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Abstract: Spatially detailed monitoring of forest resources is important for sustainable management
but limited by a lack of field measurements. The increasing availability of multisource datasets
offers the potential to characterize forest attributes at finer resolutions with regional coverage. This
study aimed to assess the potential of mapping stem volume at a 30 m scale in eastern Texas
using multisource datasets: airborne lidar, Landsat and LANDFIRE (Landscape Fire and Resource
Management Planning Tools Project) datasets. Gradient-boosted trees regression models relating total
volume, estimated from airborne lidar measurements and allometric equations, and multitemporal
Landsat and LANDFIRE predictors were developed and evaluated. The fitted models showed
moderate to high correlation (R2 = 0.52–0.81) with reference stem volume estimates, with higher
correlation in pine forests (R2 = 0.70–0.81) than mixed forests (R2 = 0.52–0.67). The models were also
precise, with relative percent mean absolute errors (pMAE) of 13.8–21.2%. The estimated volumes
also consistently agreed with volumes estimated in independent sites (R2 = 0.51, pMAE = 34.7%)
and with US Forest Service Forest Inventory Analysis county-level volume estimates (R2 = 0.93,
pBias = −10.3%, pMAE = 11.7%). This study shows the potential of developing regional stem volume
products using airborne lidar and multisource datasets, supporting forest productivity and carbon
modeling at spatially detailed scales.
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1. Introduction

Spatially detailed monitoring of forest resources is critical for continued sustainable
resource utilization and decision-making in natural resource management. However,
such a level of monitoring is predicated on our ability to adequately quantify vital forest
biophysical parameters such as canopy height, stem volume and aboveground biomass [1].
Stem volume is a key variable in forest management that supports the assessment of forest
productivity, timber harvest planning and marketing decisions [2]. Forest stem volume also
serves a critical role in carbon modeling due to its close relationship to forest aboveground
biomass. Thus, improved assessment of the status and flux of forest stem volume has an
added benefit of reducing forest carbon uncertainties, which account for a sizable portion
in the global carbon budget [3,4]. Meeting this assessment need requires development of
requisite spatially detailed data products that advance available stem volume information
beyond national forest inventory sampling sites [1,5].

Forest stem volume modeling has received significant attention in research, with
studies ranging from allometric model development [1,6,7] to the use of remotely sensed
data such as airborne lidar and optical imagery [8–10]. Despite these advances, scaling
stem volume estimates to large areas often presents challenges due to limited sampling of
inventory plots, limited spatial coverage of available airborne lidar data or inadequacies
in estimating requisite input parameters such as diameter at breast height from airborne
lidar [11,12]. However, used together in a multisource framework, allometric models,
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airborne lidar and optical imagery can facilitate scaling of site-level stem volume estimates
to large areas.

Scaling forest parameters estimates to large areas has relied on regression-based or
spatial interpolation modeling approaches that link site-level reference estimates with spa-
tially complete ancillary predictors such as multispectral images, digital elevation models,
climatic datasets or prior estimates of the forest parameters [13,14]. Field measurements,
airborne lidar data and allometric models are normally applied to obtain reference stem
volume or biomass estimates through area-based (ABA) or individual tree detection (ITD)
approaches [15]. ABA methods, which are the preferred approach in many national forest
assessments [16], link field-based stand-level measurements with ancillary variables such as
lidar-based metrics and optical imagery to model forest parameters over larger areas. ITD
approaches rely on automated tree detection to supply required tree-level measurements
for estimation of target parameters. Where field measurements are unavailable or outdated,
ITD methods provide a viable option for modeling forest parameters by providing exten-
sive tree-level estimates beyond inventory plots. Previous studies have shown that ITD
approaches can provide reliable and, in some cases, better forest parameter estimates than
ABA methods [17–20]. The challenge in applying ITD approaches, however, lies in inaccu-
racies in tree detection and segmentation and inadequacies in the direct measurement of
required parameters such as DBH. Adequate tuning of tree detection parameters can over-
come detection limitations to a substantial extent, while published DBH allometric models
offer an indirect but viable way of overcoming challenges of direct deriving requisite input
parameters such as diameter at breast height from airborne lidar data [21–24].

With past and current efforts on characterizing various aspects of terrestrial ecosys-
tems for sustainable management at national scales, there is an increasing availability of
prior estimates of forest parameters which offer opportunities for enhanced multisource
analyses. In the US, ecosystem datasets characterizing vegetation, wildland fuel, fire
regimes and ecological disturbance are available through the LANDFIRE (Landscape Fire
and Resource Management Planning Tools Project) [25] and offer good prior information
for such modeling. In regions outside the US, regional to global datasets characterizing
vegetation cover [26], elevation [27] and forest structure [28] are also increasingly available
at large scales, providing reasonable starting points for generating or updating forest in-
ventories. While existing datasets can enhance multisource modeling of forest parameters,
it is critical to account for dataset scale differences and impacts from land cover changes on
the modeling process. Scale considerations address data with different spatial resolutions
or sampling rates and can be alleviated through resampling operations to achieve a target
spatial scale. Land cover changes such as clear-cut timber harvests or other land clearing
activities after the date of data acquisition are also an important confounding factor that
must be considered in multisource data modeling frameworks [12]. Advances in methods
and multitemporal image collection now support automated land cover changes mapping,
with spectral–temporal trajectory-based approaches among the most effective at character-
izing forest loss and recovery dynamics [29,30]. These methods can facilitate filtering of
changed areas to limit their impact on the modeling.

This study assessed the potential of regional stem volume mapping in eastern Texas
through a multisource data modeling approach. While stem volume mapping has been
demonstrated at local scales in previous studies [31–33], the focus of this study was to
explore how increasing availability of airborne lidar data and multi-source national-level
ancillary datasets can be leveraged to improve modeling at large scales while providing
products with moderate spatial resolution. It is also worth noting that stem volume esti-
mates are available across the US from the US Forest Service Forest Inventory Analysis
(FIA) program but are provided at a county level; thus, there is still a need for spatially
detailed regional datasets. To meet this goal, this study applied various inputs including
stem volume allometric models, airborne lidar data, multitemporal Landsat and LAND-
FIRE datasets to produce a regional stem volume map at 30 m spatial resolution. While
LANDFIRE datasets have supported a range of studies including forest fuel mapping [34]
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and assessing trends in land use in the US [35], this study is the first to leverage LANDFIRE
datasets for regional stem volume modeling. Specific objectives for this study were to the
following: (1) Develop and evaluate stem volume regression models relating reference stem
volume with LANDFIRE and Landsat variables. Within this objective, the performances
of developed models were evaluated at three epochs to inform seasonal influences on
the modeling, and assessed the benefit of using combined multitemporal Landsat data.
(2) Generate a regional stem volume product by scaling reference stem volumes using the
developed stem volume regression models. (3) Compare estimated volumes with inde-
pendent reference stem volume estimates to assess the performance of scaling tree-level
estimates across the study area. Two references datasets were used as follows: (a) stem
volume estimates derived from airborne lidar data in independents sites; (b) county-level
stem volume estimates from the FIA program.

2. Study Area, Data and Methods
2.1. Study Area

The study area is in southeastern Texas covering an area of approximately 83,300 square
kilometers along the Texas–Louisiana border, from the city of Houston to Texarkana on the
Texas–Arkansas border (Figure 1). Located largely in the Piney Woods Forest ecoregion,
the landscape is dominated by various species of pine trees including Pinus taeda (loblolly
pine), Pinus echinata (shortleaf pine) and Pinus elliottii (slash pine), with loblolly pine being
the most predominant of the pine species in the region [36]. The region is also home to a
variety of hardwoods species including oaks (Quercus stellata (post oak), Quercus alba (white
oak), Quercus falcata (southern red oak)) and hickory (Carya texana (black hickory)) [37],
with post oaks among the most dominant species. Scattered cropland, planted pastures
and native pastures, and suburban and urban areas also occupy a considerable proportion
of the study site [36].

