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Abstract: As a major component of the north–south transition zone in China, the vegetation ecosystem
of the Qinling-Daba Mountains (QBM) is highly sensitive to climate change. However, the impact
of sunshine duration, specifically, on regional vegetation remains unclear. By using linear trend,
correlation, and multiple regression analyses, this study systematically analyzed the spatiotemporal
characteristics and trend changes of the vegetation coverage in the QBM from 2000–2020. Changes in
the main climate elements in different periods and the responses to them are also discussed. Over the
past 21 years, the vegetation coverage on the east and west sides of the QBM has been lower than that
in the central areas. However, it is showing a continuously improving trend, especially in winters and
springs. The findings indicate that change of FVC in the QBM exhibited a positive correlation with
temperature, a negative correlation with sunshine hours, and both positive and negative correlation
with precipitation. On an annual scale, average temperature was the main controlling climatic factor.
On a seasonal scale, the area dominated by precipitation in spring was larger. In summer, the relative
importance of the three was weak. In autumn and winter, sunshine duration became the main factor
affecting vegetation coverage in most areas.

Keywords: the Qinling-Daba Mountains; vegetation coverage; climatic factors; main control factor

1. Introduction

Terrestrial ecosystems are the basis for human survival and sustainable development.
As an important part of the terrestrial ecosystem, vegetation is a link among ecological
elements such as soil, hydrology, and atmosphere, and plays an important role in improving
regional microclimate, purifying air, containing water, maintaining soil and water, and
in the process of ecosystem evolution [1]. Vegetation change is a concrete manifestation
of the change of human living environment, and plays the role of “indicator” in the
study of global or regional environmental change. Therefore, monitoring and attribution
analysis of regional vegetation cover dynamics has become an important part of global
change research.

Climate change has a major impact on the structure and function of global ecosys-
tems [2]. Among the different climate factors, temperature and precipitation are generally
considered to be the key factors affecting vegetation growth and development. Temper-
ature is a regulator of vegetation growth, especially at high latitudes and high altitudes.
In recent decades, increased vegetation activity in the Northern Hemisphere has been
related to an increase in temperature [3–5]. This is because warmer temperatures extend
the vegetation growing season and increase the efficiency of photosynthesis and water
use for vegetation growth [6]. However, temperature can also have a negative impact
on vegetation, as exceeding the temperature required for optimal vegetation growth can
lead to inhibition of photosynthesis. At higher temperatures, nutrient consumption due to
respiration increases, thus limiting the growth of vegetation [7]. Precipitation is another
key climatic factor regulating vegetation growth, as it increases soil moisture, which is
essential to promote plant root activity and the water status of the vegetation. Several
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studies have shown that the correlation between vegetation change and precipitation in the
Northern Hemisphere has increased in recent years [8,9]. In addition, some studies have
confirmed that sunshine duration, relative humidity, and wind speed are also important
factors affecting vegetation growth. For example, results showed that the annual sunshine
hours in the Qilian Mountains had the greatest explanatory power for regional vegetation
changes from 2000 to 2020 [10]. Throughout the Tibetan Plateau region, relative humidity
and water vapor pressure play a dominant role in the variation of vegetation during the
growing season [11].

Mountains are the most active interface and the most vulnerable geographical unit
in terrestrial ecosystems and are the drivers and amplifiers of environmental change.
Therefore, mountain vegetation ecosystems are more sensitive to global changes. The
Qiling and Daba Mountains (QBM) constitute a complete geographical unit in the center of
China’s interior. Not only are they a main part of China’s north–south transition zone, but
they also provide an important ecological channel connecting China’s eastern plains and the
Qinghai Tibet Plateau. The special geographical location and complex landform conditions
render the vegetation ecosystem in the QBM highly sensitive to climate change. Monitoring
the dynamics of vegetation cover in the QBM and studying their relationship with climate
elements are crucial for assessing the environmental quality of regional ecosystems and
maintaining optimal ecosystem functions.

Research has covered the dynamic changes in vegetation [12,13] and its driving factors
in some areas of the QBM [14–18]. These studies are valuable for understanding local
vegetation-climate relationships in the QBM. However, current studies on the relationship
between vegetation pattern evolution and climatic factors in the QBM mostly focus on
two factors, temperature, and precipitation, ignoring the impact of sunshine duration on
regional vegetation change, and the relationship between them is not clear. In addition,
previous studies have usually used simple correlation analysis methods to investigate
the response of vegetation change to changes in a single climatic factor, but rarely have
multiple climatic elements been integrated to identify the main controlling climatic factors
affecting regional vegetation cover change, ignoring the spatial variation characteristics
of vegetation change response to climate change. Therefore, the purpose of the present
study was to use MODIS-NDVI and meteorological station data of long time series to
identify the characteristics of vegetation coverage distribution and spatiotemporal changes
in the QBM from 2000–2020 and explore the response mechanism to climate factor changes.
Specifically, the main contents of this study are as follows: (1) the spatiotemporal variation
characteristics of vegetation coverage and main climate elements during 2000–2020; (2) the
response mechanism of vegetation coverage change to a single climate factor; and (3) the
main climate factor changes of regional vegetation coverage during different periods.

2. Data and Methods
2.1. Study Area

The QBM is in central China between 102 ◦ E–114 ◦ E and 30 ◦ N–36 ◦ N (Figure 1a).
It stretches across Gansu, Sichuan, Shaanxi, Chongqing, Hubei, and Henan from west to
east, with a total area of approximately 3.0 × 105 km2. The altitude gradually rises from
east to west. The QBM includes three major geomorphic units: Qinling Mountains, Daba
Mountains and Hanjiang Valley [19] (Figure 1b). As the main body of the north–south tran-
sition zone in China, the climate types in the study area are diverse and exhibit significant
vertical changes. The area to the north of Qinling Mountains is mainly affected by the con-
tinental climate of the warm temperate zone, which is cool in summer and dry and cold in
winter. The area south of Qinling Mountains is mainly affected by the subtropical monsoon
climate, which is humid and has four distinct seasons. In addition, the study area includes
three types of ecological function protection areas for water conservation, water and soil
conservation, and species resources in China (Figure 1c), as well as four forestry projects:
the Three North Shelterbelt, the Middle Yellow River Shelterbelt, the Taihang Mountain
Greening Project, and the Middle and Upper Yangtze River Shelterbelt (Figure 1d).
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tain peak, city location, and rivers; (c) Ecological Function Reserve (Number 1–6 represent the
six ecological function reserves); (d) Forestry Engineering.

2.2. Data

The data sources used in this study mainly included MODIS satellite normalized differ-
ence vegetation index (MODIS-NDVI) data and meteorological station data (temperature,
precipitation, and sunshine hours).

