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Abstract: The prediction of genetic gain from artificial selection in a trait is important in plant and
animal breeding. Lush’s classical breeder’s equation (BE) is widely used for this purpose, although
it is also applied to predicting evolution under natural selection. The current application of high
throughput sequencing techniques potentially allows breeders at the individual gene level to capture
both additive and non-additive genetic effects. Here, we provide a comprehensive evaluation of
predicting genetic gains from the selection at multiple hierarchical levels of population structure
(provenances, families within provenances, and individuals within families within provenances). We
discuss the processes that could influence the power of prediction under the classical BE, including
genetic drift, natural selection, and gene flow. We extend the classical BE to molecular breeding meth-
ods for improving the prediction of genetic gains; they include the conventional breeding approach,
marker-assistant selection (MAS), genome-wide association study (GWAS), and genomic selection
(GS). Lastly, we discuss the genetic gains from the selection using multi-omics traits, including gene
expression and epigenetic traits. Our overall synthesis should contribute to a better understanding of
predicting genetic gains from the artificial selection under classical and molecular breeding.

Keywords: breeder’s equation; genetic gain; artificial selection; molecular breeding; marker-
assistant selection

1. Introduction

Both genetic gains from artificial selection in breeding populations and the genetic
responses to selection in natural populations have long been studied since the publication
of Darwin’s [1] On the Origin of Species. How best to predict genetic gain from selection in a
trait remains crucial in breeding. Lush [2] first proposed the classical breeder’s equation
(BE) to predict the genetic response (R) as the product of selection differential (S) and the
narrow-sense heritability (h2

N), i.e., R = h2
NS. Lush’s BE was initially applied to predict

the genetic response to artificial selection in animal breeding. This BE is now frequently
expressed as ∆G = h2

NS, where G is the mean of a trait in the population and ∆G is the
change in the mean over one complete cycle of artificial selection, which is commonly
termed as genetic gain in plant and animal breeding. The selection differential (S) is the
difference between the mean of a trait of the selected parents and the mean of the whole
parental population.

It is well known that artificial selection is a method of selecting individuals or popula-
tions according to the objectives that meet human demands (e.g., yields and quality), with
the aim of producing genetically improved populations. It differs from natural selection in
objective, the intensity of selection, and the rate of genetically changing populations. The
target traits for genetic improvement often refer to those of economical values, although
they infrequently refer to the fitness. The selection intensity (or selection differential) is
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artificially controlled according to the genetic variation in a candidate population. Usually,
a strong strength of selection is set to rapidly increase the frequencies of target genes.
Analogous to natural selection, artificial selection may be conducted using different ways
to change gene frequencies, such as directional, stable, or disruptive selection, depending
on the breeding objectives. Multiple cycles of artificial selection are frequently needed to
fulfil the breeding objectives.

Most traits studied in plant and animal breeding are quantitative in nature and con-
trolled by many genes. The beauty of this BE is that all the complexities of multi-locus
inheritance of a quantitative trait are condensed into one parameter, h2

N . Griffing [3,4] ex-
tended this BE under the assumptions of additive and non-additive gene effects. However,
these extensions were infrequently used in plant and animal breeding and the prediction
of genetic gain remains mostly centered on Lush’s BE. When the length of the selection
cycle t (the generation time) is considered, BE is expressed as ∆G = h2

NS/t [5]. When S is
expressed in terms of the standard deviation of a quantitative trait (σP), S = iσP, where i is
the selection intensity, the BE is expressed as:

∆G = ihNσA/t (1)

where σA is the standard deviation of additive genetic effects. The assumptions underlying
Equation (1) are (i) that the quantitative trait is controlled by many genes each with
small effects and (ii) that both the quantitative trait and breeding value follow a normal
distribution. When the quantitative trait is a fitness trait, Lush’s BE under t = 1 has a similar
inference as Fisher’s fundamental theorem of natural selection [6]. The BE or Fisher’s
fundamental theorem of natural selection may be considered a special case of the Price or
the Robertson–Price equation [7–12].

When multiple quantitative traits are considered simultaneously [13], the genetic gain
(∆G) from a selection is expressed as

∆G = VGV−1
P S (2)

where G is the vector of phenotypic means for multiple quantitative traits, VG and VP
are the genetic and phenotypic variance–covariance matrices, respectively, and S is the
vector of selection differentials of multiple traits. Equation (2) is often used in evolutionary
biology to predict the evolution of multiple traits [14] but is infrequently used in plant
and animal breeding. One possible reason is that a selection index is often constructed in
breeding where multiple traits are combined by their relative weights. Selection is based
on the values of individual selection indices [5].