2.2. Data

Various datasets were collected to support the development and evaluation of stem
volume models including Landsat surface reflectance images, various ancillary data from
the LANDFIRE program and plot-level airborne lidar data. Land cover disturbance data
were also generated to account for change between the acquisition of airborne lidar data
and the Landsat imagery. The following sub-sections describe each dataset collected or
generated for this study.

2.2.1. Gap-Filled Landsat Data

Monthly gap-filled Landsat data for January, May and September 2018 were obtained
for stem volume modeling and eventual scaling of stem volume estimates to the entire study
area. Gap-filled data alleviate the impact of missing image values due to sensor-specific er-
rors and cloud cover [38], which were prevalent across our study area and made obtaining
cloud free scenes difficult. The selection of the three months was motivated by the aim to
capture different seasons and leaf-on conditions in order to model the impact of phenology
on stem modeling. The gap-filled data are derived using the Highly Scalable Temporal
Adaptive Reflectance Fusion Model (HISTARFM) algorithm [39], which combines multi-
spectral Landsat 5–8 and MODIS images to reduce noise and produce monthly gap free
high resolution (30-m) observations over the contiguous United States. The dataset com-
prises six wavelength bands including B1 (Blue, 0.45–0.52 µm), B2 (Green, 0.52–0.60 µm),
B3 (Red, 0.63–0.69µm), B4 (Near Infrared (NIR), 0.77–0.90 µm), B5 (Shortwave infrared
(SWIR) 1, 1.55–1.75 µm) and B7 (SWIR 2, 2.08–2.35 µm). Published quantitative evaluations
of the generated products showed highly correlated (R2 > 0.85) and precise (relative mean
error below 1.5%) estimates against reference data [39]. Given these high accuracies, we
found the gap-filled dataset suitable for application in generating the region-level stem
volume dataset.
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Figure 1. Study area in eastern Texas, USA. Main map shows the study area classified by ecoregion.
The ecoregion classification is based on the RESOLVE Ecoregions 2017 map [40]. The red dashed
outline in the main map indicates the extent of airborne lidar data collected for this study. Green
star symbols show independent validation sites used to evaluate generated stem volume product.
The map inset shows the general location (red rectangular outline) of the study site in the Texas–
Louisiana–Arkansas region. Topographic base maps show terrain and river network in both maps
courtesy of ESRI ArcGIS®.

2.2.2. LANDFIRE Datasets

Several datasets from the LANDFIRE program for the year 2016 were obtained to
serve as additional predictors in the stem volume regression modeling. Below are the
listing and brief descriptions of the datasets included:

1. Existing Vegetation Height (EVH), which represents the estimated average height of
the dominant vegetation for a 30 m grid cell for vegetation lifeforms. EVH values are
divided into three distinct ranges depending on lifeform: 0.1 to 1 m with decimeter
increments for the herbaceous lifeform, 0.1 to 3 m for the shrub lifeform, and 1 to 99 m
in 1 m increments for the tree lifeform.

2. Forest Canopy Height (CH), which represents the estimated average height of the top
of the vegetated canopy and is estimated in forested areas only.
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3. Forest Canopy Base Height (CBH), which represents the average height from the
ground to a forest stand’s canopy bottom.

4. Existing Vegetation Type (EVT) for land cover and species cover information. EVT
is meant to represent the current distribution of the terrestrial ecological systems
classification. Given that stem volume is dependent on tree species, species cover
information was a vital input in generating regional-level products.

5. Forest Canopy Cover (CC) for canopy cover information. CC describes the percent
cover of the tree canopy in a stand and is estimated in forested areas only.

6. Forest Canopy Bulk Density (CBD) for ancillary forest structure information. CBD
represents the density of available canopy fuel in a stand and is estimated in forested
areas only.

2.2.3. Plot-Level Airborne Lidar Data

The use of airborne lidar data allowed for the estimation of tree-level attributes and
reference stem volumes. However, since stem volume taper models are usually specific to
each tree species and there was a lack of detailed species cover data, the data for airborne
lidar were selected based on two broad species groups: (1) pines, which included various
pine forests, and (2) mixed forests, which included all deciduous and other wooded forest
classes as mapped by the LANDFIRE EVT layer. The airborne lidar data for this study were
obtained from OpenTopography, a web portal that facilitates open sharing and access to
airborne lidar data globally. The data were acquired between March 2016 and October 2017
under the US Geological Survey (USGS) 3D Elevation Program (3DEP), which is providing
the data through OpenTopography [41]. Lidar data over 200 plots (Figure 2), with each
plot measuring 330 m by 330 m, were collected across the study area. The ready-classified
airborne lidar data had an average point density of 8.87–9.44 points per square meter and
was georeferenced to the NAD83(2011), UTM zone 15N reference frame.
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Figure 2. Plot sampling for pine and mixed forests for stem volume modeling. The sampling was
limited to the extent of the collected airborne lidar data. A total of 200 plots, equally divided between
pines and mixed forests, were selected.
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The 200 plot locations were determined through a spatially balanced sampling scheme [42].
In spatially balanced sampling, candidate sites are selected based on their calculated inclusion
probabilities, which often leads to better spatial distribution of sampled sites over the entire
survey area as compared to simple random sampling [43]. To achieve this in this study, a 330 m
by 330 m grid was generated over the area of the study site with airborne lidar (Figure 1),
designating each grid cell (an 11 by 11 pixel Landsat area), as a sampling unit. For each sampling
unit and species type (pines and mixed forests), the percent species coverage was determined
based on the recoded EVT data. The percent coverage served as inclusion probability layer for
spatially balanced sampling as implemented in the ESRI ArcGIS® software. To ensure high levels
of species homogeneity in each selected site, sampling was restricted to sites with percent species
coverage above 90% for pines and 85% for mixed forests. For each species group, 100 plots were
selected, as shown in Figure 2.

To support independent validation of developed models, another set of 30 (330 m
by 330 m) plots, equally divided between pines and mixed forests, was selected and
corresponding airborne lidar data collected. Steps were taken to ensure that none of these
plots coincided with the 200 plots used for stem volume modeling.

2.2.4. Land Cover Disturbance Data

To account for changes between the acquisition of the airborne lidar data and the
Landsat imagery, land cover changes were also mapped over the study site using the
LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery) algorithm [44].
LandTrendr automatically extracts information on land surface changes, e.g., deforestation or
timber harvesting, and also models recovery processes from a Landsat image time series [29].
LandTrendr applies spectral–temporal segmentation algorithms for change detection in
a time series to output the begin and end time of a change event, the change magnitude
and duration. In this study, change mapping analyses were based on LandTrendr methods
implemented on Google Earth Engine platform. The aim was to minimize the impact of
large cover changes on the modeling, thus change parameters in the LandTrendr algorithm
were set to capture such changes. Preliminary assessments were performed to determine
the optimal change threshold by testing multiple thresholds. A threshold of 300, which
represents an increase in the normalized burn ration (NBR) index, was found adequate in
capturing known changes, while other input parameters were left at their default levels.
For details on all processing parameters, interested readers may refer to the LandTrendr
guide or to the relevant publication [44]. Changes were mapped from 2010 to 2019 based on
annual Landsat composites. To facilitate filtering of changed areas, the year of disturbance
output was recoded into a binary pixel-based layer: 1, for areas that changed since the lidar
acquisition in 2016, and 0, for all unchanged areas.