2.2.1. NDVI

Remote sensing satellite images provide more possibilities for monitoring vegetation
changes in large-scale and long-term time series. The NDVI time series data used in this
study were obtained from MOD13Q1-NDVI data provided by the NASA Land Process
Distribution Dynamic Data Center (https://ladsweb.modaps.eosdis.nasa.gov, accessed
on 1 September 2020), namely the normalized vegetation index dataset. First, we used
the MODIS Reprojection Tool (MRT) to batch extract NDVI data and perform splicing,
resampling, projection conversion, and other processes to convert them into Tiff images.
Second, based on the ENVI platform, the maximum value composites (MVC) method
was used to obtain monthly NDVI data, and FVC data were calculated through the pixel
dichotomy model.

2.2.2. Climatic Data

The meteorological data used in this study were obtained from the Daily Data Set of
China Surface Climate Data (V3.0) provided by the China Meteorological Data Sharing
Service Network (http://cdc.cma.gov.cn, accessed on 1 September 2020). A 50 km buffer
zone was created at the boundary of the study area, and the daily average temperature
(TEM), precipitation (PRE), and sunshine duration (SSD) data of 100 meteorological stations
in the study area and the buffer zone from 2000–2020 were used (Figure 2). Based on the

https://ladsweb.modaps.eosdis.nasa.gov
http://cdc.cma.gov.cn
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observation data, ANUSPLIN software was used to conduct spatial interpolation processing
on the station data, and grid data of monthly average TEM, monthly PRE, and monthly
SSD with a spatial resolution of 250 m were obtained.
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2.3. Methods
2.3.1. Estimation of Vegetation Coverage

The normalized difference vegetation index (NDVI) is the most commonly used
vegetation index, and the pixel dichotomy model is the most common linear model used for
calculation of vegetation coverage. This model assumes that the information contained in
one pixel of a remote sensing image is composed only of vegetation and bare soil [20]. Pixel
information includes pure vegetation composition information and pure soil composition
information; therefore, the mixed pixel S can be expressed as:

S = Sv + Ss (1)

where Sv is the vegetation information in the pixel and Ss is the information of bare soil.
The fractional vegetation cover (FVC) of a pixel is the area ratio of the vegetation in the

pixel; therefore, the bare soil coverage in the pixel can be expressed as (1− FVC). Assuming
that a pixel with pure vegetation coverage is Sveg, the pixel covered by pure bare soil is
Ssoil , then:

Sv = FVC× Sveg (2)

Ss = (1− FVC)× Ssoil (3)

If Equations (2) and (3) are introduced into Equation (1), we obtain:

FVC =
S− Ssoil

Sveg − Ssoil
(4)

Therefore, the binary model expression of vegetation coverage pixel based on NDVI is
as follows:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(5)

The range of NDVI is between [−1,1], and negative values indicate that the ground
cover is the reflection of visible light by clouds, water, snow. The value 0 indicates the
presence of rocks or bare soil. Positive values indicate that there is vegetation cover and
they increase with the increase in cover. Therefore, in the calculation of FVC, we set the
pixels with NDVI less than 0 as null values. Theoretically, the value of NDVIsoil should be
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close to 0, but in fact, it fluctuates within the range of –0.1 to 0.2 owing to different research
areas or surface environments. Due to the lack of systematically measured surface data
for reference in this study, the NDVI statistical histogram is usually given a confidence
interval, and the minimum and maximum values within this interval are considered as
NDVIsoil and NDVIveg, or the NDVI value of the cumulative frequency [21]. According to
the situation of the study area, NDVI values of 5% and 95% of the cumulative frequency
were considered as NDVIsoil and NDVIveg. We assigned 0 to values less than 5%, and 1 to
values greater than 95%.

To better reflect the distribution and changes in vegetation coverage in the study area,
the vegetation coverage was divided into five grades according to the Classification and
Grading Standards for Soil Erosion and the specific situation. The results are presented
in Table 1.

Table 1. FVC Level Classification.

Class FVC Description

1 ≤0.30 Low vegetation coverage
2 (0.30, 0.45] Sub-low vegetation coverage
3 (0.45, 0.60] Middle vegetation coverage
4 (0.60, 0.75] Sub-high vegetation coverage
5 >0.75 High vegetation coverage

2.3.2. Change Trend

Change trend analysis refers to changes in a particular element of the time series (such
as FVC, TEM, PRE, and SSD) that continuously increase or decrease over a certain period
of time [22]. In the present study, the trend analysis method (i.e., least squares method) was
used to calculate the interannual change trend of climate elements and FVC at different
spatial scales, and the slope of the linear regression equation is defined as the interannual
change trend rate of elements (slope) [23]. The calculation equation for slope is as follows:

Slope =
n×∑n

i=1(i× pi)−∑n
i=1 i×∑n

i=1 pi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (6)

where n is the total year of the study period, i is the serial number of each year, pi is the pixel
value of the i-th year, and Slope is the change in slope of the data on each pixel time series.
When Slope > 0, it indicates that the pixel value increases with time; that is, it shows an
improvement trend during the study period. When Slope = 0 indicates no change, and when
slope < 0, the pixel value decreases with time; that is, it shows a degradation trend. The
greater the absolute value of Slope, the greater is the change rate of the elements. Combined
with the significant results of the t test, the change trend was divided into the following
five levels, as shown in Table 2.

Table 2. Classification of change trend level.

Class Slope p Value Description

1
>0

<0.05 Significant increase
2 >0.05 No significant increase
3

<0
<0.05 Significant decrease

4 >0.05 No significant decrease
5 =0 - No changed

2.3.3. Correlation Analysis

To analyze the relationship between FVC and climate elements, it is necessary to
establish a simple correlation coefficient between them on a pixel scale. This correlation
coefficient, also known as the Pearson correlation coefficient, is widely used to measure
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the correlation between two variables, and its value is between −1 and 1. The calculation
equation is as follows:

R =
∑n

i=1
[(

xi − X
)(

yi −Y
)]√

∑n
i=1
(
xi − X

)2
∑n

i=1
(
yi −Y

)2
(7)

where R is the correlation coefficient; n is the number of samples; xi, yi are the variables
to be evaluated; and X and Y are, respectively, the mean of xi and yi. If R > 0, there is a
positive correlation between the two; otherwise, it indicates a negative correlation. The
closer the absolute value of R is to 1, the closer is the correlation between x and y; the closer
the absolute value of R is to 0, the less close is the correlation between them. The correlation
level can be classified into five types (Table 3).

Table 3. Classification of correlation level.

Class R p Value Description

1
>0

<0.05 Significant positive correlation
2 >0.05 No significant positive correlation
3

<0
<0.05 Significant negative correlation

4 >0.05 No significant negative correlation
5 =0 - No correlation

2.3.4. Relative Importance

When analyzing the impact of multiple elements on a single element, we must pay
attention to the relative importance of each element. The calculation of relative importance
was based on standardized coefficients or variance interpretation. Based on raster data
from a long time series, the present study uses a multiple regression analysis method. First,
a multiple linear regression model between FVC and climate factors was developed to
explain the influence of multiple climate factors changes on FVC using TEM, PRE, and SSD
as independent variables and FVC as a dependent variable.

