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Abstract: The Hanjiang River Basin (HJRB) is an important water conservation and ecological barrier
area for the South–North Water Transfer Central Project. The quantitative analysis of regional
differences in vegetation changes and their main drivers is important for the monitoring of the
ecological environment of the basin and formulation of ecological protection measures. Based on
MODIS13Q1 data from 2000 to 2020, spatiotemporal variation characteristics of vegetation in the HJRB
were analyzed using Theil–Sen + Mann–Kendall, the Hurst index, and correlation analysis. Then,
we detected the drivers using an optimal parameter geographic detector. The results showed that
from 2000 to 2020, the average NDVI value increased from 0.651 to 0.737, with a spatial distribution
pattern of “high in the northwest and low in the southeast”, and 88.68% of the study area showed an
increase in vegetation cover, while 5.80% showed a significant degradation. The positive persistence
of future vegetation changes is stronger than the negative. It may show a slowdown or degradation
trend, among which the vegetation restoration along the Han River and urbanized areas need to
be strengthened. The factor detector indicated that the main factors influencing vegetation change
were topography and climate, for which the most influential variables, respectively, were elevation
(0.1979), landform (0.1720), slope (0.1647), and soil type (0.1094), with weaker influence from human
activity factors. The interaction test results showed that the interaction of various geographic factors
enhanced the explanatory power of vegetation changes and showed mainly nonlinear and two-
factor enhancements. The dominant factor varies between sub-basins; for example, the interaction
between wind speed and land use conversion was the dominant factor in the middle reaches of
the HJRB; the dominant factor in the lower reaches of the HJRB was expressed as the interaction
between land use conversion and temperature. Finally, the effects of the range or category of different
drivers on vegetation growth were systematically analyzed. The results of the study contribute to
the understanding of the dynamic changes of vegetation based on a comprehensive consideration
of the interaction of topography, climate, and human activities, taking into account the totality and
variability of the geographical environment, and provide a reference for the ecological restoration
and rational use of vegetation resources in the HJRB.

Keywords: vegetation dynamics; climate change; human activities; geodetector; Hanjiang River Basin

1. Introduction

As an essential part of terrestrial ecosystems, vegetation plays a crucial role in global
soil conservation, climate regulation, hydrologic processes, the carbon cycle, and ecosystem
stability [1–3]. Vegetation not only represents the dynamic characteristics of terrestrial
ecosystems, but is also considered a sensitive indicator of ecosystems’ responses to climate
change and human activities, and essentially represents the overall situation of the eco-
logical environment [4]. Changes in the spatial–temporal patterns of vegetation not only
change the pattern and function of the regional landscape, but also affect the ecosystem
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structure, leading to weaker resilience in maintaining and promoting the stability of the
ecosystem [5–7]. Therefore, monitoring long-time-series vegetation dynamics and identify-
ing the driving mechanisms is essential to elucidating the interactions between vegetation
and ecosystems. They can provide an important references for regional ecological security
and sustainable development [8–10].

Remote sensing data have become an effective means of monitoring and evaluating
vegetation and obtaining ecological information due to their advantages of having long
time series, short interval periods, and broad coverage [11,12]. The ratio vegetation in-
dex (RVI), difference vegetation index (DVI), and normalized difference vegetation index
(NDVI) are the more common forms of vegetation indices [13]. The normalized difference
vegetation index (NDVI) is a parameter of the ratio of the reflectivity of the infrared band
(RED) and the near-infrared band (NIR) to reflect the growth status, biomass, and type of
vegetation. It can eliminate most radiometric errors caused by sun angle, topography, and
cloud shadows and is widely used to monitor vegetation changes [14,15]. GIMMS NDVI
is suitable for long-time-series vegetation cover studies, but has low spatial resolution
and performs poorly in humid regions [16]. SPOT NDVI time series are relatively long
and have high spatial resolution, but can introduce errors in vegetation change due to
sensor variation [17]. MODIS NDVI sensors are specifically designed for vegetation index
inversion, and the improvement of synthetic data algorithms has also improved the ability
to monitor changes in MODIS NDVI products, avoiding problems of sensor degradation
and data uncertainty [18]. In addition, various alternative indicators have been proposed
for the issue of saturation at higher biomass levels and the effect of soil brightness. For
example, the enhanced vegetation index (EVI), which can improve saturation at higher
biomass levels, and has obvious advantages in vegetation change in tropical, subtropical,
or complex vegetation types [19], or the soil adjusted vegetation index (SAVI), which is
more suitable for arid areas with sparse vegetation and bare soil surfaces [20].

Climate change and human activities are the main drivers of vegetation change, while
the diversity and heterogeneity of geographical environments can also contribute to spatial
differences in factors affecting vegetation [21,22].Climatic factors mainly affect the growth
of vegetation through the direct or indirect control of heat, water, and nutrients through
changes in precipitation and temperature [23–25]. For instance, Ji et al. [26] showed that
continued increases in temperature could extend the growing season and promote vegeta-
tion growth in high latitudes and mountainous regions. However, Zheng et al. [27] found
that higher temperatures intensify drought and inhibit vegetation growth in mid–low
latitudes and arid and semi-arid regions. Cheng et al. [28] identified precipitation as the
critical condition for vegetation growth in arid and semi-arid regions. Instead, in humid
regions.,the increase in precipitation will inhibit the growth of vegetation. In addition to
climate change, human activities also significantly impact vegetation changes. Examples
include urbanization [29], population migration [30], cropland abandonment [31], over-
grazing [32], large water conservancy projects [33], and ecological engineering [34] having
significant positive or negative effects on vegetation change. In the late 1990s, the Chinese
government launched the Grain for Green Project, which has been proven to significantly
contribute to the increase in vegetation coverage on the Loess Plateau [35–37]. Compared
with climate factors and human activities, topographic factors are more stable. They mainly
directly control the redistribution of water and heat, and indirectly affect soil’s physical
and chemical properties and vegetation changes. However, in a specific area, geomorphic
conditions often play a central role in interacting with physical and geographical elements
such as hydrology, vegetation, and soil [38,39]. Therefore, vegetation change is a process
in which various factors interact, and it remains challenging to quantitatively assess the
contribution of multiple factors to vegetation change.