2.3. Data Processing

Figure 3 shows the overall workflow of the processing of the various datasets in this
study and the eventual modeling of stem volumes. The following sun-sections highlight
individual tree detection and crown segmentation to derive tree-level estimates, use of
stem volume allometric models to estimated reference stem volumes and the preprocessing
of predictor datasets for stem modeling.

2.3.1. Processing Airborne Lidar Data and Estimation of Tree Attributes

The airborne lidar data for each sampled plot were first preprocessed to remove
outliers. To characterize outlying points over the forest canopy, 5 m grid statistics were
calculated, and any point that differed by more than 30% from the calculated 95th per-
centile height statistic was considered outlying and removed. Manual outlier removal
was also conducted after the automated outlier removal to ensure all outlying points were
removed. Relying on classified ground points, the ground surface was interpolated using
the Triangular Interpolation Network method. The point cloud was then normalized to
aboveground level to facilitate the detection of individual trees and crown segmentation
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(Figure 4a). All processing was performed using the lidR package [45], an R package for
manipulating and analysis of airborne lidar data for forestry applications.
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Figure 3. Overview of processing workflow showing main steps in generating reference stem volumes,
preparation of Landsat and LANDFIRE predictors, and the stem volume regression modeling using
the XGBoost library.

The method proposed by Popescu and Wynne [46] was applied to automatically
locate individual trees in the processed lidar data, while corresponding tree crowns were
segmented using a method developed by Silva et al. [47] (Figure 4b), as implemented in the
lidR package. The ITD method uses a local variable filtering approach to detect treetops
(Figure 4b). A moving window is used to detect peaks in a canopy height model, allowing
for adjustment of the window size based on a specified height–crown relationship to detect
trees of varying heights. In segmenting tree crowns, the algorithm by Silva et al. [47]
uses the detected tree locations, which are buffered based on expected height–crown
diameter relationships; finally, a separation of touching crowns is perfirned based on fitting
a centroidal Voronoi tessellation.

Prior to applying the ITD and crown segmentation methods to the airborne lidar data,
assessments were conducted to determine their performances. The assessments focused
on validating the derived number of tree detections, heights and crown diameters based
on manual measurements from the airborne lidar data. As the aim of this study was not
on design and validation of ITD and crown segmentations, details of the assessments are
provided in the Supplementary Materials. The comparison between manual tree locations
and automatic tree detections in preliminary investigations showed overall detection rates
of 90.6% (n = 276) and 81.4% (n = 163) for pines and mixed forests, respectively. Omission
rates were 9.4% and 18.4%, and commission rates were 2.6% and 9.4% for pines and mixed
forests, respectively (see Table S1). Outputs of the crown segmentation were assessed
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based on a selected sample of trees, which were manually measured from the lidar data to
determine tree heights and crown diameters (see Table S2). In general, individually detected
tree heights were highly correlated with manual tree height measurement ((R2 = 0.98,
MAE = 0.34 m for pines, R2 = 0.98, MAE = 0.52 m for mixed forests). Tree crown diameters
were moderately correlated (R2 = 0.75, MAE = 0.82 m for pines, R2 = 0.71, MAE = 0.72 m)
(Table S3, Figure S1). The level of accuracy achieved in these assessments was considered
reasonable and a good basis for regional-level scaling.
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The ITD and crown segmentation methods were then applied to derive tree-level
attributes (height and crown diameter). In this study, separate height–crown relationships
for pines and mixed forests trees were determined for the ITD step based on manual
measurements of tree height and crown widths (see Supplementary Materials). Once the
trees were detected, the corresponding crowns were segmented. All the sampled lidar data
were processed and the detected trees with associated height values exported as a vector
layer in shapefile format. Corresponding tree crowns were also saved as a polygon vector
layer. From each crown segment, a tree crown diameter was estimated as the average of
the length and width of a fitted bounding box, as illustrated in Figure 4c. Alternatively,
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the crown width could have been estimated as the diagonal length of the fitted bounding
box. The average of the dimensions was preferred here to provide a conservative estimate,
especially for mal-segmented or elongated crown segments.

2.3.2. Generating Reference Volume Data

Diameter at breast height (DBH) was a key variable in estimating tree-level stem
volumes, though it was not directly estimable from airborne lidar data, as earlier stated.
Thus, this study relied on published diameter models in Popescu (2007) and Gering and
May (1995) to derive DBH estimates for stem volume calculations. The DBH model in
Popescu (2007) was applied to the pine species group, while the model in Gering and May
(1995) was applied to the mixed forest group. These choices were driven by model goodness-
of-fit, similarity of species studied and geographical proximity to this study. Popescu (2007)
developed and validated models relating DBH to tree height and crown diameter in
loblolly pine trees in eastern Texas based on lidar-derived individual tree measurements
and field data. The developed model provided low biases (RMSE = 4.9 cm) and high
correlations (R2 = 0.87). Models developed by Gering and May for pine (loblolly/shortleaf)
and hardwood (oaks/hickories) species in Tennessee also showed good fit with respect
to field measured diameters (R2 = 0.64–0.93, RMSE = 3.86–6.95 cm), providing a good
basis for modeling in this study. Given the lidar-derived crown diameter (CD) and tree
height H, DBH was estimated per tree according to (1) and (2) for pines and mixed forests,
respectively, as follows:

DBH(cm) = −0.16 + CD + 1.22H (1)

DBH(cm) = (1.6961 + 0.4233CD)× 2.54 (2)

For (1), measurements of tree height and crown diameter were expressed in meters,
while tree measurements in feet were used for (2) to obtain a DBH estimate in centimeters.
The 2.54 factor was introduced to convert inches to centimeters from the original equation
in Gering and May (1995).

Having estimated the DBH using either (1) or (2), the total stem volume was calculated
for each detected tree based on published Forest Inventory and Analysis (FIA) allometric
equations (3) and (4) for southern US regions, which includes Texas [6]. The FIA has
developed various equations from copious field data to estimate species-specific parameters
such as stem volume in cubic feet, which was converted to cubic meter by applying
the conversion factor (1 cubic foot = 0.0283 cubic meter). The equations applied here
capture total stem volume from ground level to the stem tip. For each species group,
separate equations were applied for saplings (DBH > 2.54 cm and < 12.7 cm for pines and
hardwoods), poles (DBH ≥ 12.7 cm and < 22.9 cm for pines, DBH ≥ 12.7 cm and < 27.9 cm
for hardwoods) and sawtimber (DBH ≥ 22.9 cm for pines, DBH ≥ 27.9 cm for hardwoods),
as follows:

Vj =

{
k× CV4j; j = sapling

k× TFj × CV4j; j = pole, sawtimber
(3)

CV4j = a1j + a2j × D2 × H
TFj = b1j + b2j × D2 × H

(4)

where D = DBH, inches; H = total height, meter; k is a cubic foot to cubic meter conversion
factor (0.0283); and a1j, a2j, b1j and b2j are separate coefficients for sapling, poles and
sawtimber in each species group (Table 1). CV4 represents volume of 1-foot (~0.31 m)
stump to a 4-inch (~10.2 cm) top diameter outside bark diameter, while TF represents
the total volume from ground to tip. The estimation of stem volume was modeled after
dominant species model coefficients. For the pine group, coefficients for loblolly pine were
used, while coefficients for post oak were applied for mixed forest group. To match the
Landsat image spatial resolution, all per-tree stem volume estimates from each plot were
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then aggregated at a 30 m scale by summing all tree-level volume estimates in each 30 m
pixel (Figure 4d).