The equation used was as follows:

FVC = A× TEM + B× PRE + C× SSD + d (8)

where A, B and C are regression coefficients of the three climatic elements, and d is
a constant.

Secondly, in order to better identify the most important climate factors affecting the
FVC variation in each pixel, we standardized the coefficients of the multiple regression
model. The maximum absolute value of the standardized regression coefficient is consid-
ered as the most important variable. The formula for standardization was as follows:

A′ = A× std(TEM)
std(FVC)

B′ = B× std(PRE)
std(FVC)

C′ = C× std(SSD)
std(FVC)

(9)

where A′, B′, C′ represent the normalization factors of TEM, PRE, and SSD.

3. Results
3.1. Spatiotemporal Changes of FVC
3.1.1. Time Variation

Figure 3a shows the overall trend of annual average FVC in the QBM from 2000–2020.
In the past 21 years, the vegetation coverage of the QBM improved continuously, and
increased significantly at a rate of 0.058/10a (p < 0.01). From 2011–2020, the annual growth
rate of FVC was faster than that of the previous 11 years.
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The growth of surface vegetation generally exhibits a certain periodicity (Figure 3b,e).
The growth rate in summer was the slowest, but the fastest in winter, and the growth rate
of the FVC average value in spring was faster than that in autumn.

3.1.2. Spatial Pattern Change

In terms of spatial distribution, the annual average FVC value of the QBM was higher
in the south, lower in the north, and lower in the east and west than in the middle (Figure 4a).
Most areas are at a sub-high or high vegetation coverage level (Figure 4b). The high-value
(>0.75) was mainly distributed in Daba Mountains and Qinling Mountains in Shaanxi,
whereas the low-value (<0.30) area is very small and scattered in northwest Sichuan. The
average values of FVC in Chongqing, Hubei, and Shaanxi were larger (>0.70), and in
Henan and Gansu they were the smallest. This shows that the vegetation coverage in most
areas has been in a good state over the past 21 years, especially in Daba Mountains and
surrounding areas.

Spatially, the annual change trend rate generally showed increasing distribution
characteristics from southwest to northeast (Figure 4c). The vegetation coverage in most
regions of the QBM has significantly improved over the past 21 years, and the regions
with faster growth rate (>0.06/10a) were concentrated in Shaanxi, Gansu, and Chongqing
(Table 4). From the perspective of space, these areas have a good basis for vegetation
coverage and are also key implementation areas for forestry projects, such as returning
farmland to forests and grasslands. Less than 3% of the regional average annual FVC
showed a downward trend, scattered across in Chengdu, Aba, Hanzhong, Shiyan, and
Luoyang. The growth and development of vegetation in these areas may be affected by
altitude or population distribution.

The spatial pattern of the FVC average in each season was similar to the annual average
(Figure 5a); however, there were regional differences in the FVC trend in different seasons
(Figure 5c). The average FVC in spring at the sub-high vegetation coverage level (Figure 5b)
and the vegetation cover were significantly improved. The significantly improved area was
distributed within Shaanxi, especially in Ankang and Shangluo; the decrease trends were
scattered across Tianshui and Hanzhong. Spatially, the trend rate showed a distribution
feature of increasing from both sides to the central region. The average change trend rate of
each region was between 0.060/10a and 0.087/10a, with Chongqing and Shaanxi being the
fastest and Sichuan the slowest.
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Figure 4. Changes of FVC spatial pattern in the QBM from 2000–2020. (a) Average value; (b) FVC
level; (c) Change trend rate; (d) Significance level.

Table 4. Annual average vegetation coverage and trend rate in the QBM.

FVC Slope/10a

Year Spring Summer Autumn Winter Year Spring Summer Autumn Winter

QB 0.67 0.64 0.91 0.73 0.42 0.058 0.072 0.036 0.051 0.073
SC 0.69 0.63 0.91 0.74 0.48 0.050 0.060 0.019 0.040 0.075
SX 0.72 0.71 0.95 0.78 0.44 0.060 0.081 0.031 0.045 0.081
HB 0.73 0.72 0.94 0.78 0.47 0.056 0.070 0.026 0.051 0.074
HN 0.59 0.58 0.85 0.64 0.29 0.057 0.073 0.043 0.058 0.057
GS 0.58 0.52 0.86 0.64 0.32 0.065 0.070 0.065 0.065 0.058
CQ 0.76 0.73 0.94 0.82 0.55 0.067 0.087 0.028 0.055 0.095

(SC, SX, HB, HN, GS and CQ are abbreviation for Sichuan, Shaanxi, Hubei, Hunan, Gansu, and Chongqing
provinces, respectively).

Most areas in summer had high vegetation coverage. A small number of low-value
areas were distributed in Aba, Sichuan. In 21 years, the area with a positive trend rate of
average FVC change in summer accounted for the least (84.93%), and the faster increase
rate were mainly in the east and west of the Qinling Mountains. Compared with other
seasons, the area proportion of FVC showing a downward trend in summer was larger
(10.62%) and was mainly distributed in western Sichuan and southern Shaanxi, but the
significance of this decline in most regions was weak. The average change trend rate of
FVC in each region in summer was between 0.019/10a and 0.065/10a, and the fastest and
slowest were Gansu and Sichuan, respectively.

The spatial distribution of FVC in autumn was consistent with that in spring, and it
was also at the sub-high vegetation coverage level overall. Approximately 7% of regions
with a decreasing trend were concentrated in Deyang and Aba. The regional proportion of
FVC showing a very significant upward trend was 62.53%, mainly distributed in Gansu
and eastern regions. The average change trend rate of regional FVC was within the
range of 0.040/10a–0.065/10a, and the fastest and slowest rates remained in Gansu and
Sichuan, respectively.
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The average FVC value in winter was the lowest, which is generally at the sub-low
vegetation coverage level. The low-value areas were concentrated in the west and northeast,
while the high-value areas were few and scattered around Daba Mountains. The change
trend rate of FVC in winter is close to that in spring; Chongqing and Henan had the fastest
and slowest values, respectively. In addition, the area proportion of FVC increasing or
decreasing was also similar to that in spring. The difference was that in winter, the FVC
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in the western region showed a downward trend, whereas that in Hanzhong showed an
upward trend.

In general, vegetation coverage in the QBM was low only in winter and high in the
other seasons. During the 21 years, the vegetation coverage in most areas improved in
each season, but the improvement rate had a certain heterogeneity. The seasonal average
FVC change trend rate in Sichuan, Shaanxi, Hubei, and Chongqing decreased and then
increased. The minimum trend rate appeared in summer and, the maximum in winter;
while in spring, it was faster than that in autumn. This trend was contrary to that of the
average FVC in each season. In contrast, the trend rate of seasonal average FVC in Henan
and Gansu showed a trend to “decrease-increase-decrease.” The minimum value appeared
in summer, while the maximum value occurred in spring.