In plant and animal breeding, selection often commences with populations of hierar-
chical structures. Tree breeding of a given species typically begins with natural populations
across a geographical range. It is necessary to depict the genetic variations among prove-
nances, among families within provenances, among individuals within populations within
provenances, and the possible asexual lineages among them all. These characteristics of
a species would allow breeders to exploit different components of the genetic variance
at different levels of selection [5,15]. In addition, the means to predict genetic gains are
modified accordingly to account for the different hierarchical levels of selection. Note that
cases analogous to tree breeding in crop and animal breeding are when selection starts with
artificial populations or lines derived from diverse mating designs. In these situations, the
candidate populations may not have the typical hierarchical structure mentioned above and
the genetic gain from an artificial selection is estimated using the BE with the heritability
and selection differential at the correspondent level.

While the classical BE has been extensively deployed in plant and animal breeding,
there are few reports in the literature that systematically reviewed the BE in terms of theory
and methodology or assessed its limitation and extension in predicting genetic gains. Here,
we begin with describing the genetic gains from a selection at different hierarchical levels of
population structure and discuss factors that could bias the genetic gain predictions using
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the classical BE. We then consider some molecular breeding approaches to advance the BE
prediction of genetic gains. They include the conventional breeding approach, molecular
marker-assisted selection (MAS), genome-wide association analysis (GWAS), and genomic
selection (GS). Lastly, we discuss the genetic gains from a selection using multi-omics traits,
including gene expression and epigenetic traits, which are potentially important tools in
future molecular breeding. Our overall synthesis would aid in a better understanding of
predicting genetic gains from artificial selection under classical and molecular breeding.

2. Genetic Gains from Selection at Different Levels
2.1. Selection with Populations of Hierarchical Structure

In this subsection, we illustrate the prediction of genetic gains from a selection at
different hierarchical levels of population structure. A tree species typically occupies a
certain geographical range in its spatial distribution. An appropriate breeding strategy
considers its adaptation zones and reproductive system, which helps breeding design, such
as the breeding populations created by hybridization or derived from open-pollinated
progeny. The total genetic variation can be decomposed into the components at the levels
of provenances, families within provenances (full- or half-sib families), and individuals
within families within provenances (Box 1). To construct the breeding populations, a
selection at different hierarchical levels of population structure produces different extents
of genetic gains, which are estimated using different BEs. Box 2 shows a provenance trial at
a single site with a random block design. A phenotypic observation is decomposed into
different effects in a linear model. Different BEs are required to predict the genetic gains at
different levels of selection. This breeding plan is applicable to other breeding designs for
the prediction of different genetic gains from a selection.

Box 1. A framework of selection at different levels (provenance, family, and individual).

Selection at the provenance level requires an estimate of heritability at the provenance
level to predict the genetic gain. Here, the heritability refers to the ratio of the genetic
variance among provenances to the phenotypic variance among provenances (Box 2). The
numerator of heritability is the genetic variance among provenance means. Heritability may
also be viewed as a regression of the provenance trait breeding values on the provenance
phenotypic values [15]. To gain insights into the genetic variance among provenances,
assume that a quantitative trait is controlled by multiple QTLs (quantitative trait loci) of
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additive and dominant effects and that each locus is independent of the other. The trait
mean Mi in the ith provenance can be expressed as:

Mi = ∑
j

aij
(

pij − qij
)
+ 2 ∑

j
dij pijqij(1− FIS) (3)

where aij and dij are the additive and dominant effects at the jth locus, respectively; pij and
qij are the two allele frequencies at locus j (pij + qij = 1); FIS is the inbreeding coefficient in
the ith provenance [5]. The genetic variance among provenance means consists of both
additive and dominant variances. If only additive effects are considered in the trait and
each allele has stable additive effects (V

(
aij
)

= 0), the gene frequency at a locus, denoted by
p, follows a beta distribution in each provenance [16]:

φ(p) =
Γ(4Nem)

Γ(4NemQ)Γ(4Nem(1−Q))
p4NemQ−1(1− p)4Nem(1−Q)−1 (4)

where Ne is the effective population size of each provenance, Q is the average gene fre-
quency among all provenances or the initial gene frequency in the reference provenance
before subdivision, and m is the per-generation migration rate among provenances. Thus,
the genetic variance among provenance means, denoted by σ2

S , is:

σ2
S = V

(
∑j aij

(
pij − qij

))
= 1

1+4Nem ∑
j

4a2
j Qj
(
1−Qj

)
= 2FSTσ2

A

(5)

where FST is the provenance differentiation coefficient [16,17]. Population genetic structure
shapes the genetic gains from a selection at the provenance level. Gene flow reduces
selection efficacy at the provenance level. When QTLs with both additive and non-additive
(dominance and epistatic) effects are in a trait, the genetic gains from a selection at the
provenance level could be enhanced. This is because the non-additive effects also contribute
to the genetic variance among provenance means.