Table 1. Coefficients to compute sapling, pole and sawtimber total stem volume stump to tip.

Species
Group

Group
Modeled As Stem Class (j) Model Coefficients

a1j a2j b1j b2j

Pines loblolly pine
Sapling 0.060342 0.002197

Pole −0.81968 0.00214 1.11178 2.47363
Sawtimber −0.65832 0.002107 1.11178 2.47363

Mixed
forests

post oak
Sapling 0.051922 0.002631

Pole −0.36146 0.001892 1.237511 2.241176
Sawtimber 0.301286 0.001791 1.237511 2.241176

2.3.3. Preprocessing and Combining Predictor Variables

All the collected Landsat images were clipped to study area extent and geolocated to a
common reference frame (WGS84 UTM zone 15N). Additional predictors including spectral
indices and principal components were generated from the raw images. Two spectral
indices were calculated, having shown better correlation with stem volumes in preliminary
analyses: the normalized difference vegetation index (NDVI) and the normalized difference
moisture index (NDMI) [48], and are written according to (5) and (6), respectively, as
the following:

NDVI =
(B4 − B3)

(B4 + B3)
(5)

NDMI =
(B4 − B5)

(B4 + B5)
(6)

where B3, B4 and B5 represent Band 3, Band 4 and Band 5, respectively, as stated in
Section 2.2.2. Principal component analysis (PCA) bands were also generated for each
Landsat scene but only the first two component bands were used since they accounted for
almost all (above 95%) the variability in the data.

All LANDFIRE datasets were projected to WGS84 UTM zone 15N and clipped to
the study area extent. For storage and ease of data management, LANDFIRE datasets
that capture continuous values such as height are encoded as ordinal values that are
proportional to actual values. For instance, EVH for the tree lifeform category is encoded
with values from 101 to 199 where 101 represents 1 m, 102 represents 2 m and so forth.
Thus, for modeling purposes, these values were applied without recoding them to their
actual values. This applied to EVH, CH, CBH, CBD and CC. As stated earlier, two broad
species groups were considered for modeling purposes given the coarse species cover data
over the study area. Thus, the EVT data were recoded into three broad categories based
on national vegetation classification attribute data: (1) pines, which included all pines
forests (loblolly, shortleaf and longleaf), (2) mixed forests, which included the deciduous,
mixed and woody wetlands classes and (3) non-forest, for all other herbaceous vegetation,
non-vegetated classes (developed areas) and open water. This data categorization enabled
development of separate volume models for pine and mixed forests.

Having processed all the predictor variables and generated the gridded reference stem
volumes in all plots, all these data were stacked together to create an image dataset for
stem volume modeling. Further, the dataset was reformatted as a table and all observations
in changed areas removed.

2.4. Stem Volume Modeling
2.4.1. XGBoost Model Building and Assessment

XGBoost, for Extreme Gradient Boosting, is an optimized distributed gradient boosting
library which provides a parallel tree boosting to solve both classification and regression
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problems in a fast and accurate way [49]. By building sequential decision trees that are
incrementally improved, gradient-boosted trees as implemented in XGBoost can learn
the complex nonlinear relationships that occur between predictors and output dependent
variables. Being a non-parametric model, XGBoost was also preferable given the correlated
predictors from Landsat and LANDFIRE. In preliminary analyses in which the purpose was
to select a regression approach for modeling stem volume in this study, other algorithms
were evaluated including random forests and deep neural networks [50]. Models based on
XGBoost showed better performance compared to the other two methods; thus, XGBoost
was adopted as the main method for this study.

As with any machine learning model, the performance of XGBoost is dependent on
predictors used and the set of model parameters (hyperparameters) specified during train-
ing. In this study, LANDFIRE, Landsat surface reflectance imagery, principal components
and spectral index predictors were evaluated to improve the effectiveness of developed
models. Apart from selecting appropriate features, it was also critical to find optimal
values for several hyperparameters used in the model. The hyperparameter tuning step is
vital to build models with high performance and models that can generalize well when
applied to test data. With XGBoost, parameters tuned included the number of decision
trees, number of features when splitting, the learning rate and several other parameters
that control data splitting and regularization. Optimal model parameters were determined
through an exhaustive grid search approach [51]. Grid search exhaustively evaluates all
parameter combinations from the parameter space to determine the best combination of
parameter values for building the model.

Regression models were set up using XGBoost, taking the gridded stem volume data
as the dependent variable and the Landsat images, Landsat spectral indices and principal
components, and LANDFIRE data as predictors. The modeling was performed by species
group, taking a 30 m pixel as a sampling unit. Several modeling scenarios were evaluated
to assess the impact or benefit of (1) Landsat imagery acquired at separate times and
(2) combining multitemporal Landsat data. Thus, models were developed as follows:

1. Separate models were built using LANDFIRE data only and using each of three
Landsat 8 images.

2. Combined models were built using LANDFIRE with each of the Landsat images.
A combined model was also built by combining all the LANDFIRE and Landsat 8
data regardless of acquisition date to assess the benefit of using all the multitemporal
Landsat data.

For each of the models, 85% of the data (pixels from 85 subsites in each case) including
all pixels in samples sites were used for training and 15% for evaluating the accuracy of the
prediction. The performance of the models was evaluated based on mean bias (Bias), mean
absolute error (MAE) and their equivalent percent metrics, percent bias (pBias) and percent
MAE (pMAE), as shown in Equations (7) through (10), where Volpred is the predicted total
stem volume, Volref is the reference total stem volume and n is the total number of samples
used for the assessment. Given the reference is subtracted from the predicted stem volume
in the above bias metrics, a negative value indicates general underestimation of reference
stem volumes and vice versa. MAE was applied to assess the precision of the predictions
with respect to reference stem volumes. To assess the correlation between predictions and
reference stem volume estimates, the coefficient of determination (R2) was also calculated.
For each fitted model, variable importance was assessed as the average gain across all
splits where a variable was used in the decision trees. Thus, the variable importance value
captures the relative contribution of a particular variable to model performance—a higher
value shows higher importance in predicting target values.

Bias =
1
n ∑ n

i=1

(
Volpred −Volre f

)
(7)
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pBias = 100×
∑n

i=1

(
Volpred −Volre f

)
∑n

i=1 Volre f
(8)

MAE =
1
n ∑ n

i=1

∣∣∣(Volpred −Volre f

)∣∣∣ (9)

pMAE = 100×
∑n

i=1

∣∣∣(Volpred −Volre f

)∣∣∣
∑n

i=1 Volre f
(10)

2.4.2. Generating and Validating the Regional Stem Volume Product

The stem volume product was generated by applying the developed regression models
to the gap-filled Landsat [39] and LANDFIRE data over the entire study area in eastern
Texas. Essentially, the generated product represented total stem volume in each Landsat
pixel. Based on the recoded EVT data, pixels with a value of 1 were processed using the
developed pine regression model while pixels with the value of 2 were processed with the
mixed hardwood regression model. Non-forest (Barren class) and changed pixels according
to the disturbance data were omitted from the model predictions and assigned a value to
of zero.

Comparative assessments were carried between the generated stem volume product
and reference stem volume estimates using two sources of reference stem volume data:

1. First, airborne lidar data from the 30 independent sites (Section 2.2.3, Figure 1) were
used to derived stem volume estimates following methods in Sections 2.3.1 and 2.3.2.
The derived reference stem volume estimates were compared to matching estimates
from the generated stem volume product using metrics in Section 2.4.1.