3.2. Spatiotemporal Changes of Climate Factors
3.2.1. Time Variation

In the last 21 years, the annual average TEM in the QBM has been 10.12 ◦C, rising
at a rate of 0.175 ◦C/10a (Figure 6a). However, since 2016, the average annual TEM
has decreased by approximately 0.3 ◦C. This indicates that during the study period, the
QBM also experienced a “warming” trend, especially in the past 10 years, when the TEM
increased significantly; but in the past five years, “cooling” was observed. The growth rate
of the average TEM in summer and autumn was higher, whereas that in winter was the
slowest and showed a weak downward trend. The growth rate/deceleration was fastest in
autumn/winter before 2010, and faster in winter and spring after 2010 (Figure 7a).
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Figure 6b shows that the annual PRE has increased at a rate of 45.46 mm/10a in the
past 21 years. Similar to the annual average TEM, the average value and increase rate of
annual PRE before 2010 were smaller than those after 2010. The PRE in summer was the
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largest, slightly lower in spring than in autumn, and the lowest in winter (Figure 7b). In all
four seasons, the growth rate was fastest in spring, particularly before 2010; the next was
autumn and summer, and their rate of change was faster after 2010. Generally, there was a
slight downward trend in winter.

In contrast to the TEM and PRE, the annual SSD showed a gradual downward trend
at a rate of 66.89 h/10a during the study period (Figure 6c), and the decline rate in the first
11 years was 2.8 times that in the next 10 years. According to the seasonal average, the SSD
in summer and spring was longer, followed by winter and autumn. Seasonally, spring and
autumn showed a decreasing trend, summer and winter showed an increasing trend, and
the fall/rise speed was faster in autumn/winter. However, it was found that the rate of
decline in spring and summer was faster in 2000–2010, being fastest in autumn, whereas it
was the fastest in winter in 2011–2020.

3.2.2. Spatial Pattern Change

From 2000–2020, the annual average TEM of the QBM was generally distributed in
the zonal direction, that is, the spatial distribution characteristics of gradual increase from
northwest to southeast (Figure 8(a1)). The low-value was concentrated in the western
Songpan Plateau, whereas the high-value was mainly distributed in the eastern plain.
Among them, Hubei and Henan had the highest, Gansu had the lowest (Table 5). Spatially,
the heating rate generally increased from the central regions to both sides (Figure 8(a2)).
The cooling areas were mainly distributed in the south, Guangyuan and Yichang, but the
significance was weak. The regions that warmed faster (>0.60 ◦C/10a) and passes the
significance level test were located mainly in Gannan, Luoyang, and Zhengzhou. In all
regions, the fastest average warming rate was in Henan, and the slowest was in Shaanxi.
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Table 5. Annual average and change trend rate of climate factors in the QBM.

Average Value Slope/10a

TEM/◦C PRE/mm SSD/h TEM/◦C PRE/mm SSD/h

QB 10.12 863.26 1812.51 0.175 45.462 −66.885
SC 7.50 925.20 1702.18 0.139 103.575 −48.757
SX 11.01 916.69 1779.01 0.118 39.114 −56.645
HB 13.54 976.99 1707.04 0.150 9.929 −101.508
HN 13.11 754.91 1949.17 0.307 −36.342 −87.147
GS 6.81 626.26 2028.31 0.208 81.862 −124.771
CQ 11.97 1255.14 1526.85 0.292 1.232 −83.292

Figure 8(b1) shows that the annual PRE was generally characterized by a gradual
decrease in spatial distribution from southeast to northwest. The average annual PRE in
Chongqing was the largest, whereas that in Gansu was the smallest. The annual PRE change
rate of increase is generally characterized by its distribution increasing from east to west
(Figure 8(b2)). In the past 21 years, the regions with reduced PRE were concentrated around
the mountains of western Henan and Daba Mountains but did not pass the significance
test. The faster (>160 mm/10a) increase trend rate was mainly distributed in the southwest,
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such as in Maoxian, Sichuan. The regional average annual PRE growth rate was the largest
in Sichuan and the smallest in Henan.

The spatial distribution of annual SSD generally increases with increasing latitude,
that is, it is low in the south and high in the north. High values of annual SSD are mainly
distributed in the northwest, whereas the low-value area was concentrated in the northern
edge of Sichuan Basin. Gansu and Henan have the largest value, and Chongqing has
the smallest value. Figure 8(c1) shows that the annual SSD in most regions is decreasing.
The increasing trend was concentrated in the northern edge of Sichuan Basin, while the
decreasing trend was in the northwest, including Dingxi, Gannan and Linxia.

In summary, the west of the QBM was cold and dry with ample sunshine. The south
was warm and humid, but the SSD was short. Most areas in the north were warm and dry
with long SSD. However, these characteristics have changed over the past 21 years. The
western region is gradually warming and humidifying, whereas the SSD is significantly
reduced. In the southern region, TEM and humidity have decreased, but SSD has begun to
increase. TEM, PRE, and SSD in the north show a weak increase/decrease trend.

In the past 21 years, the spatial distribution characteristics of the average TEM in each
season showed a gradual increase from west to east. The spatial difference of average TEM
in summer was the largest, the maximum value between east and west was more than
25 ◦C (Figure 9a). The annual average TEM in each season was 10.63 ◦C, 19.49 ◦C, 10.43 ◦C
and −0.05 ◦C in spring, summer, autumn, and winter, respectively (Table 6). Gansu had
the lowest average TEM in spring, autumn and winter, and Shaanxi had the lowest average
TEM in summer, whereas Henan had the highest in spring and summer, and Hubei and
Chongqing had the highest in autumn and winter.
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Table 6. Seasonal average and change trend rate of TEM in the QBM.

Average Value Slope (◦C/10a)

Spring Summer Autumn Winter Spring Summer Autumn Winter

TEM

QB 10.63 19.49 10.43 −0.05 0.15 0.22 0.24 −0.07
SC 7.75 15.55 8.04 −1.32 0.17 0.26 0.16 −0.10
SX 11.62 20.74 11.12 0.64 0.07 0.20 0.25 −0.25
HB 13.87 23.32 14.06 2.98 −0.04 0.23 0.23 −0.10
HN 14.03 23.82 13.33 1.30 0.18 0.45 0.42 0.05
GS 7.49 16.07 7.03 −3.35 0.29 0.11 0.30 −0.14
CQ 11.95 20.79 12.59 2.72 0.27 0.47 0.23 −0.09

The variation in average TEM in each season exhibited spatial heterogeneity. Most
areas showed a warming trend in all seasons except for winter (Figure 9b). The TEM
dropped in spring, mainly in the junction of Gansu, Shaanxi, and Sichuan, and south of
the Han River. In summer, the cooling area was still concentrated at the junction of Gansu,
Shaanxi, and Sichuan, the trend rate changed from negative to positive, and the diffusion
increased from this central area. The autumn cooling areas were concentrated in the south,
especially in Sichuan. The average TEM in winter showed a downward trend overall, and
the warming trend was mainly to the east and west.