Selection at the family level requires the estimation of genetic variance among family
means. A practical operation may be conducted using entire families across all provenances
or using families within individual provenances. The difference is that the former has
more families for selection and provides us with a chance to set higher selection intensity
compared with the latter. The genetic gains from selection vary with the type of family used.
For open-pollinated families (half-sibs), such as seed samples collected from individual
mother trees, the genetic variance is:

σ2
HS =

1
4

σ2
A +

1
16

σ2
AA +

1
64

σ2
AAA + · · · (6)

Thus, the numerator of the half-sib heritability includes partial additive and additive
epistatic effects from parental population. For instance, with the artificial populations
derived from diallel crosses, selection based on the general combining ability (GCA) of
parents utilizes the half-sib families and the numerator of the half-sib heritability includes
both additive and additive-by-additive variances.

When selection is based on full-sib families, such as the progeny populations derived
from multiple artificial crosses, the numerator of the heritability at the full-sib family
level includes variances of additive, dominance, additive-by-additive, and dominance-by
additive effects:

σ2
FS =

1
2

σ2
A +

1
4

σ2
D +

1
4

σ2
AA +

1
8

σ2
AD . . . (7)

For instance, selection based on the specific combining ability (SCA) of parents makes
use of full-sib genetic variances.
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Box 2. A provenance trial at a single site and genetic gains from a selection at different levels.

Consider a provenance trial at a site. The linear model for any observation is:

xikjl = µ + Si + Fj(i) + Bk + SBik + FBj(i)k + eijkl

where xijkl is the observed value of the lth individual in the jth family from the ith provenance in the kth block, Si is the ith provenance
effect (i = 1, . . . , s), Fj(i) is the jth family effect within the ith provenance (j = 1, . . . , f ), Bk is the kth block effect (k = 1, . . . , r), SBik is
the interaction effect between the ith provenance and the kth block, FBj(i)k is the interaction effect between the jth family within the
ith provenance and the kth block, and eijkl is the residual error (l = 1, . . . , n). Under the random model, the following relationships
hold among effects: ∑i Si = 0, ∑j Fj(i) = 0, ∑k Bk = 0, ∑i SBik = ∑k SBik = 0, and ∑j FBj(i)k = ∑k FBj(i)k = 0. The analysis of
variance is given below:

Source of Variation Degree of Freedom Expected Mean Square

Block r− 1 σ2
e + n f σ2

SB + nσ2
FB + ns f σ2

B
Provenance s− 1 σ2

e + n f σ2
SB + nr f σ2

S
Family within provenance s( f − 1) σ2

e + nσ2
FB + nrσ2

F
Provenance × Block (s− 1)(r− 1) σ2

e + n f σ2
SB

Family × Block s( f − 1)(r− 1) σ2
e + nσ2

FB
Error sr f (n− 1) σ2

e

Genetic gains from selection at different levels:

Level of Selection Selection Differential S Genetic Gains

Provenance Difference in trait mean between the selected
provenances and the whole provenances investigated ∆G = S σ2

S
σ2

S+σ2
SB/r+σ2

E/nr f

Family Difference in trait mean between the selected families
and the whole families investigated ∆G = S σ2

F
σ2

F+σ2
FB/r+σ2

E/nr

Individual Difference in trait mean between the selected
individuals and the whole individuals investigated

∆G = S 4σ2
F

σ2
S+σ2

F+σ2
B+σ2

SB+σ2
FB+σ2

E

(half-sib family)

Selection at the individual level is flexible, irrespective of the population structure.
It can be conducted within individual provenances or within individual families. The
numerator of the heritability at the individual level includes all additive genetic variance
(Box 2). Genetic gains from individual selection are different from those of selection at
higher hierarchical levels of population structure. One specific situation is clonal selection,
where heritability may be replaced with repeatability in predicting genetic gains [5].

When selection is conducted at the individual level but the genetic variance is derived
from both within and between families, Falconer and Mackay [5] proposed an index to
predict the comprehensive genetic gains. Genetic gain from each component is combined
with its relative weight to construct the selection index. The total genetic gain from index
selection is amplified, although the numerator of the heritability estimate consists of only
additive genetic variance. This type of selection is more frequently applied to animal
breeding than to plant breeding.

A more complex scheme is that both selection and genetic diversity are considered
in breeding programs. For instance, when a balance between genetic gain and genetic
diversity is proposed, then breeders must consider both the number of families [18,19] or
the kinship relationship among individuals and genetic diversity in breeding populations
during selection [20,21]. In this situation, genetic gains are predicted under different
conditions. Nevertheless, only additive genetic variance in the numerator of heritability is
emphasized in their simulative selection schemes.

For multiple cycles of selection, both selection differential and heritability are often
altered between cycles and the genetic gains are separately estimated. The overall genetic
gain is the sum of gains at each cycle of selection.
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2.2. Factors Causing Biased Prediction of Genetic Gains

The classical BE only exploits additive genetic variance (σ2
A). It is effective to predict

genetic gains from individual selection for the traits with high narrow-sense heritability
but inadequate for those traits with low heritability [5,15]. The causal factors could arise
from the mode of gene action in quantitative traits, including the dominant effects within
loci, epistasis between loci, and linkage disequilibrium (LD) between loci [22,23]. Here, we
also discuss in theory a few processes that influence the prediction of genetic gains.