2. Second, comparative assessments were conducted against existing FIA county-level
stem volume estimates to determine the agreement between the two products. County-
level stem volume estimates were derived from the FIA Landcover County Estimates
2017 dataset [52], which represents forest area estimates and associated percent sam-
pling error by county generated from the Forest FIA inventory measurements for
the year 2017. Data for 2017 were used because of the closeness in time to both the
airborne lidar acquisition and the LANDFIRE release dates. The generated stem
volume product was aggregated at the county level, and totals were compared to FIA
county estimates to facilitate the comparison. The FIA County stem volume estimates
compared were the net merchantable bole volume of live trees with at least 12.7 cm
DBH on forest land. Again, evaluation metrics in Section 2.4.1 were used to assess
the agreement between the two products. A further evaluation of the two products
was conducted based on the percent sampling error included in the FIA data, which
represent a standard deviation estimate for each per-county volume estimates. These
error data were used in this study to construct per-county 95% confidence intervals
to provide a graphical view of which of the study-county stem volume estimates fell
within the FIA confidence interval.

3. Results
3.1. Stem Modeling with Landsat and LANDFIRE Data
3.1.1. Model Performance with Separate Landsat and LANDFIRE Data

Table 2 and Figure 5a summarize the performance of models fit with separate Landsat
and LANDFIRE predictors. Overall, R2 values varied from 0.36 to 0.70 and from 0.19
to 0.49 for pines and mixed forests, respectively. The best performance in each case
was observed when applying the full set of May Landsat predictors, which included
all Landsat bands, spectral indices and PCA bands. In general, reference stem volume
estimates were overestimated for both pine (average Bias 0.2 m3) and mixed (average Bias
0.01 m3) forests. Predicted stem volumes were on average within 26.3% and 19.2% of
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reference values in pines and mixed forests, respectively. The full set of Landsat based
predictors provided better predictions (average R2 = 0.65, MAE = 3.5 m3 for pines, average
R2 = 0.45, MAE = 1.9 m3 for mixed forests) than a set of LANDFIRE predictors (R2 = 0.48,
MAE = 4.4 m3 for pines, R2 = 0.31, MAE = 2.2 m3 for mixed forests). While this observation
might reflect the quality of predictors used, it must be interpreted in the context of the
number of predictors involved (10 Landsat versus 5 LANDFIRE), as regression model
fits usually improve with a higher number of predictors. In fact, when only the best five
Landsat-based predictors were used in the modeling to match the number of LANDFIRE
predictors, the performance drastically reduced to within LANDFIRE performance levels
(Table 1). Thus, based on an equal number of predictors, Landsat- and LANDFIRE-based
predictors showed similar performance in the stem modeling.

Table 2. Summary of model performance with separate Landsat and LANDIRE predictors. LS indi-
cates Landsat-based predictors at specified date, Best 5 indicates best five Landsat-based predictors
according to estimated variable importance, LF indicates LANDFIRE-based predictors. The hold-out
test sample size was 2269 and 2226 for pines and mixed forests, respectively.

Pine Forests Mixed Forests

Predictors R2 Bias
(m3)

pBias
(%)

MAE
(m3)

pMAE
(%) R2 Bias

(m3)
pBias
(%)

MAE
(m3)

pMAE
(%)

LS Jan-18 0.60 0.2 1.5 3.7 24.1 0.41 0.02 0.19 2.0 18.9
LS May-18 0.70 0.2 1.3 3.2 21.0 0.49 0.05 0.44 1.8 17.0
LS Sep-17 0.65 0.1 0.8 3.4 22.3 0.45 −0.05 −0.45 1.8 17.4

LS Jan-18 Best 5 0.36 0.3 2.2 4.8 31.3 0.24 0.02 0.19 2.2 21.2
LS May-17 Best 5 0.44 0.2 1.2 4.5 29.0 0.32 0.07 0.68 2.1 19.8
LS Sep-17 Best 5 0.47 0.2 1.2 4.2 27.6 0.32 −0.02 −0.18 2.1 19.5

LF 0.48 0.3 1.8 4.4 28.8 0.31 −0.01 −0.06 2.2 20.4

3.1.2. Model Performance with Combined Landsat and LANDFIRE Data

Table 3 summarizes the performance of the four regression models trained for predict-
ing stem volume when combinations of Landsat and LANDFIRE predictors were applied.
For both species groups, R2 values ranged from 0.52 to 0.81, indicating moderate-to-high
correlation with respect to reference stem volume estimates. Mean bias values ranged
from −0.12 m3 (under-estimation) to 1.2 m3 (overestimation), which translated to relative
percent biases of −1.1% to 1.2%. MAE values ranged from 1.5 to 3.3 m3, representing
relative deviation from reference stem values of 13.8 to 21.2%. These evaluation metrics
show that the XGBoost models developed with both Landsat and LANDFIRE predictors
performed better both in terms of the correlation (12.8% average improvement in R2 for
pines, 24.7% for mixed forests) and precision (9.6% average improvement in MAE for pines,
8.9% for mixed forests) of stem volume predictions.

Table 3. Summary of model performance with combined Landsat and LANDIRE predictors. LS
indicates Landsat-based predictors at specified date, LF indicates LANDFIRE-based predictors. The
hold-out test sample size was 2269 and 2226 for pines and mixed forests, respectively.

Pine Forests Mixed Forests

Predictors R2 Bias
(m3)

pBias
(%)

MAE
(m3)

pMAE
(%) R2 Bias

(m3)
pBias
(%)

MAE
(m3)

pMAE
(%)

LS Jan-18, LF 0.70 0.18 1.2 3.3 21.2 0.52 −0.12 −1.1 1.8 16.8
LS May-18, LF 0.76 0.04 0.2 3.0 19 0.59 −0.05 −0.4 1.6 15.3
LS Sep-18, LF 0.74 0.03 0.2 3.1 19.7 0.56 −0.04 −0.4 1.7 15.3

Combined L8, LF 0.81 0.04 0.3 2.7 17.1 0.67 −0.02 −0.2 1.5 13.8
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Figure 5. Predicted vs. reference stem volume per pixel in cubic meter: (a) stem volume prediction by
models fit separately with Landsat (LS01 = 01/2018, LS05 = 05/2018, LS09 = 09/2018) and LANDFIRE
(LF) data for pines (top row) and mixed forests (bottom row); (b) stem volume prediction by models
fit with LANDFIRE and each Landsat (LS01_LF, LS05_LF, LS09_LF) scene and with all the data
combined (All) for pines (top row) and mixed forests (bottom row). P denotes pines, M denotes
mixed forests. The red dashed line indicates the expected 1:1 relationship between the two estimates.

As in the previous section, model performance in pine forests varied by the Landsat
date, with the model trained with LANDFIRE and May Landsat data showing the best per-
formance among separate models in terms of R2, Bias and MAE values (Table 3, Figure 5b).
The second-best performance was observed using LANDFIRE and September Landsat data,
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with the models developed with January Landsat data showing the lowest performance.
All models fit for pine forests showed a level of overestimation (Bias 0.02–0.18 m3) with
respect to reference stem volume values. All models also showed good precision, reaching
to within 20% of reference values. Model performance in mixed forests varied in a similar
way as pine forests, with performance better for models fitted with May and September
Landsat images than with the January Landsat image. As with the models fitted with
separate Landsat or LANDIRE, the significant difference between the two cases (pines and
mixed forests) lay in the level of performance. In the mixed forests, the observed R2 values
(0.52–0.59) were lower than the pine case (0.70–0.76), which amounted on average to a 24%
decrease. The mean bias magnitudes for mixed hardwood forest were comparable to pine
forest, except for the fact that general underestimation was observed (pBias = −1.1–−0.4%).
However, models for mixed forest showed better precision (pMAE = 15.3–16.8 %) compared
to pine forests (pMAE = 19–21.2%).