From a regional perspective, the seasonal average TEM in Sichuan, Henan, Hubei,
and Chongqing, as for FVC, initially experienced an increasing but then decreased. The
maximum and minimum trend rates occurred in summer and winter, respectively. Al-
though Shaanxi initially increased and then decreased, the maximum trend occurred in
autumn. The change in trend rate in Gansu alternated from a change of decrease to increase
to decrease, with the maximum appearing in autumn and the minimum in winter.

The seasonal PRE in the QBM generally shows a decreasing spatial distribution from
southeast to northwest (Figure 10a). The PRE values were the most abundant in summer
and the spatial difference was the largest, reaching more than 400 mm. In contrast, the
PRE was rare in winter, and the spatial difference was the least. The distribution of PRE
in spring and autumn was similar in the western region, but in the central and eastern
regions, it was lower in spring than in autumn. Chongqing had the largest regional PRE in
each season, Henan had the lowest PRE in spring, and Gansu had the lowest PRE in other
seasons (Table 7).

Figure 10b shows that the trend rate of the PRE in spring was positive and gradually
increased from four sides to the central region. The regions with increased and decreased
summer PRE presented a spatial pattern of opposite distributions. In the area west of
Shangluo-Ankang-Bazhong, the summer PRE showed an increasing trend, and the growth
rate in the south was higher than that in the north. The area to the east showed a decreasing
trend, and the rate of decrease shrank from the center to the northwest and southeast.
In autumn, the PRE shows an increasing trend in most areas. The downward trend was
mainly distributed in Gansu, central Sichuan, western Shaanxi, and central Henan. The
rate of change of winter PRE gradually decreased from northwest to southeast. Only the
northwest region exhibited a weak increasing trend.

From a regional perspective, the trend rate of seasonal PRE change in Shaanxi, Hubei,
Henan, and Chongqing was characterized by a decrease-increase-decrease. The minimum
value appeared in summer, and the maximum value in autumn. Sichuan and Gansu were
characterized by first increasing and then decreasing, with the maximum in summer and
the minimum in winter.

In the past 21 years, the SSD in the QBM has been long in spring and summer; and
short in autumn and winter (Table 8). Spatially, the change along the latitude generally
decreased from north to south (Figure 11a). The spatial difference was the largest in winter,
reaching more than 450 h, and the smallest in summer. In terms of different regions,
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in Sichuan and Chongqing, SSD was relatively short, and in Henan and Gansu it was
relatively long.
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Table 7. Seasonal average and change trend rate of PRE in the QBM.

Average Value Slope (◦C/10a)

Spring Summer Autumn Winter Spring Summer Autumn Winter

PRE

QB 191.28 410.50 225.31 34.49 25.16 7.14 15.51 −3.33
SC 215.17 446.09 232.55 27.61 22.72 53.23 14.76 −1.89
SX 185.44 436.14 264.00 33.56 29.65 1.62 7.30 −4.89
HB 239.92 441.49 232.29 58.01 25.88 −36.50 19.54 −11.19
HN 140.73 382.76 192.44 39.03 22.29 −63.85 2.75 −6.37
GS 143.21 304.00 158.43 16.85 30.31 39.94 −1.32 −0.44
CQ 311.38 552.02 331.33 60.67 19.32 −39.93 33.06 −7.85
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Table 8. Seasonal average and change trend rate of SSD in the QBM.

Average Value Slope (◦C/10a)

Spring Summer Autumn Winter Spring Summer Autumn Winter

SSD

QB 515.66 520.55 375.43 402.28 −14.81 0.72 −44.85 5.96
SC 465.32 461.86 364.47 413.70 −5.76 10.63 −32.48 12.22
SX 519.31 540.01 347.59 371.90 −20.57 20.48 −40.60 24.90
HB 481.35 520.23 368.53 337.14 −30.93 4.22 −51.62 8.97
HN 583.11 530.99 418.72 417.47 −42.40 9.95 −51.85 23.49
GS 568.03 549.34 414.26 498.82 −16.88 −36.82 −49.52 −2.27
CQ 419.90 514.51 325.74 271.79 −19.72 13.81 −47.41 13.48
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The change trend rate of SSD in the four seasons showed clear spatial differences. The
SSD in spring generally showed a decreasing trend, and the trend rate decreased from the
center to both sides. A small increase was mainly in the south at the edge of Sichuan Basin
(Figure 11b). In summer, decreases and increases in SSD were distributed interactively; and
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decrease were mainly on the east and west sides; and increases were in the central area,
Qinling Mountains in Shaanxi, and Daba Mountain area, which exhibited the fastest growth
rate. Similar to spring, SSD in autumn also decreased. The regions with the fastest decline
rate were mainly in northern Gansu, central Henan, and the areas around Shennongjia in
Hubei. In winter, the SSD in most areas increased and the growth rate in the center was the
fastest. The areas with reduced SSD were concentrated in the west.

In Sichuan, Shaanxi, Hubei, Henan, and Chongqing, the rate of change of SSD in
each season was consistent, showing a “N” pattern, with the maximum in winter and the
minimum in autumn. The rate of change showed a “V” pattern, only in Gansu, with the
maximum appearing in winter and the minimum in autumn.

3.3. Response of FVC Change to Climatic Factors
3.3.1. Response of FVC Change to a Single Climate Factor

The correlation coefficients between the annual, and seasonal average FVC and average
TEM, PRE, and SSD were calculated (Table 9). Overall, from 2000–2020, the annual average
FVC of the QBM was positively correlated with TEM and PRE but negatively correlated
with SSD, with the correlation with TEM being stronger than those with PRE and SSD.
From the perspective of each season, FVC was positively correlated with average TEM,
with the strongest correlation in spring. The FVC was positively correlated with PRE in
all seasons except winter. In contrast to PRE, only SSD in winter had a weak positive
correlation with FVC and the other seasons had a negative correlation, with the maximum
value appearing in autumn. The above results show that the vegetation coverage in the
QBM is greatly affected by TEM, whereas the influence of PRE and SSD is relatively weak.
However, in spring, the impact of PRE may be more obvious than that of the average TEM,
whereas in autumn and winter, it is more affected by SSD.

Table 9. Correlation coefficient between FVC and climatic factors in the QBM.

