light Response Curve Analysis

A light response curve analysis for the six species is shown in Figure 4. The AQE
and Pnmax of H. reticulata, V. mangachapoi, A. tectorius, P. khasiana, and U. sanyaensis all
reached their maximum values during the rainy season (June or September), while their
minimum values occurred in different months. The AQE and Pnmax of these five species
generally showed insignificant differences between months (p > 0.05), except for the Pnmax
of P. khasiana. The maximum and minimum values of LSP of H. reticulata, D. chunii, and
U. sanyaensis occurred in the rainy season, while the opposite trend was observed for
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P. khasiana, whose maximum and minimum values occurred in the dry season. There
were significant monthly differences in the LSP of H. reticulata, A. tectorius, and P. khasiana
(p < 0.05). The maximum values of LCP and Rd of H. reticulata occurred in March and
the minimum values in June, while V. mangachapoi’s values were reversed; A. tectorius’s
maximum and minimum values occurred in June and September, respectively (p > 0.05); P.
khasiana and U. sanyaensis showed maximum values during the rainy season and minimum
values during December, and the differences were not statistically significant (p > 0.05). In
the comparison of different species, the AQE, Pnmax, LSP, LCP, and Rd of P. khasiana were
the highest, except for LSP in March, and the other species performed differently in different
months, suggesting that P. khasiana had an excellent photosynthesis ability, and the other
species exhibited some monthly differences in the fitted characteristic parameters. There
was no significant difference in AQE between species (p > 0.05) over the four months, except
for the AQE of U. sanyaensis in December; the Pnmax of P. khasiana and V. mangachapoi
were significantly different in September and December (p < 0.05). Except for LCP in
March, there were significant differences between LCP, Rd max and min of the six species
(p < 0.05). A comparison of plant life types revealed that Pnmax (5.30 ± 2.62 µmol m−2

s−1), LSP (967.07 ± 348.10 µmol m−2 s−1), LCP (7.14 ± 6.10 µmol m−2 s−1), and Rd
(0.44 ± 0.46 µmol m−2 s−1) were greater in the dominant vine species than in the dominant
tree species (3.99 ± 1.17 µmol m−2 s−1, 718.82 ± 208.97 µmol m−2 s−1, 4.58 ± 3.63 µmol
m−2 s−1, 0.24 ± 0.18 µmol m−2 s−1), and their mean AQE levels were similar.
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Figure 4. Characteristic parameters of the light response curve of the six species in different months.
(a) Pnmax; (b) LSP; (c) LCP; (d) AQE; (e) Rd. Different capital letters for the same month indicate
significant differences between species at the 0.05 level, while different lowercase letters for the same
species indicate significant differences between months at the 0.05 level (p < 0.05). See Table 1 for full
explanations of the abbreviations.

3.2. Leaf Anatomical Structure Analysis

Comparing different months (Table S1), LT, USCT, UET, LET, PTT, STT, DSVB, SASVB,
and AP were not significantly different in all four months (p > 0.05) for all species, sug-
gesting that these indicators displayed more stability over time. SAFVB, SL, and SD
differed significantly between months in A. tectorius (p < 0.05), but there were no significant
monthly differences between other species (p > 0.05). AS was the indicator with the greatest
monthly variation between all indicators, with significant monthly differences (p < 0.05) in
V. mangachapoi, D. chunii, and U. sanyaensis. The above results demonstrated that the leaf
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epidermal, fleshy, and vascular tissues differed less between months, and there were some
monthly differences in stomata, but the monthly differences were not significant in most of
the indicators.

Comparing different species (Table S1), the leaf tissue structure had large interspecific
differences. U. sanyaensis and A. tectorius had thicker LT, while V. mangachapoi and P. khasiana
had thinner LT, with significant differences between the maximum and minimum LT values
of different species (p < 0.05); both UET and LET were highest in U. sanyaensis. UET and LET
were both highest in U. sanyaensis (except for UET in December) and lowest in A. tectorius or
V. mangachapoi, with significant differences between their maximum and minimum values
(p < 0.05). The PTT and STT of each species were highest for P. khasiana and A. tectorius,
respectively. Except for SAFVB in December, SAFVB, DSVB, and SASVB were all highest in
A. tectorius, reflecting that A. tectorius has a strong vascular tissue system. Except for SW in
September and March, SL, SW, and AS were highest in H. reticulata and lowest in P. khasiana,
and SL and AS were significantly higher in H. reticulata than in P. khasiana (p < 0.05). SD
and AP were both significantly higher in P. khasiana than in A. tectorius and D. chunii in
September (p < 0.05). The USCT and DBAVB of different species behaved differently in
each month. The above results reflected that U. sanyaensis had well-developed epidermal
tissue, P. khasiana and A. tectorius had thicker chloroplast tissue, A. tectorius also had a
well-developed vascular system, H. reticulata had larger stomata, D. chunii and A. tectorius
had smaller stomata, and P. khasiana had denser stomata.