When all the LANDFIRE and Landsat predictors from the three dates were included
in the stem volume regression model, model performance improved further across metrics.
In terms of correlation, the R2 value for pines increased to 0.81 while the R2 value for
mixed forests rose to 0.67, representing improvements of 9.1% and 20.4% respectively.
Models fitted with combined data were on average less biased (pBias = 0.3% for pines,
pBias = −0.2% for mixed forests), although individual models fitted with Landsat data
for 05/2018 and 09/2018 showed better mean biases. Precision with respect to reference
stem volume estimates also improved (average pMAE improvement of 2.86% for pines
and average pMAE improvement of 2.0% for mixed hardwoods), but was less significant
compared to gains in R2 values. These results demonstrate a further benefit in combining
multitemporal imagery and multisource data in stem volume modeling.

3.1.3. Model Variable Importance

Variable importance scores from models fitted with separate and combined Landsat
and LANDIRE predictors varied by species group and, for Landsat, by acquisition date
(Figure 6). Separate Landsat models fit for pines and mixed forests showed a dominance of
features from red, near-infrared and shortwave-infrared spectra (Figure 6a). The three top-
ranked pines were Bands 3 and 4 and NDMI, while Band 7, Band 4 and NDVI were the most
important in mixed forests (refer to Section 2.2. for band information). It is worth noting that
the three top-ranked predictors accounted for less than 60%, indicating the importance of
the other predictors to overall model performance (Figure 6a), implying that the remaining
features were still critical for adequate model performance. In general, individual Landsat
bands and spectral indices were ranked higher than PCA bands. Variable importance scores
for LANDFIRE predictors showed a more lop-sided contribution to model performance,
with over 90% attributed to top three predictors (CC, EVH, CH). CC accounted for most of
the variable importance (89.2%) for pine models, but a more even distribution among the
three variables was observed for mixed forest models.
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Figure 6. Percent variable importance (Vimp) for separate and combined stem volume regression mod-
els: (a) variable importance for models fit separately with Landsat (LS01 = 01/2018, LS05 = 05/2018,
LS09 = 09/2018) for pines (top row) and mixed forests (bottom row); (b) variable importance for mod-
els fit separately with LANDFIRE (LF) data for pines (top) and mixed forests (bottom); (c) variable
importance for models fit with LANDFIRE with each Landsat (LS01_LF, LS05_LF, LS09_LF) scene
and with all the data combined (All) for pines (top row) and mixed forests (bottom row); (d) variable
importance for models fit with all the data combined (All) for pines (left) and mixed forests (right). P
denotes pines, M denotes mixed forests.
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Models developed with combined predictors showed LANDFIRE predictors were
ranked higher than Landsat-derived predictors. The CC predictor was the highest-ranked
predictor followed by EVH across all scenarios. For models developed for pine forests, the
CC predictor accounted for about 60% of the variable importance but was reduced to about
35% for mixed hardwood forests, where the loss in importance was driven by gains by other
predictors, especially EVH. The higher performance of CC as compared to EVH and CH in
the stem regression models was unexpected given that the other predictors (EVH and CH)
were seen to have a more direct involvement in the computation of stem volume. Equally
unexpected was the better performance of EVH over CH. Variable importance ranking
for CBH and CBD varied across forest type, with CBH showing a higher contribution to
model performance in pine forests, whereas CBD showed a higher performance in mixed
hardwood forests. Similar to models developed with separate Landsat predictors, the
variable importance ranking for Landsat-derived predictors fluctuated across forest type
and over the three dates. Landsat Band 1, 3 and 4 were among the highly ranked predictors
in pine forests, and spectral index predictors (NDVI and NDMI) were generally ranked
higher than the two principal components across the three dates. In mixed hardwood
forests, Landsat Band 2, 5 and 7 showed higher ranking in general. In this case, NDVI was
more important than most of the individual Landsat bands. Again, principal components
did not rank higher than spectral indices and individual bands.

Combining all predictors regardless of acquisition dates revealed interesting patterns.
For models over pine forests, the top-three highly ranked Landsat predictors (band4_01,
band3_05 and band2_09) were shared among the three dates. However, for models over
mixed hardwood forests, the highly ranked Landsat predictors (band5_09, band7_09 and
ndvi_09) all came from the 09/2018 image. These observations point to different seasons
for optimally mapping the two forest types. As in other modeling scenarios, LANDFIRE
predictors still ranked higher than Landsat predictors, although at a lower level than in
separate models.

3.2. Stem Volume Product Generation and Comparison with Reference Products

Figure 7 (left) shows the stem volume map generated over the entire study area in
eastern Texas. Stem volume ranged from 0 to 42.5 m3 per 30 m pixel with the variation
conforming mainly to the spatial patterns of forests over the region. Higher stem volumes
are concentrated mainly in the southern part of the study site around national forests
dominated by pine and hardwood species. In the northern part of the region, there were
lower stem volume values owing to the change in ecoregion from a more densely forested
Piney Woods to moderate-to-sparse East Central Texas forests (Figure 1). Figure 7 (middle)
shows FIA county-level stem volume map over the study area. Albeit for the different
spatial scales, the gradation in total per-county stem volumes is reflective of the stem
volume generated in this study. Quantitatively, the two products differed, with their county-
level differences showing varying levels of under and overestimation (Figure 7, right).

Comparison of the stem volume estimates from the generated product with inde-
pendent airborne lidar-derived stem volume estimates showed moderate correlations
(R2 = 0.51) and higher biases (pBias = −12.2%) compared to results based on hold-out data
(Section 3.1.2). Figure 8a shows scatterplots with performance metrics of the comparison
between stem volume estimates from the generated product and independent estimates
derived from airborne lidar data in sample sites. Estimates from pine sites showed R2

value of 0.51 with percent biases of −11.2%, which showed a loss of predictive perfor-
mance. Estimates from mixed forests showed also showed reduced agreement (R2 = 0.36,
pBias = −13.4%) over hold-out test data. The reduction in predictive performance on in-
dependent estimates is somewhat expected, and is indicative of some inadequacies in
sampling and predictor inefficiency in capturing the full range of forest stem volumes.
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Figure 7. Regional stem volume mapping and comparison with FIA estimates: (left) stem volume
product in cubic meters generated in this study; (middle) FIA county-level total stem volume estimates
in million cubic meters. Counties to the level of Red River and Franklin counties did not have volume
estimates; thus, they are not shown in the FIA map. (Right) percent differences between study and IA
estimates. The color scheme indicates trends in underestimation (redder hues) and overestimation
(greener hues) of FIA estimates.