At present, many studies have used methods such as correlation analysis [40], linear
regression [41], and residual analysis [42] to monitor and attribute dynamic vegetation
changes, assuming that there is a significant linear relationship between vegetation changes
and driving factors. However, the driving factors (natural factors or human activities) affect-
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ing vegetation change do not exist in isolation; rather, they are interconnected, interacting,
and restrict one another [43]. Due to the interaction of multiple factors, the responses of
vegetation to environmental disturbances and changes are complex and non-linear [44–47].
Although residual analysis is widely used to distinguish the relative influence of climatic
factors and human activities on vegetation dynamics, it is difficult to explore the strength
of the explanatory power of vegetation cover changes when climatic factors and human
activities interact [48]. The geographic detector is a new statistical method model based
on the theory of spatially stratified heterogeneity, which not only quantifies the influence
of each factor on geographic phenomena or attributes, but also can detect the unique
advantages of the interaction between different factors in relation to the geographic phe-
nomena or attributes [49]. It does not have to follow the linear assumptions of traditional
statistical methods strictly and has been widely used in the fields of human health [50,51],
land use [52,53], and ecosystem services [54,55]. Determining the optimal scale of spatial
stratification heterogeneity through spatial data discretization is a crucial link in using
geographic detectors, but generally, based on experience, the optimal combination of spatial
differentiation is rarely used as a geographic detector model parameter to reveal the driving
factors [56].

As a significant ecological security barrier in China, the Hanjiang River Basin (HJRB)
is the water source of the central route of the South-to-North Water Transfer Project, and its
environmental position is significant [57]. With the development of society and the economy,
the contradiction between environmental protection and economic growth in the HJRB has
gradually become prominent, and ecological resources such as vegetation are threatened, so
it is urgent to carry out monitoring and evaluation to understand the spatial and temporal
dynamic characteristics of vegetation and the driving forces behind it, in order to achieve
the precise and sustainable management of vegetation resources in watersheds. Previous
studies on the spatial and temporal changes of vegetation cover in the HJRB have mainly
focused on the effects of basin-wide climate change on vegetation changes [58–60]. Research
on the mechanisms of influence on the dynamics of vegetation changes in sub-basins is still
insufficient. In addition, the driving mechanisms of climate, topography, hydrology, soil,
and human activities on vegetation change and the interaction of internal factors have yet
to be systematically studied, ignoring the variability and integrality of the geographical
environment. Based on the comprehensive consideration of topography, climate change,
human activities and other factors, this study introduces an optimal parameter geographic
detector to identify the dominant factors and their interactions with vegetation changes in
different watersheds and sub-basins. It is helpful to understand the process mechanism of
vegetation change, predict future development directions, and propose scientific regulation
strategies. The main objectives of this study are: (1) to analyze the temporal and spatial
dynamic trends and future change patterns of vegetation in the HJRB; (2) to identify the
response mechanism of vegetation changes in the HJRB to climate change; and (3) to
identify the dominant factors and interactions of vegetation change in the HJRB.

2. Materials and Methods
2.1. The Study Area

The Hanjiang River is the first major tributary of the Yangtze River, originating at the
southern foot of the Qinling Mountains in Shaanxi Province, with a total length of 1577 km
and a total area of 159,000 km2 through Shaanxi and Hubei Provinces. It is located between
106◦15′ E~114◦20′ E and 30◦10′ N~34◦20′ N, and has a subtropical monsoon climate,
with an annual average precipitation of 804 mm and an annual average temperature of
12–16 ◦C [61]. In this study, the HJRB was divided into three tertiary basins based on water
resource zoning (Figure 1a): the basin above the Danjiangkou (upstream), the Tangbai River
Basin (midstream), and the basin below the Danjiangkou (downstream) [57].
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Figure 1. Geographical information of the study area: (a) Geographical location and elevation,
(b) land-use types, (c) landform types.

2.2. Data

In this study, the MODIS vegetation data were obtained from MOD13Q1 data released
by the NASA MODIS Land Processes Distributed Active Archive Center (https://ladsweb.
modaps.eosdis.nasa.gov/, accessed on 28 June 2022), with a spatial resolution of 250 m and
a temporal resolution of 16 days, spanning the period from February 2000 to December 2020.
After preprocessing the obtained data with MRT (MODIS Reprojection Tools) software
for format conversion, reprojection, and stitching, we used Matlab 2022b for Savitzky–
Golay filtering to eliminate the mixing noise in the images and improve the NDVI band
quality. The maximum value composite (MVC) method was used to eliminate the effects of
atmospheric, cloud, and solar altitude angle factors to obtain monthly NDVI. We selected
NDVI data from the vegetation growing season (April-October) for analysis, and the annual-
scale MODIS-NDVI dataset was obtained by mean synthesis using ArcGIS10.8 software.