3.3. Leaf Morphology

Comparing different months (Figure 5), except for D. chunii’s SLA in September, the LA
and SLA of H. reticulata, V. mangachapoi, D. chunii, A. tectorius, and P. khasiana were all highest
during the rainy season (June or September) and lowest during the dry season (December or
March), but U. sanyaensis’s values were reversed. The LDMC values of all six species were
the lowest in June and the highest during the dry season (except for V. mangachapoi), and the
LDMC values of all species (except for P. khasiana) were not significantly different between
months (p > 0.05). These results indicated that leaf morphological traits differed between
months, but most of the differences were not significant. Comparing different species
(Figure 5), LA was highest in A. tectorius and lowest in H. reticulata in all four months,
with significant differences between them in September and December (p < 0.05). The
LDMC of V. mangachapoi was higher than the remaining five species, except in June, and the
difference in LDMC between V. mangachapoi and the remaining five species was significant
(p < 0.05). SLA values were highest in A. tectorius in different months, and the lowest values
of each species showed different performance in different months. Comparing different
life types, the LDMC of tree layer dominant species (404.31 ± 93.36 g kg−1) was higher
than that of vine dominant species (359.92 ± 73.51 g kg−1), but its LA (24.76 ± 8.15 cm2)
and SLA (1081.18 ± 373.87 m2 kg−1) were lower than that of vine dominant species
(112.76 ± 91.52 cm2, 3148.43 ± 2188.08 m2 kg−1).

3.4. Phenotypic Plasticity of Leaf Traits

The results of PPI of 30 leaf traits are shown in Table 2. Tr, WUE, LCP, and Rd averaged
PPIs above 0.50 for all six species, and average PPIs for photosynthetic physiological charac-
teristics parameters (0.44) were higher than those for morphological structural parameters
(0.25), reflecting that the dominant species of tropical rainforests had higher plasticity of
photosynthetic physiological characteristics parameters such as Tr, WUE, LCP, and Rd, and
were more adaptable to the environment and had more stable morphological structural
parameters. Among the six species, P. khasiana and A. tectorius exhibited higher average
PPIs (0.35–0.37) due to their extremely high PPI for photosynthetic physiology (0.49) and
morphology (0.32), respectively, suggesting that they had stronger environmental adapt-
ability. Moreover, V. mangachapoi and H. reticulata were found to show relatively weak
environmental adjustment capacity for their lower average PPIs (0.29–0.31).
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Table 2. Seasonal phenotypic plasticity index in leaf traits of the six dominant plants.

Index Hopea
reticulata

Vatica man-
gachapoi

Diospyros
chunii

Ancistrocladus
tectorius

Phanera
khasiana

Uvaria
sanyaensis

Photosynthetic
physiology

Pn 0.40 0.45 0.30 0.34 0.60 0.33
Gs 0.31 0.35 0.30 0.45 0.74 0.42
Ci 0.14 0.24 0.12 0.13 0.18 0.12
Tr 0.50 0.61 0.47 0.56 0.76 0.56

WUE 0.44 0.62 0.44 0.60 0.47 0.50
Ls 0.23 0.45 0.32 0.44 0.34 0.25

VPD 0.29 0.40 0.30 0.25 0.15 0.32
AQE 0.22 0.25 0.41 0.07 0.43 0.40

Pnmax 0.26 0.24 0.36 0.21 0.60 0.34
LSP 0.33 0.24 0.34 0.45 0.56 0.30
LCP 0.88 0.12 0.58 0.49 0.51 0.44
Rd 0.84 0.23 0.56 0.46 0.59 0.51

Average 0.41 0.35 0.37 0.37 0.49 0.37

Morphology

LT 0.06 0.08 0.10 0.27 0.18 0.07
USCT 0.24 0.35 0.30 0.29 0.37 0.16
UET 0.14 0.12 0.06 0.20 0.16 0.11
LET 0.08 0.12 0.12 0.11 0.24 0.14
PTT 0.25 0.08 0.06 0.43 0.17 0.17
STT 0.01 0.12 0.22 0.35 0.40 0.44