On the other hand, the comparison of aggregated per-county stem volumes estimates
with FIA estimates showed a high linear correlation (R2 = 0.93) between the two datasets,
showing the consistency of the approach applied in this study Figure 8b). In terms of bias,
our stem volume estimates underestimated (pBias =−10.3%, pMAE = 11.7%) corresponding
FIA stem volume estimates. The general underestimation is in line with results from
independent sites. An assessment of study’s stem volume estimates with respect to 95%
confidence intervals calculated from the FIA percent sampling error showed that the
majority (97.3%) of the county-level stem volume estimates were within expected error
range. The only estimate that was not within the 95% confidence interval is from Panola
County. Given that other estimates from counties farther from the airborne lidar sampling
(Figure 7, right; Figure 8c) agreed with FIA estimates, factors other than distance could
have influenced our modeling. On the whole, these results are promising given that FIA
estimates are based on detailed unbiased tree estimates from a network of FIA plots, while
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the approach applied here was based on individual tree detections, which may not detect
some understory trees.
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Figure 8. Comparison of study stem volume estimates to independent and FIA county-level stem
volume estimates: (a) predicted vs. reference stem volume per pixel in cubic meter from independent
sites in pines (left) and mixed forests (right). The red dashed line indicates the expected 1:1 relationship
between the two estimates. (b) Bar chart showing study and FIA county-level stem volume estimates.
(c) Deviation of study stem volume from FIA estimates with lower and upper 95% confidence limits
calculated based on FIA per-county sampling error percentages. Deviations marked by red crosses
fall outside the 95% confidence limits, which indicates significant differences between this study and
FIA estimates. N is the number of pixel samples used in the assessment.

4. Discussion

The goal of this study was to develop and evaluate methods for creating spatially
detailed regional maps of stem volume, which could support resource management and
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be widely accessible beyond county-level datasets. To achieve this, this study leveraged
multisource data to scale estimates of tree-level stem volume to a regional level at a 30 m
Landsat spatial resolution. The consistency in spatial resolution between the Landsat and
LANDFIRE datasets made the scaling process easier and eliminated the need for additional
resampling processing steps. The regression models developed in this study provided
moderate to highly correlated predictions, with R2 values ranging from 0.52 to 0.81. The
predictions were virtually unbiased, with pBias values ranging from −1.1% to 1.2%, and
precise, with pMAE values ranging from 13.8% to 21.2%, when compared to reference stem
volume estimates. These results demonstrated the effectiveness of the multisource approach
used in this study, which benefitted from the effective and robust gradient-boosted trees
regression algorithm [50] and the multisource predictors.

This study’s tree-to-regional-level scaling approach also performed comparatively
well when compared against independent airborne lidar-derived estimates (R2 = 0.51,
pBias = −12.1%, pMAE = 32.1%). It also performed well when compared to existing
FIA county-level stem volume estimates (R2 = 0.93, pBias =−10.3%, pMAE = 11.7%).
Furthermore, all but one of the county-level stem volume estimates were within the FIA
95% confidence intervals, showing adequate reliability of ITD approach for modeling forest
stem volume at regional levels. However, in contrast to the FIA county-level dataset, the
maps produced in this study provide a more comprehensive and detailed view of stem
volume over a larger area. This would enable resource managers to better identify areas for
timber harvest, carbon accounting and ecological process assessments.

Several previous studies have reported a wide range of error values in estimating
stem volumes in various forest ecoregions. Magnusson and Fransson (2005) used a non-
parametric regression K-nearest neighbor approach to estimate the stand volume for conif-
erous stands in Sweden using combinations of SPOT, Landsat and stand-level tree height
data, and reported estimation root mean square errors (RMSE) between 11.2% and 25.2%.
The best model performance (11.2%) was achieved by inclusion of field-measured stand-
level tree heights as compared to image data alone. Hyyppä et al. (2000) assessed the
accuracy of estimating stem volume over a boreal forest test site using various remote sens-
ing datasets including aerial photographs, Landsat TM, SPOT and various SAR datasets
(airborne ranging radar, European Remote Sensing satellite (ERS), Japanese Earth Resources
Satellite 1). The models developed with the various datasets showed R2 values between
0.06 and 0.68 and RMSE percentages between 34 and 65%. Interestingly, predictors de-
rived from optical images provided more predictive power for forest inventory than SAR
intensity and coherence-based predictors, except for radar profiles, which the authors
attributed to the significant decrease in coherence between acquisitions. These studies
highlight the vital importance of non-spectral predictors, e.g., stand-level tree heights and
radar profiles, with more considerable correlation with forest structure to modeling forest
structural parameters such as stem volume. In this study, prior estimates of tree height and
other structural parameters from the LANDFIRE datasets were used to achieve this goal.
Using a variety of predictors including Landsat 7 reflectance bands, vegetation indices and
textures features, [14] reported RMSE error percentages between 30% and 40% in estimating
stem volume in Indonesia. Although field measurements were utilized in this study, their
margins of error were not superior to the ITD approach employed here. This could be
attributed to the fact that their approach relied on traditional multiple regression modeling
instead of the more robust gradient-boosted trees used in this study. The performance of
Sentinel-2 and Landsat 8 for estimating forest volume in a boreal forest in Southern Finland
was carried out by [33]. Sentinel-2 data provided better estimates (RMSE = 59.3%) than
Landsat (RMSE = 72.2%), which the authors attributed to Sentinel-2′s red-edge bands and
better spatial resolution. The high errors reported by the study again underscore the need
to include other multisource datasets to improve predictive performance. Similar to this
study, [53] used multi-year Landsat and spectral index time series to estimate the stem
volume of six Canadian sites, achieving errors ranging between 20 and 60%, which was
attributed to site-specific structure differences. Like [14], this study relied on plot-levels
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field measurements, and was limited to optimizing the time-series length over the six site
as opposed to an actual large-scale mapping of forest volume. Compared to these previous
studies, this study achieved model percent RMSE values between 18.6 and 45.9% (Table A1,
Appendix A), which shows improvement over the previous studies, especially consider-
ing the regional-scale stem volume product generated. Overall, the level of accuracy in
this study and previous studies show the critical importance of multisource predictors in
characterizing forest structural parameters, but also underscore the difficulty of estimating
forest parameters with reduced uncertainty.

While Landsat data is a major input in the generation of LANDFIRE products, it was
still useful to take advantage of the varying spectral responses of different bands to forest
condition and structure to support modeling. The benefit of using multitemporal Landsat
data was demonstrated by the better observed model performance when combined Landsat
data were used. The use of data at multiple dates also reflected the influence of phenology
on the retrieval of forest stem volume, with models based on leaf-on data (05/2018, 09/2018)
showing higher performance compared to a model based on leaf-off data. Interestingly,
higher gains (20.4 vs. 9.1 %, Section 3.1.2) were observed for mixed forests than pines
when combined data were used, reflecting a prediction boost from phenological changes
associated with mixed forests than evergreen pines. These observations are in line with
previous studies that have shown the importance of applying multitemporal data in both
stem volume and biomass modeling [53–55]. Despite using multitemporal Landsat data,
LANDFIRE variables contributed more predictive power than predictors derived from
Landsat data in combined models, which was expected given the more direct relationship
of variables such as EVH to stem volume. Though not directly related to the computation
of stem volume, CC showed higher variable importance across modeling scenarios due to
its relationship with stand density [56,57]. However, it is worth noting that LANDFIRE as a
modeled product has shortcomings in accurately characterizing forest structure. This likely
explains the underestimation of stem volumes as shown in Figure 5. Fitted models were
only able to estimate up to 36.8 m3 and 17.0 m3 compared to maximum reference values of
over 42.5 and 19.8 m3 for pine and mixed forests, respectively.