Meteorological data were obtained using daily temperature, precipitation, relative
humidity, sunshine duration, and wind speed from 90 meteorological stations around the
HJRB from 2000 to 2020, provided by the National Meteorological Science Data Center
(https://data.cma.cn/, accessed on 10 October 2021). The raster data with the same spatial
and temporal resolution and projection as the vegetation NDVI were obtained using
ANUSPLIN 4.2 interpolation [62], which effectively captured differences in climate data
with changes in the altitude gradient.

The soil type, landform type, vegetation type, and land use data were obtained
from the Resource and Environment Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 10 May 2022), and were processed with reference to
the 1:1 million Soil Map, 1:1 million Landform Map, 1:1 million Vegetation Atlas to obtain
the respective first-level types, and resampled to 250 m resolution.

Digital elevation model (DEM) data (250 m × 250 m) were obtained from the Geospa-
tial Data Cloud (https://www.gscloud.cn/, accessed on 20 May 2021), and the aspect and
slope data were processed using ArcGIS 10.8.

Population density data were obtained from the WorldPop data platform (https://
www.worldpop.org/, accessed on 10 June 2021).

The night lighting data from the China Artificial Nighttime Lighting Dataset (PANDA)
was provided by the National Tibetan Plateau Scientific Data Center (https://data.tpdc.ac.
cn/, accessed on 27 June 2022) for the period 2000-2020.

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://data.cma.cn/
https://www.resdc.cn/
https://www.gscloud.cn/
https://www.worldpop.org/
https://www.worldpop.org/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
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2.3. Analysis Method
2.3.1. Theil–Sen Trend Analysis and Mann–Kendall Significance Test

Theil–Sen median analysis is a trend method for long time series with stable nonpara-
metric statistics. The advantage of this method is that the sample does not have to follow
a specific distribution during the calculation process and is free from outlier interference,
noise immunity, and more scientifically, credible results [63]. The formula was calculated
as follows:

β = mean
( xi − xj

i− j

)
, ∀j > i (1)

where xi and xj are time series data; when β > 0, it reflects that the NDVI shows an
increasing trend, and vice versa.

The Mann–Kendall test is a non-parametric statistical test to assess the significance of
a trend, given as follows [64]:

S =
n−1

∑
i

n

∑
j=i+1

sgn
(
xj − xi

)
(2)

where, sgn
(
xj − xi

)
=


+1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(3)

Zc =


S−1√
Var(S)

, i f S > 0

0, i f S = 0
S+1√
Var(S)

, i f S < 0
(4)

where S is the test statistic; Zc is the standardized test statistic; xi and xj are the time series
data, and n is the number of series samples.

whereVar(S) =
n(n− 1)(2n + 5)

18
(5)

When |Z| > 1.65, |Z| > 1.96, and |Z| > 2.58, the trend passes the significance test of
90%, 95%, and 99%, respectively. We set α = 0.05 in this study.

2.3.2. Hurst Index

The Hurst index is based on the rescaling range analysis method (R/S), which can
quantitatively characterize the persistence of variables in time series and determine the
time direction [65]. The formula was calculated as follows:

R(T)
S(T)

= (mT)H (6)

R(T) = max
1≤t≤TX(t, T)− min

1≤t≤TX(t, T) (7)

S(T) =

√√√√ 1
T

T

∑
t=1

(
NDVIT − NDVIT

)2 (8)

X(t, T) =
T

∑
t=1

(
NDVIt − NDVIT

)
(9)

NDVIT =
1
T

T

∑
t=1

NDVIx (10)
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where H is the Hurst index; R(T) is the extreme deviation series; S(T) is the standard
deviation series; m is a constant with the value of 1; X(t, T) is the cumulative deviation;
NDVIt (t = 1, 2, . . . , n) is the NDVI time series; NDVIT (T = t, t + 1, . . . , n) is the NDVIt
mean value series.

If H = 0.5, it means that the future change trend is not related to the past change; if
0 < H < 0.5, it means that the future change trend is opposite to the past change; if 0.5 < H
< 1, it means that the future change trend is consistent with the past change; the closer H is
to 1, the stronger the continuity.

2.3.3. Correlation Analysis

Correlation analysis reflects the degree and direction of correlation between elements,
and the correlation coefficient was used to express the correlation between NDVI and
meteorological factors in this study [28]. The formula was calculated as follows:

Rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(11)

where x and y are the means of different variables during the study period. The t-test was
used for significance testing, and the correlation between NDVI and climatic factors was
classified as significantly correlated (p < 0.05) and not significantly correlated (p < 0.05).

2.3.4. Geographical Detector Model (GDM)

Three parts of the OPGD model were used in this study to explore factors influencing
the NDVI, including optimal discretization, factor detector, and interaction detector.

OPGD-Based Data Analysis Method

The purpose of optimal discretization is to discretize continuous variables into cate-
gorical variables. This study used the “GD” package of R programming to run the OPGD
model [56]. Determining the optimal scale of spatially stratified heterogeneity through
spatial data discretization is a crucial aspect of using the geographical detector. In this study,
we used five discretization methods (equal, natural, quantile, geometric, and standard devi-
ation) to convert continuous data into categorical data. Combining related studies [8,66,67]
and the stability values observed in this study(Figure 2), the maximum number of strati-
fications was limited to 10, and a combination of the discrete method and the number of
intervals with the highest q value was automatically selected for the final dispersion.

Geographical Detector

(1) Factor detector. The driving force of the spatial variation of vegetation change is
revealed by using the factor detector in the geographic detector based on the selection of
optimal parameters.