SAFVB 0.44 0.26 0.58 0.85 0.42 0.39
DSVB 0.16 0.13 0.35 0.38 0.13 0.06

SASVB 0.24 0.29 0.59 0.62 0.25 0.31
DBAVB 0.35 0.34 0.53 0.14 0.27 0.23

SL 0.09 0.15 0.16 0.17 0.13 0.12
SW 0.16 0.06 0.11 0.11 0.03 0.12
AS 0.18 0.27 0.25 0.27 0.14 0.29
SD 0.04 0.04 0.07 0.16 0.06 0.10
AP 0.20 0.26 0.30 0.33 0.18 0.30
LA 0.35 0.16 0.16 0.27 0.53 0.38

LDMC 0.33 0.51 0.48 0.17 0.28 0.57
SLA 0.39 0.60 0.41 0.54 0.53 0.63

Average 0.21 0.22 0.27 0.32 0.25 0.26

Total Average 0.31 0.29 0.32 0.35 0.37 0.32
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3.5. Principal Component Analysis of Leaf Traits

Principal component analysis (PCA) showed in Figure 6. The leaf traits of A. tectorius
and P. khasiana differed markedly from those of the other five species, with A. tectorius being
unique in its special leaf anatomical traits and P. khasiana being unique in its outstanding
photosynthetic parameters. H. reticulata, V. mangachapoi, D. chunii, and U. sanyaensis were
clustered together with more similar leaf trait characteristics. The traits with large PCA1
factor loadings include eight leaf structural trait indicators, such as STT, DBAVB, and
SAFVB, and nine photosynthetic parameter indicators, such as Pn, Pnmax, Rd, LCP, Tr, Gs,
etc. PCA1 indicated the shift from anatomical dominance to photosynthetic trait dominance
of the dominant species from left to right, and also represented the transition from shade-
loving to sun-loving of the dominant species. The traits with large PCA2 factor loadings
included six photosynthetic parameter indicators, Ci, WUE, Ls, Tr, Gs, and LSP and seven
anatomical structure indicators, including DSVB, SASVB, SAFVB, SL, and SW. Most of
these indicators with large factor loadings were related to water use, and PCA2 reflected
the differences in water use ability of dominant species from top to bottom.
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4. Discussion
4.1. Seasonal Variation of Leaf Functional Traits

A noticeable difference was observed in monthly gas exchange parameters, including
Pn, Gs, Ci, and Tr, and light response curve characteristics, such as AQE and Pnmax, for
dominant tree and vine species in tropical rainforests, and these photosynthetic phys-
iological parameters (except for WUE) were significantly higher during rainy seasons,
which are favorable for growth, which is consistent with the results of a photosynthetic
characterization of tropical plants [26,27]. The seasonal variations in these photosynthetic
parameters can be explained by seasonal changes in plant-accessible water, light radiation,
and temperature; seasonal changes in photosynthetic performance were associated with the
accumulation of leaf pigments (chlorophyll, carotenoids) and biochemical changes (rubisco
concentration) or damage to photosystem II by drought [28–30]. In contrast to the monthly
dynamics of photosynthetic physiological parameters, structural parameters such as leaf
epidermal tissue, leaf flesh tissue, and vascular tissue differed less between months, and
there were certain monthly differences only in stomata, but the monthly differences of most
indicators were not significant (p > 0.05). The parameters of photosynthetic physiological
characteristics such as Tr, WUE, LCP, and Rd of the dominant species in tropical rainforests
were more plastic and had a higher ability to adapt to the environment. The lower plasticity
of structural parameters reflects that the dominant species in tropical rainforests adapt
to seasonal changes mainly by regulating photosynthetic physiological parameters and
some stomatal parameters, but not the leaf tissue structure. Leaf tissue structure is the
result of long-term adaptation of plants to their environment [31,32] and is relatively stable
in the short term, with changes usually associated with drastic changes in leaf ecotype,
growth stage, and environmental factors (temperature) [33,34], and tropical rainforests are
characterized by evergreen species whose leaves do not shed annually, which indicates that
these trees have adapted to their habitat over a long period of time.

4.2. Differences in Seasonal Drought Adaptation Strategies among Dominant Species

There are obvious seasonal droughts in the tropical lowland rainforest area of Gan-
zaling, Hainan, where rainfall in the rainy season accounts for more than 90% of the year,
and the rainfall variation-induced change of rainy and dry seasons is an important envi-
ronmental change in this area [35]. Tropical rainforests exhibit obvious seasonal variations
in photosynthetic physiological parameters, as well as interspecific differences. Among
the 15 leaf structural parameters, the maximum values of 12 structural parameters, in-
cluding LT, USCT, and UET, were concentrated in three dominant vine species, and these
parameters were correlated with plant drought tolerance [36–38], suggesting that dominant
vine species have drought-tolerant leaf structures that enable them to cope with seasonal
drought. Comparatively, the three dominant tree species, H. reticulata, V. mangachapoi, and
D. chunii, displayed fewer advantages in drought tolerance characteristics, such as Pn, Gs,
AQE, LT, PPT, and SAFVB, yet they had higher WUE and LDMC and smaller LA, indicating
that the dominant tree species are capable of adapting to seasonal drought by enhancing
their WUE and altering leaf morphology.