One dominating process is genetic drift, since breeding populations are established
with finite sizes. Genetic drift is inevitably involved in shaping the genetic variance of a
quantitative trait. These influences can be produced in two ways. One way is to change the
allele frequencies at QTLs. From the population genetic theory [24], the additive genetic
variance is given by:

σ2
A(t) = σ2

A(0)
(

1− 1
2Ne

)t
≈ σ2

A(0)e
−t/2Ne (8)

σ2
A(t) decreases at a rate of 1

2Ne
, relative to the initial additive genetic variance σ2

A(0).
As the gene frequency changes towards 1 (fixation) or 0 (loss) during the drift process,
the additive genetic variance tends to approach zero. Similarly, the total genetic variance
decreases,

σ2
G=

1
2Ne

σ2
A +

(
1− 1

2Ne

)
σ2

D +

(
1

2Ne

)2
σ2

AA +
1

2Ne

(
1− 1

2Ne

)
σ2

AD +

(
1− 1

2Ne

)2
σ2

DD + · · · (9)

All components of the genetic variances converge to zero as the genetic drift proceeds [25].
In the presence of linkage disequilibria among loci, the joint effects of recombination and
genetic drift further reduce the variance of epistatic effects.

The second way to influence the prediction of genetic gain is through joint effects of
genetic drift and selection, which enhance the fixation of deleterious alleles. Kimura [26]
showed that the fixation probability of a mutant allele with selection coefficient s:

u
(

1
2N

)
=

1− e−2Ne |s|/N

1− e−2Ne |s|
(10)

where N is the actual population size. There is a certain probability of fixation for a
deleterious allele (s < 0), while the fixation probability of an advantageous mutant (s > 0) is
not equal to 1 in small populations. In relation to a mutant allele at a QTL, the selection
coefficient (si) may be expressed as the product of selection intensity i and allelic additive
effect (a): si = ai/σP [3,27]. The fixation probability of a mutant allele at a QTL can
be obtained by replacing s in Equation (10) with si. Thus, genetic drift enhances the
maintenance of deleterious alleles and reduces the phenotypic values, which reduces the
probability of generating superior genotypic combinations at multiple loci. The above
two-way effects occur in multiple rounds of selection in breeding and naturally influence
genetic gains from an individual selection.

The second process is concerned with the limit to artificial selection where alleles
are fixed at most QTLs. This limit is positively correlated with the product of effective
population size and selection coefficient (Nes) or the product of Ne and the selection
intensity (Nei/σP) [28]. When favorable alleles are fixed, the genetic gain is given by:

∆G = 2Neih2
N (11)

The ultimate genetic gain is proportional to the effective population size. Similarly, the
ultimate genetic gain due to mutations is proportional to the effective population size [29].
All these joint effects of selection and genetic drift or mutation influence the genetic gain in
the long-term selection.
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The third process is an input of alien pollen to breeding populations, which could
reduce or increase the genetic variance depending on the difference between the gene
frequencies in migrating pollen and in breeding populations [30]. This will doubtlessly
influence heritability at the population level and the genetic gain from provenance selection.

In addition, the mating system affects the prediction of genetic gain. When selfing
or partial inbreeding occurs in breeding populations, non-additive genetic variances can
be partially transmitted across generations, because the same genotypic combinations at
multiple loci can occur in the next generation with a certain probability. In addition, the
practical estimation of genetic parameters (e.g., heritability) is presumably under random
mating, which is violated in breeding populations with partial selfing. The inclusion of
non-additive effects owing to selfing could improve the prediction of genetic gains.

3. Improving Prediction of Genetic Gains
3.1. Conventional Breeding Approach

The classical BE implicates that genetic gain from selection can be increased by four
ways: (i) increasing heritability through reducing the environmental variation and the
genetic by environment interaction; (ii) increasing selection intensity; (iii) increasing ge-
netic variation in breeding populations; (iv) shortening the length of breeding cycle [31].
Xu et al. [32] suggested that genetic gains from selection can be improved through improv-
ing crop and field management and optimizing socio-economic management, but such
effects are indirect and unstable. There is no case report in crop breeding showing that
genetic gain has been continuously and consistently improved through fine field manage-
ment. In this subsection, we discuss the first three ways outlined above to increase the
genetic gain from a selection. These three ways are based on the conventional tree breeding
theory [15]. In the subsequent three subsections, we discuss the fourth way outlined above
for molecular breeding.