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(12)

where the q value represents the explanatory power of the factor, and its value range is 0 to
1. Nh and N are the numbers of units in layer h and the entire region; h is the stratification of
explanatory variables or explained variables. σ2

h and σ2, respectively, represent the variance
of layer h and the Y value of the whole area; SSW and SST are the sum of the variance
within the layer and the total variance of the entire region, respectively.

(2) Interaction detector. The interaction detector judges the characteristics of the
interaction between two variables by comparing the q value of the single factor and the q
value of the two-factor interaction [49]. Interaction discriminations are shown in Table 1
for reference.
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affecting NDVI.

Table 1. Description of interaction type.

Judgment basis Type of interaction

q(X1 ∩ X2) < min(q(X1),q(X2)) nonlinear-weaken
min(q(X1),q(X2) < q(X1 ∩ X2) < Max(q(X1), q(X2)) uni-variable weaken

q(X1 ∩ X2) > max(q(X1),q(X2)) bi-variable enhance
q(X1 ∩ X2) = q(X1)+q(X2) independent

q(X1 ∩ X2) > Min(q(X1) + q(X2)) enhance, nonlinear

Factor Selection

The formation of the spatial characteristics of vegetation cover results from the joint
action of the natural environment and socioeconomic factors. Based on the previous
studies and the actual situation of the HJRB, we selected 15 geographic factors in three
categories: basic topography, climate change, and human activities. These are based on two
perspectives: static and spatiotemporal dynamic changes. (i) The variability of NDVI in
the HJRB was used as the dependent variable to be analyzed; (ii) elevation, landform type,
slope, aspect, vegetation type, and soil type were the basic natural factors, characterizing the
static shaping effect of the basic geographic pattern. (iii) We used Matlab 2022 trend analysis
applied to the rate of change of precipitation, temperature, sunshine duration, relative
humidity, wind speed, population density, GDP, and night light index to characterize the
spatiotemporal variability of climatic factors and human activities. Land-use conversion
types were obtained by overlaying 2000 and 2020 land use data with the ArcGIS 10.8 raster
calculator. The final data set consisted of 1 dependent variable and 15 independent variable
resolution factors, which were used as input data for the geodetector.
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3. Results
3.1. Spatiotemporal Changes of the NDVI in the HJRB

From 2000 to 2020, the interannual variation in the growing season vegetation in the
HJRB showed a significant fluctuation and increasing trend (Figure 3), with an interannual
growth rate of 0.00380/y, from 0.651 in 2000 to 0.737 in 2020; the lowest value appeared
in 2001, and the highest value appeared in 2015. The multi-year growth rate is 13.21%,
and the HJRB vegetation has been effectively improved in the past 21 years. Vegetation
in different watersheds showed a fluctuating increasing trend in growing seasons, but
specific differences existed. The overall trend was as follows: the upper reaches of the HJRB
(4.52%/10a) > the lower reaches of the HJRB (3.09%/10a) > the middle reaches of the HJRB
(2.38%/10a).
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As can be seen from Figure 4a, the overall NDVI of the HJRB shows a spatial dis-
tribution pattern of “high in the northwest and low in the southeast”. The Theil–Sen
median analysis combined with the Mann–Kendall test was used to divide the results into
five categories: significant degradation (SD), slight degradation (SLD), stable (STA), slight
improvement (SLI), and significant improvement (SI) (Table 2). Slight improvement and
significant improvement occupy the most prominent positions, accounting for 74.54% and
15.14%, respectively; they are mainly distributed in forests, grassland, or forest protection
areas in the upper HJRB, which are also the main implementation areas for ecological pro-
tection and restoration. The proportions of significant degradation and slight degradation
are 1.76% and 4.04%, respectively, showing the characteristics of “surrounding points along
the line”, concentrated in urban and riverside areas. In general, the vegetation coverage in
the HJRB was in a better condition from 2000 to 2020, as the area of vegetation improvement
was gradually increasing in this period, and the area of degradation was slowly decreasing.

Table 2. Statistics of NDVI trend.

β ZS Trend of NDVI

≥0.0005 ≥1.96 significant improvement
≥0.0005 −1.96–1.96 slight improvement

−0.0005–0.0005 −1.96–1.96 stable
<−0.0005 −1.96–1.96 slight degradation
<−0.0005 <1.96 significant degradation
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3.2. Sustainability Characteristics of Vegetation Cover Change

The Hurst index of vegetation coverage in the HJRB from 2000 to 2020 ranged from
0.0814 to 0.9543, and the average Hurst index was 0.5331. The percentage of the Hurst
index greater than 0.5 is 65.80%, and for that less than 0.5, it is 34.20%, indicating that
the positive persistence of vegetation change in the HJRB is stronger than the negative
persistence (Figure 5). The future change trend of vegetation is obtained by superimposing
the Hurst index and the Sen trend, and the results are divided into five levels: continuous
improvement (CI), increasing to decreasing (ITD), continuous decreasing (CD), decreasing
to increasing (DTI), and random change (RC).
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Figure 5. The 2000–2020 Hurst index of vegetation in the HJRB and future trends. (a) Hurst exponent
of vegetation coverage in the HJRB, 2000–2020; (b) Future trends of vegetation coverage in the HJRB,
2000–2020.