QB SC SX HB HN GS CQ

Year
TEM 0.26 0.22 0.24 0.29 0.25 0.32 0.41
PRE 0.18 0.25 0.09 0.10 −0.05 0.44 0.09
SSD −0.20 −0.01 −0.05 −0.33 −0.36 −0.39 −0.23

Spring
TEM 0.22 0.25 0.21 0.10 0.07 0.36 0.37
PRE 0.35 0.26 0.35 0.37 0.27 0.50 0.27
SSD −0.10 0.04 −0.03 −0.20 −0.34 −0.08 −0.10

Summer
TEM 0.04 0.03 0.08 0.06 0.14 −0.06 0.09
PRE 0.05 0.06 −0.02 −0.03 −0.08 0.29 0.00
SSD −0.05 0.13 0.01 −0.08 −0.06 −0.26 −0.03

Autumn
TEM 0.19 0.18 0.22 0.17 0.05 0.25 0.22
PRE 0.09 0.09 0.03 0.09 0.16 0.14 0.21
SSD −0.24 −0.14 −0.13 −0.30 −0.29 −0.38 −0.33

Winter
TEM 0.09 0.06 0.03 0.08 0.23 0.13 0.11
PRE −0.09 −0.11 −0.11 −0.01 0.00 −0.16 0.05
SSD 0.15 0.21 0.20 0.05 0.07 0.13 0.26

Figure 12 shows the spatial distribution of the correlation between the annual average
FVC and the annual average TEM, PRE, and SSD in the QBM from 2000–2020. Over the
21 years, there was a positive correlation between the annual average FVC and the annual
average TEM in nearly 90% of the regions (Table 10), especially in the south of Gansu
and northeast of Henan. A generally weak negative correlation was mostly observed in
the southern region, Guangyuan; however, the negative correlation was generally weak
(Figure 12a). This shows that the increase in TEM in most parts of the study area over
the past 21 years was conducive to the growth and development of vegetation, thereby
promoting an improvement in regional vegetation coverage.
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Table 10. Area proportion of correlation level between FVC and climate factors/%.

1 2 3 4 5

Significant Positive Correlation No significant
Positive Correlation

Significant Negative
Correlation

No significant
Negative Correlation No Correlation

TEM 21.10 68.95 0.20 9.02 0.73
PRE 18.55 55.69 0.27 24.75 0.73
SSD 0.26 25.32 20.57 53.13 0.73

Overall (Figure 12b), the annual average FVC was positively correlated with the annual
PRE, mainly in the western region. The strongest positive correlation was in southern
Gansu and western Sichuan. Approximately 26% of the regions have a negative correlation
between the two, which was mainly distributed in the eastern region, particularly in
Nanyang, Henan. This indicates that in the western region the increase in PRE over
21 years has improved regional vegetation coverage, whereas in the east, the reduction in
PRE has increased vegetation coverage.

In the last 21 years, 73.70% of the region’s annual average FVC had a significant
negative correlation with the annual SSD (Figure 12c), which was concentrated in the
northwest and east. In contrast, the proportion of positive correlation between them was
mainly in the central region, but this correlation is weak. This shows that in the 21 years, the
increase in annual SSD has played a weak role in promoting the improvement of regional
vegetation coverage only in the central region. The reduction in annual SSD in other regions
has greatly improved regional vegetation coverage.

For more than 80% of the regions, there was a positive correlation between the average
FVC and the average TEM in the same season in spring and autumn (Table 11), mainly in
the north and west (Figure 13). The negative correlation was mostly to the east of Ankang,
and in autumn was mainly at the edge of the Sichuan Basin and around the mountains in
western Henan. In summer and winter, the proportion of FVC positively correlated with
the seasonal average TEM was in the range of 60%–70%, but this correlation was weak.
In summer, the positive correlation area was concentrated east of Hanzhong, while the
negative correlation area was in the south of Gansu. In winter, the positive correlation
region was mainly in the northwest and northeast, while the negative correlation was in
the central region. In spring, summer, and autumn, the increase in regional vegetation
coverage was promoted by an increase in TEM in the concurrent season. A decrease in
the average TEM in the concurrent season was more conducive to the improvement of
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vegetation coverage in only a few areas. In contrast, in winter, although the TEM in most
areas dropped, vegetation coverage still improved.

Table 11. Area proportion of correlation level between FVC and TEM/%.

1 2 3 4 5

Significant Positive Correlation No significant
Positive Correlation

Significant Negative
Correlation

No significant
Negative Correlation No Correlation

Spring 17.75 64.88 0.19 15.80 1.38
Summer 1.52 59.48 1.54 37.24 0.22
Autumn 10.88 71.42 0.27 16.97 0.45
Winter 3.66 62.41 0.14 31.50 2.29
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Figure 14 shows that from spring to winter, the proportion of positive correlation area
between seasonal average FVC and PRE in the concurrent season decreased, indicating
that the negative correlation between them gradually increased. In spring, regions with
a negative correlation accounted for less than 6% (Table 12). In summer and autumn, the
proportion of the area with a positive correlation between FVC and PRE was 55%–68%, but
the correlation was slightly weak. In winter, the area of negative correlation was twice that
of positive correlation, and it was strong in Tianshui, Baoji, and Mianyang. For the western
region, regardless of the season, an increase in PRE promoted the improvement of regional
vegetation coverage. In most areas, the winter PRE decreased, but the vegetation coverage
in the current season continued to increase, indicating that the reduction in winter PRE
may be beneficial to the growth of vegetation.

From the correlation between FVC and SSD in each season, it was found that the
area with negative correlation was largest in autumn, followed by spring and summer,
and the area with positive correlation was largest in winter (Table 13). In spring, the
negative correlation was mostly in the east, particularly in Henan (Figure 15). The areas
with strong negative correlation in summer were concentrated in northwest Gansu. In
autumn, the negative correlation area was mainly in the east and west, and the negative
correlation was strong. The proportion of the negative correlation area in winter was less
than 30%. Although it was distributed in the west and east, it showed a weak negative
correlation. Combined with the change trend of seasonal SSD, it was found that there was
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a decreasing trend in the negative correlation regions, indicating that for most regions, its
shortening promotes regional vegetation coverage. However, for the central and Daba
Mountain regions, the increase in SSD in winter was more beneficial to the increase in
vegetation coverage.

Figure 14. Spatial distribution of the correlation between seasonal FVC and PRE in the QBM from
2000–2020.

Table 12. Area proportion of correlation level between FVC and PRE/%.

1 2 3 4 5

Significant Positive Correlation No significant
Positive Correlation

Significant Negative
Correlation

No significant
Negative Correlation No Correlation

Spring 34.84 59.76 0.05 3.96 1.38
Summer 8.84 47.02 2.31 41.61 0.22
Autumn 6.22 60.89 1.13 31.32 0.45
Winter 1.01 32.19 4.62 59.89 2.29

Table 13. Area proportion of correlation level between FVC and SSD/%.