To increase heritability, for a given breeding population, one can improve the ex-
perimental design that reduces environmental errors as well as the interaction between
genotype and environment (G × E). Previous provenance trials showed that many tree
species had significant interactions between genotype and environment [33]. Samples
from the same provenance could have different breeding values under different environ-
ments. The additive or non-additive genetic effects may vary at different sites. Even if
gene frequencies are insignificantly different between samples at two sites, their genetic
variances may differ due to unstable additive effects; the variance of additive effects in
Equation (3) is not zero (V

(
aij
)
6= 0). Through controlling the environmental conditions at

an experimental site, the denominator of the heritability estimate reduces, which indirectly
increases heritability and improves the genetic gains. Note that practical genetic gains
could be different when the breeding values of a genotype are different in breeding and
productive populations [34]. Allwright and Taylor [35] confirmed that controlling environ-
mental variables was effective in improving realized heritability and hence in increasing
genetic gains.

The second way to improve genetic gain is easy to understand because ∆G is propor-
tional to the selection differential (S). This can be obtained by increasing selection intensity
i and expanding candidate populations. Endelman et al. [36] showed that genetic gains
from selection was increased when a constant number of individuals was selected and the
candidate population size was expanded.

The third way is to increase polymorphic loci since the additive genetic variance
increases with the heterozygosity, i.e., σ2

A = ∑i 2pi(1− pi)a2. Large segregating populations
aid in increasing genetic variation, which then improves genetic gain.

3.2. Marker-Assisted Selection

MAS offers a method to advance the prediction of genetic gain from selection. The
genetic basis of MAS relies on the assumption of linkage disequilibrium (LD) between
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QTLs and markers in the breeding populations. Lande and Thompson [37] proposed a
selection index by combining phenotypic traits with molecular marker scores:

I = bzz + bmm (12)

here, the selection index I is assumed to follow a normal distribution, z is the phenotypic
value of a single trait, m is the molecular marker score and equals the sum of the esti-
mated additive effects of all marker genotypes, and bz and bm are the weights of the two
components. The genetic gain from index selection is calculated by:

∆G = irIAσA (13)

where rIA is the correlation coefficient between the index and breeding value of the trait.
The efficacy of MAS is determined by the degree of the correlation coefficient rIA.

Lande and Thompson [37] used the relative efficiency (r) to describe MAS, which is
termed as the rate of the genetic gain from MAS to that from phenotypic selection alone:

r =

√
ρ

h2
N
+

(1− ρ)2

1− ρh2
N

(14)

where ρ is the proportion of additive genetic variance explained by molecular markers. As
ρ increases, the relative selection efficiency, r, increases. MAS is more effective for traits
with low heritability than for traits with high heritability, which overcomes the weakness of
the classical BE. The disadvantage of MAS is that the relative selection efficiency decreases
with the inclusion of more information from relatives into the index. The use of full-sib
information has a lower selection efficiency than the use of half-sib information. Moreover,
the efficiency of selection decreases when the number of families increases.

Liu et al. [38] showed that the inclusion of epistatic effects into the selection index could
further improve the efficiency within the short-term selection. Hu [39] provided a general
framework for the selection index where epistatic effects between two loci were included.
When the proportion of non-additive variance explained by the markers increases, a greater
efficiency of selection is expected. However, LD between loci reduces the relative selection
efficiency and should be avoided when choosing molecular markers.

MAS is effective in selection because the markers are not affected by the environ-
mental factors or by the interaction between genotype and environment. This enhances
early selection and shortens the period of selection [40], which enhances the genetic im-
provement of complex traits. Currently, most MAS cases are reported in crop and animal
breeding [41–43]. MAS in tree species remains in the phase of searching for the markers
associated with quantitative traits. For example, Feng et al. [44] applied MAS to a hybrid
population of Camellia oleifera and realized the genetic improvement for oil production
and some fruit characters. In studies with mulberry (Morus spp.), some markers were de-
tected in association with important traits [45–47], such as leaf yield and biochemical traits.
In general, MAS in tree breeding lags behind those of agricultural crop and animal species.

Advances in practical studies with MAS mainly confine to those traits controlled by
a few major QTLs [48]. For those complex traits that are controlled by many QTLs each
with small effects, such as wood volume and disease traits, it is often difficult to capture
those markers associated with these QTLs. Interactions among QTLs further limit the
power of detecting relevant markers. In breeding populations or natural populations, the
extent of LD between loci is often low [49]. This limitation suggests that substantial genetic
gains through conventional MAS are difficult to achieve for complex traits. To increase the
efficiency of MAS, a genome-wide analysis is needed to search for the markers associated
with QTLs of relatively small effects.
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3.3. Genome-Wide Association Study

GWAS refers to the analysis of using genome-wide single nucleotide polymorphism
(SNP) markers to search for those SNPs that are associated with the target traits. A certain
sample size is required in the analysis. The genetic basis of GWAS remains as the presence
of LD between the SNP and the QTL of a target trait. The preliminary objectives of GWAS
are to map markers associated with the target traits and further to annotate the marker
functions. However, GWAS also provides an approach to advancing the prediction of
genetic gains in breeding. A selection index can be constructed using both phenotypes
and all the markers that are screened from the genome-wide association analysis. It has
an advantage over conventional MAS and is suitable for genetically improving complex
traits. This is because the use of genome-wide SNPs increases the probability of finding
SNPs associated with QTLs of small effects.