The future continuous improvement area reached 31.16%, mainly in the upper reaches
of the HJRB, which is a key area for ecological protection and management. The percentage
of an area that may develop from an increasing to decreasing trend in the future is 61.50%,
which is mainly situated in the Nanyang Basin and the northwestern part of the HJRB. In
recent years, implementing ecological restoration projects has led to a rapid recovery of
vegetation coverage for a short period. However, ecological restoration has become more
difficult due to the diminishing marginal utility of ecological effects. The area that will
turn from decreasing to increasing in the future is 3.05%, mainly in the Nanyang Basin
and along the HJR, and various ecological restoration projects have promoted vegetation
improvement. The area of continuously decreasing areas is 4.28%, mainly located in the
Nanyang Basin and the rapid urbanization area of Wuhan City Circle, which needs to focus
on ecological restoration.

3.3. Driving Mechanisms of Changes in Vegetation Coverage
3.3.1. Independent Effects of Factors Affecting Vegetation Change

The factor detection results showed that all factors had significant explanatory power
(p < 0.01), indicating that basic topographic factors, climate change and human activities
significantly impacted the spatiotemporal dynamics of NDVI in the HJRB. As shown in
Figure 6, the order of explanatory power of each factor in relation to NDVI was elevation
(q = 0.1979) > landform (q = 0.0.1720) > slope (q = 0.1647) > soil type (q = 0.1094) > tem-
perature (q = 0.0972) > land use (q = 0.0945) > relative humidity (q = 0.0842) > night light



Forests 2023, 14, 509 10 of 21

(q = 0.0575) > precipitation (q = 0.0550) > vegetation type (q = 0.0493) > GDP (q = 0.0414) >
population density (q = 0.0321) > sunshine duration (q = 0.0284) > wind speed (0.0150) >
aspect (q = 0.0031). Except for aspect, the explanatory power of all the basic topographic fac-
tors was higher than 0.16. The basic topographic factors more strongly shape the vegetation
in the HJRB, and elevation was the decisive factor.
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We found significant differences in the effects of the factors on vegetation changes
in different sub-basins. Elevation, landform, and relative humidity were the dominant
factors for NDVI changes in the upper HJRB. In contrast, elevation, wind speed, and slope
had higher q-values in the middle HJRB, and land use change, slope, and soil type had
the biggest q-values in the lower HJRB. Climate and anthropogenic drivers had weaker
explanatory power for vegetation NDVI changes than macroscopic factors such as landform
and elevation. Vegetation change is more strongly shaped by underlying topographic
factors and is more dynamic in spatial processes than in temporal ones.

3.3.2. Interaction Analysis of the Factors

The interaction detection results showed (Figure 7) that the interaction of the geo-
graphic factors enhances the explanatory power of NDVI, manifesting as a two-factor
enhancement and a non-linear enhancement. Figure 7 shows that the interaction factors
between elevation ∩ land use, elevation ∩ precipitation, and elevation ∩ wind speed were
the dominant interaction factors for NDVI changes in the HJRB, and all of them contribute
more than 25%. As regards the different sub-basins, in the upper HJRB, the dominant inter-
action factor was that between elevation and land use. In the middle reaches of the HJRB,
the interaction factor between wind speed and land use was the dominant interacting factor.
In the lower HJRB, the interaction between land use and temperature was the dominant
factor. In general, there were various types and combinations of dominant interaction
factors for NDVI changes in the HJRB and sub-basins. Still, there are regularities among
the influencing factors, and the interaction combination of land use with climatic factors
and elevation makes the highest contribution. The above dominant factors are coupled
with each other and driven by regularity, zonality, and localization to form the spatial and
temporal variation pattern of NDVI changes in the HJRB.
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3.4. Analysis of Vegetation NDVI and Related Geographic Factors
3.4.1. Relationship between Vegetation Cover and Topography

Various factors influence vegetation growth, and topographic elements (elevation,
slope, aspect, and landform type) affect vegetation growth by changing hydrothermal
conditions in the local area. The trends of NDVI of vegetation under different topographic
conditions were analyzed at intervals of 100 m elevation, 1◦ slope, 45◦ aspect, and first-class
landform type (Figure 8). The average NDVI values show a characteristic of a “fluctuating
increase followed by a sharp decrease” with increasing elevation. The NDVI growth rate
increases sharply and reaches a peak when the elevation is less than 400 m; then, the
NDVI growth rate decreases sharply, and when the elevation is greater than 3200 m, the
NDVI growth rate rises again. The average value of vegetation NDVI increases with
the increase in slope; at 0–53◦, the NDVI growth rate rises sharply to the peak and then
decreases slowly, and when the slope is greater than 53◦, the NDVI growth rate fluctuates
and increases. The mean NDVI values and trends of the aspect were best on the north
aspect, and the shaded aspect received shorter sunshine duration than the sunny aspect,
and was wetter with less evaporation, meaning the NDVI was higher. The variation in the
NDVI of vegetation in different landform types showed obvious differences. The average
value of vegetation NDVI increased with the uplifting of the landscape and was highest in
large relief mountains (LRM). In contrast, the change in vegetation NDVI showed a “trend
of increasing first and then decreasing”, with the rate of increase peaking in small relief
mountains (SRM) and then decreasing.