1 2 3 4 5

Significant Positive Correlation No significant
Positive Correlation

Significant Negative
Correlation

No significant
Negative Correlation No Correlation

Spring 0.45 34.51 7.11 56.54 1.38
Summer 2.70 41.98 7.93 47.15 0.23
Autumn 0.41 17.77 23.69 57.67 0.47
Winter 11.08 62.09 0.39 24.16 2.29

3.3.2. Main Climate Factors of FVC Change

From the above analysis, it can be seen that there are obvious differences in the
response of FVC in different regions to changes in a single climate factor. Therefore, a
multiple regression analysis method was adopted to calculate the relative importance
of each factor to FVC change pixel-by-pixel. In the 21 years in the QBM, the relative
importance of the annual average TEM (0.33) to FVC was greater than that of PRE (0.17)
and SSD (0.20) (Table 14) However, there were clear regional differences in the spatial
distribution of the dominant factors. The areas dominated by TEM are mainly in the central
and eastern regions. The areas mainly controlled by PRE change are in western Sichuan,
southern Gansu and western Shaanxi, whereas the northwest and east were most affected
by SSD (Figure 16a).
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Table 14. Relative importance index of climate factors in the QBM.

QB SC SX HB HN GS CQ

Year
TEM 0.33 0.21 0.30 0.45 0.37 0.36 0.49
PRE 0.17 0.27 0.17 0.05 −0.01 0.26 0.18
SSD −0.20 0.07 −0.05 −0.46 −0.46 −0.31 −0.20

Spring
TEM 0.27 0.22 0.24 0.33 0.36 0.27 0.42
PRE 0.32 0.27 0.38 0.37 0.16 0.40 0.22
SSD −0.09 0.06 0.03 −0.22 −0.44 −0.06 −0.16

Summer
TEM 0.10 0.00 0.11 0.18 0.29 0.03 0.18
PRE 0.04 0.08 0.00 −0.06 −0.08 0.20 0.05
SSD −0.09 0.15 −0.05 −0.24 −0.28 −0.19 −0.10

Autumn
TEM 0.18 0.17 0.23 0.15 0.07 0.20 0.18
PRE −0.08 −0.04 −0.14 −0.05 0.02 −0.12 0.07
SSD −0.26 −0.13 −0.19 −0.29 −0.28 −0.41 −0.26

Winter
TEM 0.06 0.02 −0.01 0.07 0.26 0.06 0.11
PRE −0.09 −0.10 −0.12 −0.02 0.03 −0.14 −0.11
SSD 0.11 0.22 0.19 0.04 −0.04 0.03 0.32

In combination with various regions, Sichuan has the largest relative importance and
area proportion of the PRE (Figure 17a), mainly in western Sichuan. Although Shaanxi and
Chongqing were more affected by TEM, Hanzhong was mainly controlled by PRE. In Hubei
and Henan, the difference between the relative importance index of SSD and the average
TEM was small, indicating that the regional annual FVC change was a result of their joint
influence. However, in Shiyan and Zhengzhou, the change in FVC was mainly controlled
by TEM. In contrast to other regions, the relative importance index of the three climate
factors in Gansu was basically the same, which indicates that the annual FVC changes in
this region were affected by the three factors together. The south was mainly controlled
by PRE, the central and eastern regions are more affected by TEM, and the rest are more
affected by SSD.
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Figure 16. Main climate factors of average FVC in the QBM. (a) Year; (b) Spring; (c) Summer;
(d) Autumn; (e) Winter.
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In the past 21 years, the climatic factors leading to FVC changes in the QBM have
changed significantly during different seasons. In spring, the QBM was more affected
by TEM and PRE (Figure 17b). The former mainly affects the high-altitude areas at the
edge, while the latter mainly affects the middle and low-altitude areas in the central and
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west (Figure 16b). In summer, although the difference in their relative importance index
was small, the area dominated by SSD was the largest proportionally (Figure 17c). In
autumn, the relative importance of TEM and SSD was greater. The former was mainly
in the east of Shaanxi, whereas the latter is distributed in the east and west (Figure 16d).
It was most affected by SSD in winter, which was concentrated in the south of Qinling
Mountains (Figure 16e).

In addition, the changes in dominant climate factors in different seasons in different
regions were also obvious. In spring, Sichuan, Gansu, Shaanxi, and Hubei were affected
by TEM and PRE. The importance index of SSD in Henan was the largest, and the TEM in
Chongqing was the largest.

In summer, the relative importance of TEM and PRE weakened, while the influence of
SSD generally increased. In Sichuan and Gansu, SSD and PRE had a relatively significant
influence on FVC changes. Henan and Hubei were affected by SSD and TEM. Chongqing
was mainly affected by TEM changes. Although the relative importance of TEM in Shaanxi
was the largest, the area dominated by PRE was larger than that dominated by TEM. The
change in FVC during the summer in this area may be the result of their joint influence.

In autumn, the relative importance of TEM and SSD on FVC changes in most regions
increased, SSD more than TEM, but the impact of PRE remained weak. In Sichuan, the
relative contribution rate of TEM was greater than that of SSD and PRE, but the areas
dominated by the latter two were greater than those of TEM, indicating that the region is
jointly influenced by the three factors. In Shaanxi, the relative contribution rate of TEM
was the largest, but the area under the main control of SSD was the largest, indicating that
the region was jointly affected by TEM and SSD. In Hubei, Henan, Gansu and Chongqing,
the change of FVC in autumn in these regions was mainly affected by SSD.

In winter, the relative importance of TEM decreased, the importance of PRE in some
areas increased, and SSD increased and decreased. In Sichuan and Shaanxi, FVC in winter
was most influenced by SSD, mainly in the north of the Sichuan Basin and Hanshui Valley,
whereas other areas were significantly affected by PRE. In Henan, Chongqing, and Gansu,
the most important factors were TEM, SSD, and PRE. Although the relative importance of
the winter TEM in Hubei was the greatest, the main area affected by PRE was greater. This
shows that the FVC changes in winter in this region were the result of the joint action of
TEM and PRE.