Model performance varied by species group, with pine-based models showing better
correlation and overall biases compared to models for mixed forests. These results are
attributable to a number of factors including differences in performance of the ITD and
crown segmentation and the level of generality in applied allometric models. The ITD
method applied here showed lower performance in mixed (81.4% accuracy) compared to
pine forests (90.6% accuracy), a pattern observed in previous studies that assessed ITD
performance in both coniferous and deciduous [46,58]. The higher accuracy in pines is
attributed to their simpler conical shapes, which are amenable to easier detection compared
to deciduous trees that tend to show fewer dominant peaks. Further omission could also be
attributed to poor detection of co-dominant and understory trees, which most ITD methods
struggle with [59,60]. Apart from uncertainty in detection, methods applied here also
showed a level of uncertainty in estimating tree-level attributes such as tree height and
crown diameter (Supplementary Materials). The errors associated with these attributes
propagated the estimation of DBH, which later affected the resulting stem volume. It is
noteworthy to outline the implications on the DBH model parameterization. The pine
DBH model required both the tree height and crown diameter to be estimated, while the
one for the mixed forest only required one. Considering the similar level of precision
in estimating crown diameter, higher uncertainty can be expected from the model with
two parameters. This could partly explain the higher precision obtained in mixed forests
as compared to pines. In the two cases studied, stem volume was modeled based on
stem volume taper models for a dominant species, which has implications on the level
of generality of the allometric models. The pine group performed better than the mixed
forest due to the dominance of loblolly pines in the study area; considering the similar
stem morphology of other pine species, this led to higher consistency in modeling based
on allometric equations from a single species than more diverse mixed forest group. This,
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together with the limitations in ITD methods, led to the observed prediction trends in the
two cases.

The modeling framework presented here complements previous efforts [1,12,24] aimed
at consistent modeling and monitoring of stem volumes and forest biomass across regional
and global scales. For the US, where LANDFIRE datasets are available on a national
scale under a consistent processing methodology, the methods developed in this study
could readily support extended modeling to cover other areas across the US. The methods
presented here are also adaptable to other regions outside the US. LANDFIRE datasets used
in this study characterized aspects of canopy cover, canopy height and land cover of which
suitable alternatives can be found at national and global levels. Notable alternatives include
datasets being generated under the Copernicus program [61] and global datasets generated
by NASA such as the global forest cover datasets [26] and tree height [28,62]. The key factor
in using all these multisource datasets is accounting for changes as conducted in this study.
Models fit with Landsat-only predictors also showed competitive performance, indicating
that the methodology applied here could be used without additional ancillary predictors.
Other potential applications of the methology presented here include the assessment of
stem volume in multiple years, providing opportunities to monitor status and trends in
forest resources. This modeling framework also offers possibilities for regional monitoring
of carbon stocks based on established scaling mechanisms such as applying expansion
factors in the component ratio approach [1]. Through such mechanisms, generated stem
volume data could be readily converted to forest carbon to support climate mitigation
initiatives and carbon accounting initiatives such as REDD+.

There is still a need for continued development in methods and datasets to reduce
uncertainties in modeling forest parameters such as stem volume. Much progress has been
made in the development of individual tree detection and crown segmentation methods,
which are enabling retrieval of tree-level metrics. However, our ability to map tree species
at a similar scale still lags. This limitation may be attributable to the lack of widely available
high-spatial-resolution multispectral or hyperspectral imagery over large areas to support
discrimination of tree species. The lack of detailed species information limits application of
species specific allometric equations even though allometric equations for numerous species
are available [6]. A few opportunities exist for producing detailed species datasets including
national level datasets from the National Agricultural Imagery Program (NAIP) and high-
resolution imagery from unmanned aerial systems. NAIP imagery has shown potential
for high-resolution species mapping [63,64]. However, with a 1 m resolution, limited
spectral bands and infrequent or snapshot collection may still be limited in discriminating
individual trees species. Unmanned aerial systems are revolutionizing the collection of
various high-resolution remote sensing data, and present another promising option for
detailed species classification. Coupled with robust and high-performance approaches
such as deep learning approaches, UAS image data could lead to tremendous improvement
in land cover characterization at local scales [65]. With such robust methods and high-
resolution imagery, it is conceivable that the gap between stand-level and regional-level
characterization of stem volumes could be reduced as such data become available over
large areas.

5. Conclusions

This study aimed to develop and evaluate stem volume regression models using
LANDFIRE and Landsat variables, generate a regional stem volume product by scaling
reference stem volumes using the developed models and assess model performance by
comparing estimated volumes with independent reference stem volume estimates. The de-
veloped regression models showed adequate consistency and precision when compared to
reference stem volume estimates, and demonstrated the added benefit of using multitempo-
ral rather than a single-date Landsat image for the estimation of forest stem volume. While
the use of ground measurements is still recommended, the results from this study show that
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there is high potential for developing adequately precise regional products by leveraging
automatically derived tree measurements from airborne lidar and ancillary datasets.

Modeling performance varied by species group, with pine-based models showing
better correlation and overall biases compared to models for mixed forests. The wide
variety of tree species under the mixed forest was much harder to model with a single
allometric relationship than pines that tend to exhibit similar shapes. More detailed species
cover maps will be required if we are to make full use of the numerous stem volume
equations and match outputs from ITD methods. However, for regional mapping, broad
species modeling as applied in this study still provides vital spatial information on the
status and distribution of forest resources.

Other factors that impacted performance include errors due the individual tree detec-
tion and crown segmentation, errors in derived datasets from LANDFIRE, sub-optimal
sampling of plots and seasonal changes in vegetation structure as shown by the different
performances with leaf-on and leaf-off Landsat data. Future studies should pay atten-
tion to these error sources for optimal modeling and scaling of plot-level estimates to
regional scales.

Overall, this study provides important insights into developing and evaluating stem
volume regression models and offers a useful framework for generating regional stem
volume products and assessing model performance.
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10.3390/f14030506/s1, Figure S1: Estimated versus measured tree height and crown diameter for
pines and mixed forests, Table S1: Summary of tree detections and associated accuracies, Table S2:
Measured (Meas.) and estimated (Est.) tree heights and crown diameters (CD)for randomly selected
trees for pines and mixed forests. Unmatched trees not detected or segmented were removed
reducing the sample from 30 in each case, Table S3: Assessment of estimated tree height and
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Appendix A

This section provides two additional metrics applied in other studies to facilitate
comparison with results in this study. The two metrics include the root mean sqaure error
(RMSE) and its percent equivalent (rRMSE). The two metrics were calculated according
to Equations (A1) and (A2), where Volpred is the predicted total stem volume, Volref is the
reference total stem volume and n is the total number of samples used for the assessment.

RMSE =

√
1
n ∑ n

i=1

(
Volpred −Volre f

)2
(A1)

rRMSE = 100×
√

1
n ∑ n

i=1

(
(Volpred −Volre f

)
/Volre f )2 (A2)
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Table A1. Corresponding RMSE and rRMSE metrics for the combined model applied in scaling stem
volume estimates across the study area. LS indicates Landsat based predictors at specified date, LF
indicates LANDFIRE based predictors. Number of pixel samples used was 2269 and 2226 for pines
and mixed forests, respectively.

Pine Forests Mixed Forests

Predictors MAE
(m3)

pMAE
(%)

RMSE
(m3)

rRMSE
(%)

MAE
(m3)

pMAE
(%)

RMSE
(m3)

rRMSE
(%)

Combined model
with LS and LF 2.7 17.1 3.8 24.1 1.5 13.8 2.00 18.6

Independent
testing over

30 plots
3.7 34.7 4.9 45.9 4.78 37.87 6.1 48.3

Using Equations (A1) and (A2), the corresponding RMSE and rRMSE values for the
county-level comparison (MAE = 1.58 million cubic meter, pMAE = 11.7%) are 2.3 million
cubic meters and 14.0%, respectively.
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