3.4.2. The Relationship between Vegetation Cover and Climate Change

Climatic factors are essential factors affecting the distribution and growth of NDVI, and
the relationship between NDVI changes in the growing season and climate is particularly
close. The results show that in terms of positive effects, NDVI has a greater effect on
temperature (PC: 72.81%, NC: 27.19%) (Figure 9b’) than precipitation (PC: 55.89%, NC:
44.11%) (Figure 5a’) and wind speed (PC: 51.34%, NC: 48.66%) (Figure 9e’), which are more
sensitive (Figure 9a). For the negative effect, the effect of sunshine duration (NC: 71.68%, PC:
28.32%) (Figure 9c’) on NDVI was greater than that of relative humidity (NC: 54.14%, PC:
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45.86%) (Figure 9d’). Among different sub-basins, except for the sunshine duration, other
climatic factors in the upper reaches of the HJRB were positively correlated with NDVI, and
there was a significant positive correlation with temperature (PC: 88.26%). The NDVI in
the middle reaches of the HJRB showed a positive correlation with precipitation, and other
meteorological factors showed a negative correlation, among which the negative correlation
between wind speed and NDVI was the most significant (NC: 86.13%). In the lower reaches
of the HJRB, NDVI was negatively correlated with precipitation, sunshine duration, and
relative humidity, and positively correlated with wind speed and temperature.
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3.4.3. Relationship between Vegetation and Soil Types

The highest mean NDVI values and change trends were 0.748 and 0.591/a, respec-
tively, for leached soils, followed by primeval soils and degraded vegetation changes for
hydromorphic soils (Figure 10). The hydromorphic soils in the HJRB are mainly marshes,
and in recent years, along with climate change and human activities, there has been a trend
of shrinking wetland areas.

From the mean NDVI values and trends of each vegetation type (Figure 10), it can be
seen that the broad-leaved forest had the highest mean NDVI value of 0.777, followed by
brushwood and grass. Grass had the highest NDVI trend with a growth rate of 0.0054/a,
followed by meadow and brushwood, while cultivated plants had the lowest mean NDVI
values and a slower growth rate.

In future vegetation restoration, the soil formation conditions, processes, and physico-
chemical properties of different soils should be considered, and vegetation types should be
reasonably matched to form a stable plant community.

3.4.4. Relationship between Human Activities

The average NDVI values of forest land and grassland in the HJRB in the period
2000–2020 were much higher than those of other land types. The impact of land use
change on vegetation had noticeable positive and negative effects (Figure 11), with the
most significant increase in NDVI under the return of farmland to forest and grassland.
Negative speed is mainly due to construction land transfer into the area. Large-scale
urbanization has led to the conversion of agricultural and forest land to construction
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land and has destroyed the land cover around the city, thereby significantly reducing
vegetation coverage. Ecological engineering and urbanization are the dominant human
factors contributing to vegetation change in the HJRB.
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Figure 9. Spatial distribution of the correlation between NDVI and climate factors in the HJRB. PC:
positive correlation, NC: negative correlation. (a–e): Spatial trend distributions of precipitation,
temperature, sunshine duration, relative humidity, and wind speed, respectively. (a’–e’): Spatial
distributions of correlation analysis and significance test of NDVI with precipitation, temperature,
sunshine duration, relative humidity, and wind speed, respectively.
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Figure 10. Mean values and vegetation trends in the HJRB in relation to soil type and vegetation
type. The number from 1 to 10 denotes 10 intervals in soil type, which are, respectively: semi-leached
soil, leached soil, primary soil, semi-hydromorphic soil, hydromorphic soil, artificial soil, alpine soil,
Ferralso soil, others, and water. The number from 1 to 7 denote 7 intervals in Vegetation type, which
are, respectively: others, coniferous forest, broad-leaved forest, brushwood, grass, meadow, and
cultivated plant.
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According to the optimal parameter combination, the NDVI mean value and change
trend statistics under the classification of population density, GDP, and night light can be
determined (Figure 11). The average values and change trends of the NDVI of vegetation
showed an increase, and then a decreased with the increase in population density, and the
change trends of NDVI showed a decrease with the increase in GDP and night light index.

4. Discussion
4.1. Spatiotemporal Variation in Vegetation Cover

The overall vegetation in the HJRB showed a fluctuating increase from 2000 to 2020, but
there is large spatial and temporal heterogeneity; the temporal trend was one of increasing
at both the basin and sub-basin scales, similar to previous studies [60,68]. At the basin
scale, the peaks occurred in 2001 and 2015, respectively, and the NDVI increased year by
year after 2016. The lowest value appeared in 2001, which may be closely related to the
abnormally dry climate in 2001.

Since 2000, the HJRB has implemented the Protected Forest Project, the Natural Forest
Protection Project, and the Return of Cropland to Forests and Grasslands Project. As a
key area of the project, the upper reaches of the HJRB have seen a significant increase in
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the area of woodland and grassland, with a much higher growth rate than the middle
and lower reaches [57]. In this study, it was found that the growth of vegetation in the
middle reaches of the HJRB is the slowest, which may be related to the implementation
of the permanent basic farmland policy and the construction of the South-to-North Water
Diversion Project, and the growth of vegetation is relatively limited. With the acceleration
of urbanization, land reclamation, and the construction of water conservancy projects,
cultivated land and forest land are transformed into construction land, and the vegetation
coverage in the Jianghan Plain, Nanyang Basin, and its urban built-up areas shows a
downward trend [69–71]. In 2016, after the Chinese government set up the conservation of
the Yangtze River and stopped its overdevelopment, vegetation growth became relatively
stable and less volatile, and the ecological benefits gradually came to the fore.

4.2. Driving Forces of Vegetation Change

The topography of the HJRB is complex, and climate change shows obvious spatial
heterogeneity and plays a key role in vegetation change [72]. Based on the previous
studies focusing on the two key climate factors of temperature and precipitation, this study
considered meteorological factors such as sunshine duration, relative humidity, and wind
speed. It more comprehensively analyzed the differences in spatial responses of vegetation
growth to climate factors.