4. Discussion

Vegetation activity on a global scale is showing an upward trend [24]. Many studies
have shown that in the past 20 years, China’s vegetation has been restored, and vegetation
coverage has shown a significant increase. However, the average vegetation coverage and
its dynamic change trends show obvious spatial heterogeneity. In general, the vegetation
coverage in southeast China is higher than that in northwest China. At the same time, the
growth trends of the central, eastern, and southwest regions are significant (such as Shaanxi,
Gansu, Chongqing, and surrounding regions). This may be related to changes in climate
conditions and the adjustment of human activities, such as ecological restoration [25,26].
However, for regions such as the southeast of the Qinghai Tibet Plateau and the northwest
Sichuan Plateau, as well as large urban agglomerations with developed economies, because
of the terrain, hydrothermal conditions, urban development, and population expansion,
the vegetation has showed a significant degradation trend [27–29]. Based on MODWAS
NDVI data, this study analyzed the dynamic changes in FVC in the QBM from 2000–2020.
The results showed that vegetation coverage in the QBM was relatively high and showed
a significant increasing trend over this period. The regions with rapid growth rates are
mainly in the east of Shaanxi, south of Gansu, central Sichuan, and Chongqing. There are a
few scattered areas with degraded vegetation in Chengdu and Aba in Sichuan, Hanzhong
in Shaanxi, Shiyan in Hubei, Luoyang in Henan, and other urban areas. This result is
consistent with the above conclusions.
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Changes of climate conditions are widely considered important abiotic factors in the
spatial distribution and dynamic change of vegetation [30–32]. In this study, the annual
average TEM was the main driving factor for changes in vegetation coverage in the QBM.
The annual average FVC value increased with an increase in annual average TEM. There
was a positive and negative correlation between annual PRE and annual SSD,respectively,
but these were relatively weak. The area mainly controlled by TEM is in the southern
foothills of Qinling and Daba Mountains, and the area mainly controlled by PRE is in the
western high-altitude area. The areas dominated by SSD are in the eastern, northwestern,
and northern edges of the Sichuan Basin. Previous studies have shown that before reaching
a threshold, an increase in TEM promotes photosynthesis, prolonging the growth cycle
of vegetation, and thus promoting vegetation growth [33,34]. Gao [35] confirmed the
reliability of these results. His research results show that in southeast and southwest
China, dynamic change in vegetation is most significantly controlled by TEM. These areas
have abundant rainfall, short SSD,and relatively high soil moisture content; therefore, the
relationship between vegetation activity and TEM was closer. However, for the northern
and northwestern regions of China, changes in vegetation cover are most closely related
to PRE and SSD [36–39]. Most of these areas are arid and semi-arid, with long sunshine
duration and vegetation growth limited by available moisture. Therefore, an increase in
PRE and decrease in SSD can offset the negative impact of TEM rise on vegetation growth,
and increase regional vegetation coverage by promoting vegetation growth. However,
the results of Kong’s study in the Northern Hemisphere for nearly 30 years showed that
temperature is a major factor in vegetation greening at high latitudes, especially spring and
autumn temperature in North America and Siberia. Solar radiation corresponds well with
vegetation trends in northern North America and eastern China [40]. The differences in
these results may be related to the differences in the study period and region.

However, under different space-time scales, the main driving factors of changes in
vegetation coverage are also different, which is often ignored. Relevant research has shown
that dynamic change in vegetation in most regions of China gives the strongest response to
spring TEM, whereas its positive and negative correlations with PRE vary from place to
place [41,42]. The present study found that, in the QBM, the positive correlation between
changes in vegetation coverage in spring and PRE was stronger, the relative impact of the
three climate factors was smaller in summer, and the impact of SSD was the greatest in
autumn and winter. Qi [18] also confirmed the reliability of the results in Qinling area. The
results showed that the vegetation growth in the north and south of Qinling Mountains
was significantly affected by changes in dry and wet conditions in spring and summer, and
that the moisture in spring could promote vegetation growth.

Changes in vegetation coverage are the result of the comprehensive action of climatic
and non-climatic factors. In the present study, only climatic factors were considered when
focusing on the factors driving changes in vegetation coverage in the QBM. Many other
environmental factors also affect the spatial heterogeneity of vegetation dynamic activities,
including terrain, soil conditions, and CO2 concentration. For example, Liu [43] showed
that vegetation coverage in the karst region in southwest China is greatly affected by
elevation and slope, and vegetation degradation mainly occurs on low-altitude gentle
slopes. Shang [44] showed that different soil types could cause differences in vegetation
types and attributes. Piao [45] showed that the increase in atmospheric CO2 concentration
and nitrogen deposition are the most likely reasons for the greening trend in China over the
past three decades. Therefore, the impact of environmental factors on vegetation should be
fully considered in future research.

In addition, on a short time scale, the impact of anthropogenic activities on vegetation
growth is very important. In China, the improvement of vegetation coverage in most areas
is largely due to the implementation of ecological projects, such as returning farmland
to forests/grass, artificial afforestation and grass planting, comprehensive management
of rocky desertification [46,47], and appropriate agricultural management measures [48].
However, various human development and utilization activities, such as urban expan-
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sion, massive transfer of construction land, illegal logging, and overgrazing have led to
the destruction of surface vegetation to a certain extent [49]. This negative impact was
particularly evident in large urban agglomerations [24]. Therefore, in subsequent research,
it is necessary to quantitatively analyze and evaluate the driving role and mechanism of an-
thropogenic factors in regional change in vegetation coverage. Furthermore, the separation
of the relationship between climatic factors and anthropogenic activity factors will also be
the focus of future work.

5. Conclusions

In the present study, we revealed the dynamic change characteristics of vegetation
coverage in the QBM of China from 2000–2020 and its response to major climate factors
and analyzed the changes in the importance of three climate factors to these changes. The
overall distribution of vegetation coverage in the QBM shows a spatial pattern of “low in
the east and west and, high in the central.” In the past 21 years, regional vegetation coverage
has continuously improved, with a faster rising trend in winter and spring. TEM showed
a spatial distribution pattern that was low in the northwest and high in the southeast,
with an obvious warming trend, and warming faster in summer and autumn. The spatial
distribution of PRE gradually decreased from southeast to northwest. The fluctuation
increased in 21 years, with the fastest growth rate occurring in spring. SSD generally
showed the distribution characteristics of low in the south and high in the north, with a
decreasing trend in fluctuation, and the largest decreasing rate in autumn.

The results showed that in the past 21 years, in most areas of the QBM, the change
in vegetation coverage was positively correlated with TEM, negatively correlated with
SSD, and both positively and negatively correlated with PRE. On an annual scale, the
area mainly affected by TEM accounts for approximately 44% of the study area and was
mainly in the central and eastern regions. The SSD was the main controlling factor affecting
the vegetation coverage change in the northwest and east regions. Water condition was
the main factor affecting changes in vegetation coverage in western Sichuan, southern
Gansu and Hanzhong in Shaanxi. On a seasonal scale, the area dominated by PRE in
spring was larger. In summer, the relative importance of TEM and PRE began to weaken,
but the area dominated by SSD expanded significantly. In autumn, the influence of TEM
and SSD increased, and SSD was the main factor affecting vegetation coverage in most
areas. Although the relative importance of the three factors was greatly reduced in winter,
SSD remained the main controlling factor for the change in vegetation coverage in most
regions. The research results are helpful in understanding the impact of climate factors on
vegetation coverage change in the north-south transitional region of China to better carry
out vegetation restoration and protection against the background of global climate change.
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