The genetic gain from index selection (individual) is estimated by:

∆G = irGWAS,AσA (15)

The extent of improving genetic gain is determined by the correlation between breed-
ing and index values, rGWAS,A This correlation coefficient increases when more related
markers are incorporated into the selection index. A large sample size increases the proba-
bility to screen those SNPs associated with some QTLs of small additive effects.

When SNPs associated with non-additive effects (dominant or epistatic) are screened,
the marker scores may also include non-additive effects. The selection index is re-constructed
by maximizing the correlation between the genotype values (additive and some non-
additive effects) and the marker scores [39]. The key point is that a higher correlation
coefficient, rGWAS, (A+NA), could further increase the genetic gain, compared with the case
where only additive effects are scored with the markers.

Recent advances in GWAS mainly confine to screening markers associated with target
traits and to identifying the functions of markers [48]. For example, GWAS was used
to search for the markers associated with wood properties and growth traits in Populus
deltoides, Populus trichocarpa, and Eucalyptus cladocalyx [50–54] or with the fruit quality and
yield in Citrus sinensis [55,56] and Malus domestica [57]. The effectiveness of applying GWAS
to MAS is closely related to the number of related markers, the genetic model of marker
effects, the type of breeding populations (e.g., provenances or multiple families/lines), and
the sample size.

Another way to use GWAS in breeding is to combine GWAS results with the network of
gene expression to further dissect the genetic variation of target traits. This will likely aid in
capturing a greater proportion of heritability, although few reports show that multiple levels
of interactions may transfer across generations [58]. For instance, Lamara [59] combined
GWAS with gene co-expression networks to uncover 2652 candidate SNPs for wood quality
of Picea glauca and constructed an expression network of two known transcription factors
(MYB and NAC). They revealed the complex interactions and pleiotropic effects among the
transcriptional regulator gene (PgNAC-8), wood hardness, and microfibril angle, as well as
the complex genetic control and gene expression network of wood traits. Similar studies
were reported in Populus deltoides [60] and Eucalyptus cladocalyx [54]. From the deployment
perspective, all the genes or SNP markers expressed in the interaction network can be
used to construct a selection index. The information of networks among genes is likely
transmitted across generations, as implied from the evolution of the protein interaction
network [61]. This approach helps to design complex molecular breeding for improving
the genetic gain from an individual selection.

3.4. Genomic Selection

GS uses the genome-wide SNPs to estimate individual breeding values. The predic-
tion model is derived from a training population but tested in a validation population.
Selection is then based on the individual genomic estimates of breeding values (GEBVs).
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An early-stage selection can be conducted without waiting for the mature stage of breeding
populations. Up until now, many reports are available in the literature about GS principles,
methods, examples, and reviews in plant and animal breeding [48,62–65]. For instance, the
reports on tree breeding include species in genera Populus, Eucalyptus, Elaeis, Hevea, Pinus,
and Picea [48,64,66]. The genetic gains from GS could be 1.5~3 times higher than those from
phenotypic selection alone [67]. Here, we briefly review the theory of how genetic gains
from GS could be enhanced, which has not been explicitly indicated in the literature.

As mentioned above, one approach of GS in improving the prediction of genetic gain
is to reduce the cycle of selection time, t, in Equation (1). In theory, GS is more effective
than the conventional early-selection approach, which is based on the correlation between
early and late phenotypic values [48].

Another approach of GS in improving genetic gain is to increase the correlation coeffi-
cient between the GEBV and the breeding values, rGEBV,A. The genetic gain is expressed as:

∆G = irGEBV,AσA (16)

Currently, two algorithms are available to calculate this correlation coefficient. One is
to accurately estimate the individual kinship Vg matrix using a mixed linear model. For
instance, there are n phenotypic observations represented by the yn×1 vector, pβp×1 vector,
a design matrix of Xn×p for fixed effects that records the occurrence of each factor and level,
and q random additive effects, which is specific to a genetic mating design matrix of Zn×q
and represented by the uq×1 vector. The mixed linear model is expressed by:

yn×1 = Xn×pβp×1 + Zn×quq×1 + en×1 (17)

Vector e is the random errors, with E(e) = 0. Expectations of other variables are
E(u) = 0 and E(y) = Xβ and the variances are V(u) = Vg and V(e) = R = σ2

EI, in which
I is the identity matrix. All random effects follow a normal distribution: u ∼ N

(
0, Vg

)
,

e ∼ N(0, R), and y ∼ N(Xβ, V), where V = ZVgZ′ + R. The Vg matrix is estimated using
genome-wide markers [68]:

Vg =
M′M

2 ∑m
i=1 pi(1− pi)

(18)

M is the m × n genotype matrix, m is the total number of markers, and pi is the minor
allele frequency at the ith locus. The corresponding breeding value is estimated by:

u =
(

Z′Z + V−1
g .σ2

e /σ2
a

)−1
Z′(y−Xβ) (19)

Use of the whole genome SNPs helps to capture Mendelian sampling variances caused
by a free combination between gametes and the recombination between loci. This reduces
the loss of genetic variation due to Mendelian sampling and makes the estimate of the Vg
matrix be closer to the true value. As a result, more accurate estimates of breeding values
(u) and a higher correlation coefficient rGEBV, A are expected.