In the past 21 years, the climate in the southeast and northwest of the HJRB showed
a warming–wetting trend, while in the northeast, it displayed a warming–drying trend.
According to the correlation analysis between NDVI and meteorological factors, it can
be seen that temperature is the most important climatic factor contributing to vegetation
growth in the HJRB. Especially in the upper HJRB, nearly 88.26% of the regional vegeta-
tion exhibited a positive correlation with temperature. Higher altitudes are sensitive to
temperature changes, and lower temperatures may lead to weaker photosynthesis and
soil nutrient release rates, as well as shorter growth times to limit vegetation growth [73].
However, in the Nanyang basin, higher temperatures and increased sunshine duration
usually mean less precipitation, and increased wind speeds lead to higher evaporation and
exacerbate drought levels. In total, 86.13% of the regional vegetation negatively correlated
with wind speed, which greatly limits crop vegetation growth, especially in arable land.
Wind speed became the main factor affecting vegetation growth in the Nanyang Basin [74].
The q value of the effect of sunshine duration on NDVI trends in the HJRB was found to be
low (Figure 9d), and it was found that the area is rich in light resources, and the increase
in sunshine duration led to an increase in evapotranspiration, which was detrimental to
vegetation growth [75,76]. The monsoon climate strongly influences the lower reaches of
the HJRB. Excessive precipitation increases soil moisture and leads to the large evaporation
of the latent surface heat. At the same time, a drop in temperature reduces photosynthetic
efficiency and water use efficiency, thus inhibiting vegetation growth [77,78].

This study found that vegetation change was closely related to topographic factors
(altitude, landform type, and slope) (q-statistic > 0.17, Figure 6), among which elevation
contributed the most (q = 0.1979). Topography affects the evolution of soil properties
by controlling the water and heat conditions of the local environment, and suitable heat
and water conditions are more conducive to vegetation growth [67,79]. Consistent with
previous studies, there is a threshold between vegetation change and altitude [44,66]. We
found lower mean values of vegetation in low altitude areas (<400 m), gentle slopes (<6◦),
shady slopes, and small relief mountain regions, but with higher growth rates. These
areas are close to the radiation range of local human settlements, but their terrain and light
conditions are not conducive to other socioeconomic activities, thus becoming the focus
areas for to the implementation of ecological construction projects and showing significant
vegetation conservation results. According to the factor detector, aspect has a much smaller
effect on vegetation change than elevation and slope, which is consistent with previous
studies [10,19]. The HJRB is located in the summer monsoon region and compared to
the shaded aspect, the sunny aspects (southern, southwestern, and western) have longer
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sunshine hours, higher temperatures and high evaporation, and less available soil moisture,
accompanied by heavy precipitation washout, which is not conducive to vegetation growth.
Vegetation changes in different soil types are significantly different. Leach soils have high
water content, and organic matter is rich in nutrients. Vegetation comprises mainly trees
and shrubs, with a strong self-regulation ability, which facilitates vegetation growth [80].
Due to the long-term accumulation of water and the cohesive soil texture of swampy soils,
many herbaceous plants grow in an accumulation of water and in a humid environment,
which is not conducive to the rapid recovery and growth of vegetation.

According to factor detector, it can be seen that land use change makes a strong
contribution to vegetation change [81]. The growth rate of grassland transferred to the area
from 2000 to 2020 was 0.00547/y, ranking first, indicating that the implementation of the
project of returning farmland to forest and grass has significantly improved vegetation
coverage. The crop types and planting structure of arable land mainly remained the
same. However, the NDVI growth rate was 0.00337/y, mainly due to the development
of agricultural science and technology that promoted vegetation growth [82]. This study
found that the growth rate of vegetation in areas where construction land was transferred
was negative. In the rapidly urbanizing areas of the Nanyang Basin and the Wuhan urban
circle, urban expansion encroached on production and ecological land, reducing plant
biomass and increasing vegetation degradation [29,83,84]. In addition, the construction
of water projects in the non-urban areas of the Nanyang Basin negatively affected the
growth of vegetation (e.g., forests and grasslands) along the construction route. After the
Danjiangkou Dam’s completion, water storage increase causing a large amount of natural
vegetation and cultivated land to be submerged, and the vegetation showed a declining
trend [60]. Population reduction is conducive to vegetation growth, which is consistent
with previous research [83]. This study also found that with the increase in population, the
increase in green park space in urban built-up areas also promoted increased vegetation
coverage [85]. Unlike the change in population density, with the increase in GDP and
night light index, the growth of vegetation coverage shows a clear increasing trend, further
confirming that urbanization leads to vegetation degradation.

The results of interaction detection in this study show that a single factor has a
stronger explanatory power when interacting with other factors. Vegetation changes are
not affected by a single factor, and the impact of the natural environment and human
activities on the spatial heterogeneity of NDVI is complex [10,32,66,81]. For example,
sunshine duration and wind speed have weak explanatory power for vegetation NDVI
changes in the HJRB. However, they have higher explanatory power after interacting with
elevation and show a non-linear enhancement effect. Elevation changes affect the gradient
distribution of sunshine duration and wind speeds, and the interaction between the two
affects vegetation changes more significantly [67]. Similarly, the combination of dominant
factors and interaction types in different sub-basins is more diverse. The explanatory power
of terrain, climate, and human activity factors has also been improved. For example, the
interaction of wind speed with land use and topographic factors becomes the decisive factor
for the spatial differentiation of NDVI in the middle reaches of the HJRB; the interaction
of land use with climatic factors and soil type is a determinant of the significantly higher
impact of vegetation growth in the lower reaches of the HJRB. These results suggest that
none of these drivers acted independently on vegetation change.