In seasonally dry tropical forests, trees grow mainly in the rainy season and largely
stop growing in the dry season; the canopy vine, on the contrary, accounts for most of
its annual growth in the dry season, which favors canopy vine dominance in the commu-
nity [39]. P. khasiana, a canopy vine species, has eight gas exchange parameters, including
Pn, Tr, and LSP. P. khasiana is a canopy vine with the highest eight gas exchange parameters
and fitting parameters among the six dominant species, reflecting its strong photosynthetic
capacity and sun-loving characteristics, as well as its thick fenestrated tissue thickness (PTT)
and upper epidermal (UET), large and dense stomata, and densely distributed vascular
bundles, and its strong leaf photosynthetic capacity and drought-tolerant tissue structure
help it adapt to dry season stress and ensure its dominance in the community. This study
reveals the mechanism of the community dominance of P. khasiana in seasonally dry tropical
rainforests in terms of leaf photosynthetic physiology and anatomical structure. A. tectorius
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and U. sanyaensis are interstratified plants, but they rarely reach the forest canopy, and their
photosynthetic physiological and structural parameters such as leaf light saturation point
(LSP), apparent quantum efficiency (AQE), fenestrated tissue thickness (PTT), stomatal den-
sity (SD) and stomatal apparatus area percentage (AP) are lower than those of the canopy
vine P. khasiana. A. tectorius seems quite exploitative as it shows relatively high transpiration
and low WUE compared to others species. Under drought conditions, Carpinus betulus
in the understory of European floodplain forests also maximizes transpiration, stealing
water from shallow-rooted tree species in the community and limiting their growth [40].
Whether A. tectorius also limits the growth of community shallow-rooted species such as
Carpinus betulus needs further study. Three tree species (H. reticulata, V. mangachapoi, and D.
chunii) showed more moderate shade tolerance, which is related to the selection of species
by community succession, with shade-tolerant species being more dominant in the middle
and later stages of succession [41]. Shade-tolerant species have higher hydraulic security
than sunny species, are more adapted to seasonal drought [42], and are more competitive
in seasonally dry tropical rainforests.

4.3. Limitations and Future Research

In this study, the photosynthetic properties, anatomical structure, and morphological
characteristics of the leaves of six dominant species were studied in tropical lowland
rainforest trees and vines on Hainan Island. However, the number of plant species selected
in this study is relatively limited, with only three tree species and three vine species, and a
lack of shrub species, which limits the ability to reveal the adaptation strategies of tropical
lowland rainforest plants. To make the results more representative, subsequent studies
should expand the number of plant species and investigate the hydraulic traits related to
drought tolerance in plants. Thus, tropical lowland rainforest plants’ adaptation strategies
to droughts can be comprehensively understood. Additionally, only five individuals of each
tree species were selected after considering policy restrictions and measurement workload.
Future research will select a greater number of samples in order to verify the main findings
of the present study.

5. Conclusions

Leaf photosynthetic physiological parameters display obvious monthly variation
between the dominant species in tropical rainforests; however, leaf morphological and
structural parameters show little variation. The physiological and structural parameters
of photosynthetic processes and leaf morphology differ greatly between species. There
is considerable plasticity in the leaf photosynthetic physiological parameters of tropical
lowland rainforest dominant species, but less plasticity in leaf anatomical structure and
morphology, suggesting that they adapt to seasonal changes mainly by regulating photosyn-
thetic physiological parameters rather than leaf morphology and structure. The dominant
tree species had greater WUE and LDMC than the dominant vine species, as well as a
smaller leaf area (LA) than the dominant vine species, indicating that the tree dominant
species relied on high water use efficiency and leaf morphological characteristics to adapt
to seasonal changes. Three dominant vine species were found to possess the maximum
values of 12 of the 15 leaf anatomical and structural parameters associated with drought
tolerance, including LT, USCT, and UET, demonstrating that the vine plants adapted to dry
season stress primarily through altering leaf anatomy structure related to drought tolerance.
These results can provide a scientific basis for the conservation of tropical rainforests by
illustrating the reasons for the establishment of dominant species in the community. Addi-
tionally, it would be beneficial to include more plant species and hydraulic trait parameters
in future studies on seasonal adaptation strategies among dominant species in tropical
rainforests, which will provide a comprehensive understanding of the adaptation strategies
of tropical lowland rainforest plants to seasonal drought conditions.
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