The second algorithm is to directly estimate individual GEBVs using a linear model:

Y = µ + Mα + e (20)

µ is a vector of means, M is a SNP genotype or an allele occurrence matrix, α is a vector
of allelic effects at all loci, and e is a vector of residual errors. Based on the Bayesian models,
individual GEBVs are estimated [69], e.g., GEBVi = ∑j xijα̂j for the ith individual. The use
of genome-wide SNPs helps to estimate more accurate GEBVs and hence to improve the
correlation coefficient rGEBV,A.

Several factors influencing GS have been discussed in the literature [48,64], including
model selection, marker density, LD, population size and structure, and the effects of genes
controlling the traits. The second algorithm is more computationally demanding than the
first one but has a greater scope for additional discoveries. Similarly, non-additive effects
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could be included to predict genetic value (GV), which potentially increases rGV,A+NA and
improves the genetic gain.

4. Advancing Prediction of Genetic Gains Using Multi-Omics Traits

Apart from selection using genomic and phenotypic traits, some omics traits are
analogous to phenotypic quantitative traits and partially inherit across generations. When
the target traits of breeding objectives are associated with the genes of epigenetic effects
or with the genes whose expression can be detected, selection based on these omics traits
is of significance in breeding. Note that the target traits of breeding objectives may also
refer to the omics traits, such as the expression and protein contents of some specific genes.
The main criteria for genetic gains are to genetically improve the populations by directly
changing the frequencies of genes with detectable omics traits that are related to breeding
objectives. This provides a way of designing molecular breeding to increase the frequencies
of single or multiple target genes, which is complementary to the approach of gene editing
in the laboratory. Here, we discuss two distinct ideas on how to predict genetic gains from
a selection using gene expression (transcriptome) and epigenetic traits.

4.1. Gene Expression Traits

Under a certain environmental control, the expression (copy numbers of mRNA) of a
particular gene varies among individuals in a population. The expression traits are usually
transformed as normalized expressions, called RPKM (reads per kilobase million) or FPKM
(fragments per kilobase million) values, which exhibit the characteristics of continuous
variation. Extensive studies focus on the differential expression of genes under contrasting
conditions or genetic backgrounds (e.g., different species). Studies are recorded in the
literature on eQTL (expression quantitative trait loci) mapping of the expression traits
and revealed gene regulatory interactions or gene-trait associations [70–73]. Studies on
eQTL mapping mostly concentrate on humans [74–76] and animals [77], with few on
plant species.

Theoretically, the expression trait can exhibit genetic variation both between and
within populations. The expression trait, denoted by Pe, can be decomposed into genetic
(Ge), environment (Ee), and genetic-by-environment (Ge × Ee) effects. The linear model for
expression trait of a single gene is written as:

Pe = Ge + Ee + Ge × Ee (21)

The subscript e stands for the gene expression trait, which is separated from our
conventional symbols used for genetic and environment effects in quantitative genetics.
When multiple genes are considered, Equation (21) is expressed in vectors. Different genetic
parameters, such as genetic variances and heritability of expression traits, can be estimated
using quantitative genetic methods, given a specific genetic mating and experimental
design. The genetic gain from selection based on gene expression is estimated by applying
the appropriate BE at different levels of selection. For example, the genetic gain from
individual selection for the expression of a single gene is:

∆Ge = Seh2
N(e) (22)

Se is the selection differential and h2
N(e) is the narrow heritability for the gene

expression trait.
When considering multiple genes simultaneously, we can construct the selection index

as follows:
Ie = be1Pe1 + be2Pe2 + be3Pe3 + · · · (23)
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where bej and Pej(j = 1, 2, 3, . . .) are the weight and expression value of the ith gene, respec-
tively. The weight bej can be solved by the least square method (Min ∑l(Iel − Ael)

2 where l
presents the lth individual). The genetic gain from an individual selection is calculated by:

∆Ge = irIe A(e)σA(e) (24)

where σA(e) is the additive genetic variance of the expression trait and rIe A(e) is the correla-
tion coefficient between the selection index and the additive genetic effect [5].

Although few reports are available, the advantage of this approach lies in specifying
which and how many genes are included in breeding. This provides a breeding strategy to
modify the frequencies of a single gene or multiple specific genes, complementary to the
way that uses molecular biotechniques to edit genes.