4.3. Policy Recommendations for Revegetation and Conservation in the HJRB

The results show that topographic factors (elevation and slope) significantly affected
vegetation change independently or in interaction with other drivers (climate change and
human activities). Therefore, the comprehensive influence of these factors should be con-
sidered when formulating effective countermeasures for vegetation resource management.
The following suggestions are made:

(1) In the middle reaches of the HJRB, under the premise of conforming to national
land space planning and use control, rationally adjust and optimize the land use layout,
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combine high-standard farmland with the construction of farmland shelterbelts, match
trees and shrubs, evergreen and deciduous trees, strengthen the construction of irrigation
infrastructure, and improve water resource utilization;

(2) Carry out the integrated afforestation of forest and seedlings along with the water
conservancy project, expand the green space along the main canal in a targeted manner,
increase the biodiversity and landscape functions along the main canal, and enhance the
ecological barrier role of the main canal shelter forest;

(3) In the upper reaches of the HJRB, continue to promote the conversion of farmland
to forest and grassland, close mountains for afforestation, and carry out restoration with
the plant community replacement mode of bare land→grass→shrub, grass→coniferous
forest→coniferous and broad-leaved mixed forest to increase the rate of vegetation restoration;

(4) In the lower reaches of the HJRB, coordinate the relationship between regional ur-
banization and ecological protection, strengthen the connection with the Yangtze River pro-
tection strategy, rationally delineate the boundaries of urban development, and strengthen
the construction of green infrastructure.

4.4. Limitations and Future Works

Compared with previous studies, this article considers more climate variables (pre-
cipitation, temperature, sunshine duration, relative humidity and wind speed) based on
the entire geographical environment and differences (watersheds and sub-basins). It is
helpful to reveal NDVI trends in the HRJB under the process of the spatiotemporal dy-
namic interaction of geographical elements to promote NDVI research from single static to
spatiotemporal dynamic interaction. The stratification of spatial heterogeneity is mainly
based on experience and subjective judgments, which leads to biased results. The optimal
parameter geographic detector (OPGD) discretizes spatial data based on the combination
of optimal parameters, which can more scientifically perform the analysis of the driving
forces of multiple geographic elements on NDVI.

(1) Although the MODIS NDVI dataset has improved the data quality of NDVI based
on Savitzky–Golay and MVC preprocessing to reduce atmospheric, cloud, and solar angle,
residual noise still exists, and more advanced approaches to improve data quality are its
focus in the future. For the problem of the 250 m resolution of NDVI, remote sensing
products such as GEE to Landsat, Sentinel, or Himawari datasets can be used in the future
to improve observation accuracy.

(2) Due to the limitations of MODIS NDVI, it can be combined with other vegetation
indices (e.g., EVI, SAVI) in the future to eliminate the uncertainty of a single data source
and obtain more accurate results. In addition, there may be a certain lag in the vegetation
response to climate change due to the differences in different seasons and months. There-
fore, the driving mechanism of geographic elements in vegetation cover change should be
quantified more comprehensively from multi-scale and multiple vegetation indices.

5. Conclusions

The results of this study revealed the spatiotemporal and future change patterns of
vegetation in the HJRB and sub-basins from 2000 to 2020, and analyzed the response of the
vegetation NDVI to climate factors. Finally, the dominant factors of vegetation change and
their interactions were analyzed based on the optimal parameter geodetector.

(1) From 2000 to 2020, the NDVI of vegetation in the HJRB showed an increasing trend
of 0.038/10a, with different sub-basin divisions: upstream (4.52%/10a) > downstream
(3.09%/10a) > midstream (2.38%/10a), and different sub-basins showed a fluctuating
increasing trend. The spatial distribution pattern was one of “high in the northwest and
low in the southeast”, with 88.68% of areas showing vegetation growth and 5.8% showing
significant vegetation degradation. In terms of future changes, the positive persistence
of NDVI changes in the basin is stronger than the negative persistence, and the NDVI is
likely to slow down or degrade in the future, especially along the Han River and in urban
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areas, meaning the vegetation restoration along the Han River and urbanized areas need to
be strengthened.

(2) Temperature, precipitation, and wind speed positively affect NDVI in the Han
River basin, among which the positive effect of temperature was the most significant. In
contrast, sunshine hours and relative humidity had negative effects on vegetation. The
NDVI response of vegetation to climate change in different sub-basins showed significant
geographical differences.

(3) In the HJRB, elevation was the dominant factor of NDVI change with an explana-
tory power of 0.1979, followed by landform type (0.1720), slope (0.1647), and soil type
(0.1094); the explanatory power of anthropogenic influences were all less than 0.05. The
dominant factors differ in different sub-basins; for example, land use conversion was the
dominant factor in the lower HJRB. The interactions showed a non-linear and mutually
reinforcing pattern, and the interactions of different influencing factors enhance the expla-
nation of vegetation change. Vegetation change was mainly attributed to the interaction of
topography, climate change, and land use conversion.

The study results will help decision makers consider regional differences in vegetation
changes more comprehensively, and can provide a reference for scientific decisions regard-
ing the effective management of vegetation resources and ecological construction under
the “set up conservation of the Yangtze River and stop its over development” strategy.
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