4.2. Epigenetic Traits

Epigenetic variation is another type of omics traits and can be used to map the rela-
tionship between genotype and phenotype. Epigenetic variation is caused by regulations in
various phases during the formation of gene products (RNA and proteins), which leads to
changes in cellular and individual phenotypes. Although DNA sequences are not altered,
their structure is modified through the processes of DNA methylation, non-coding RNAs,
histone modifications, and histone variant chromatin remodeling [78–81]. Epialleles at
specific DNA loci can be generated [82]. Epigenetic study is an active research area and
significant advances are reported in medicine [83], animal husbandry [84], aquaculture [85],
and crops [86]. Reports are also available in tree species, including the studies focusing
on the relationship of epigenetic variation and environmental adaptation in Eucalyptus
grandis [80], Picea abies [87], and Pinus pinea [88] and the phenotypic plasticity or adaptation
to local environments [89–92]. These studies provide evidence of phenotypic variation that
is not explainable in terms of nuclear DNA sequence variation.

Epigenetic variation causes phenotypic variation through influencing transcriptomic,
proteomic, or metabolomic activities or by regulating gene expression with positive and
negative feedbacks in the intracellular environment. Such epigenetic effects could be
transmitted to progeny and allow progeny to achieve higher phenotypic plasticity or
adaptability to diverse environments, which provides a genetic basis for epigenetic selection
and evolution [91]. Epigenetic loci also exhibit intra- and interpopulation variations [93].

Suppose that epigenetic effects can be separated from those caused by DNA se-
quence variation due to mutation in a quantitative trait. Following the quantitative genetic
approach [5], the phenotypic value could be decomposed into genetic and epigenetic effects:

P = G + Gepi + E + G× E + Gepi × E (25)

where Gepi and Gepi × E are the epigenetic effect and the interaction between epigenetic and
environmental effects, respectively. If there are no interactions of genetic-by-environment
and epigenetic-by-environment effects, the genetic gains from individual selection based
on phenotypic traits, according to Lande and Arnold [94], can be expressed as

∆G = S
(

σ2
G + σ2

G(epi) + σ
(
G, Gepi

))
/σ2

P (26)

where σ2
G(epi) and σ

(
G, Gepi

)
are the variance of epigenetic effects and the covariance

between genetic and epigenetic effects, respectively. Epigenetic gain could account for
a proportion of whole genetic gain to selection. Methodologically, a mixed linear model
could be used to detect and estimate individual epigenetic effects. Variance and covariance
components in Equation (26) can be estimated so that the epigenetic gains from selection
are separated.

The significance of predicting epigenetic gain in breeding is to improve the adapta-
tion of reproductive populations to specific environments, in addition to increasing the
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frequency of genes associated with target traits. This also enhances the selection of suit-
able genetic materials for different environments or habitats so that the different breeding
objectives can be realized. This line of breeding awaits data collection.

5. Conclusions and Perspective

Predicting genetic gain from an artificial selection is important for assessing genetic
improvements in plant and animal breeding. The current prediction of genetic gains is
mainly based on the classical BE. The limitation of the classical BE lies in the fact that
it only exploits additive genetic effects. Several factors can cause biased predictions of
genetic gains. They include (i) linkage disequilibria among loci and non-additive genetic
effects that could partially be transmitted across generations, especially in populations with
partially selfing or inbreeding; (ii) genetic drift that reduces the additive genetic variances
or interacts with selection to fix the deleterious genes; (iii) input of alien pollen into the
breeding populations that changes the additive genetic variance; (iv) the type of mating
system that influences the estimates of heritability and genetic variances.

Conventional breeding methods can improve the prediction of genetic gains by reduc-
ing the environmental error in experimental design, by reducing the entry rates of selected
individuals, and by expanding the genetic variation of candidate populations. Molecular
breeding methods such as marker-assisted selection, genome-wide association analysis,
and genomic selection permit the selection of desirable traits at the gene level. Here, the
genetic gains are realized through increasing the correlation between the predicted genetic
values and the breeding values.

It is of practical significance to advance genetic gains from selection using omics
traits (gene expression and epigenetic traits). The breeder can specify which and how
many genes are focused on breeding or on the selected individuals with adaptation to
diverse habitats. From the practical perspective, bioinformatic and statistical methods are
needed to screen markers associated with the omics traits, such as eQTL and epistatic allele
mapping. A selection index can be constructed to simultaneously increase the frequencies
of multiple genes.

Theoretically, partial inbreeding or selfing in breeding populations facilitates the
transmission of non-additive effects across generations. Further, analysis of multiple omics
traits will aid in capturing a greater proportion of the heritability. When GWAS and GS
are performed, some epistatic effects, especially the additive–by–additive effects, can be
potentially detected. All these genetic components may be recorded for use in practical
selection but require theoretical extensions of the classical BE to include the non-additive
genetic effects. Our comprehensive evaluation of genetic gain predictions is intended to
provide a useful background for generating new research ideas and as a reference for what
has been conducted.
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