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Abstract: The Yingxian Wooden Pagoda (1056 AD), located in Shanxi province, China, is a unique
architectural pure-wooden artifact standing for a millennium. Despite its longevity, the structures and
properties of the ancient architectural woods used in its construction have been significantly degraded
due to long-term natural aging, which has profoundly impacted the preservation of this valuable
cultural heritage. To better understand this degradation, we studied the deterioration of a baluster
(Larix principis-rupprechtii Mayr.) from Yingxian Wooden Pagoda. The study employed various
analytical techniques, including optical microscopy, atomic force microscopy, Fourier-transform
infrared spectroscopy, solid-state 13C nuclear magnetic resonance spectroscopy, X-ray diffraction, and
nanoindentation technology, to evaluate the microstructures and properties of the ancient architectural
woods. Results indicated that the destruction of wood cell walls was primarily transverse transwall
destruction and interfacial debonding and that the degradation of chemical components was primarily
in the hemicellulose (xylan) and amorphous region of cellulose. The reduced elastic modulus and
hardness of tracheid cell walls in the ancient architectural woods were higher than in recent larch
woods. This study would help deepen understanding of wood deterioration during long-term natural
aging for the subsequent preservation and protection of wooden cultural heritages and longer use of
ancient timber constructions.

Keywords: Yingxian Wooden Pagoda; natural aging; ancient architectural wood; deterioration; wood
cell wall

1. Introduction

Wood, a natural and organic biomaterial, has been extensively utilized in human life for
thousands of years in various applications, including in tools, furniture, vehicles, weapons,
and architecture [1–4]. Ancient timber constructions, as architectural wooden artifacts,
are of exceptional historical, cultural, anthropological, economic, artistic, archaeological,
and scientific value [2,4–7]. The Yingxian Wooden Pagoda (1056 AD), located in Shanxi
province, China, is a particularly remarkable example, as it is the oldest and highest
extant pure-wooden structure in the world, with a height of 67.58 m (Figure 1a) [3,5,8].
It has attracted extensive attention and research due to the mystery of standing for a
millennium [3,8–12].

The mechanical properties of wood are closely correlated with the orientation of
cellulose microfibrils, particularly in the dominant secondary 2 (S2) layer of tracheids
(softwoods) or fibers (hardwoods), as well as the composition and arrangement of its
main chemical components, including cellulose microfibrils embedded in a matrix of
hemicellulose and lignin [13–15]. As the sole building material used in Yingxian Wooden
Pagoda, wood is susceptible to degradation due to natural aging [5,14], weathering [16],
biodegradation [5,16,17], and other environmental and human factors [4], which pose a
significant challenge to the preservation of ancient timber constructions [14]. The natural
aging of wood refers to the normal degradation process that occurs after the wood has
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been cut down in the absence of other accelerating effects [18]. Although ancient archi-
tectural woods in ancient timber constructions appear well-preserved, the morphological
structures [19], chemical components [19], cellulose crystalline structures [20], and mechan-
ical properties [21] of wood cell walls inevitably deteriorate significantly over time due
to the single or combined action of UV irradiation, oxygen, humidity, temperature, and
atmospheric pollutants [18].

Figure 1. (a) Photograph of Yingxian Wooden Pagoda. (b) Photograph of a baluster in the red box.
(c) The cross-section of the baluster. (d) The baluster was replaced from (b). IAW was collected from
the inner part of the baluster; OAW was collected from the outer part of the baluster.

A study of archaeological elm wood from Chenghuang Temple, China, approximately
350 years old, showed a significant decrease in polysaccharide and lignin content, deterio-
ration of microstructures, and changes in the micromechanical properties of cell walls at
the outer part of the wood during natural aging [5]. Changes in environmental humidity
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caused hygroexpansion of wood cell walls, leading to changes in the cell dimensions over
time, slow hydrolysis of polysaccharides, oxidation of lignin, and leaching of degraded
products and extractives from cell walls [4]. The combination of UV irradiation and oxygen
rapidly depolymerizes hemicellulose and the amorphous region of cellulose, as well as oxi-
dizing lignin [4]. The impact of environmental factors or application sites on changes in the
chemical components of archaeological woods has been studied. Łucejko et al. investigated
the deterioration processes induced by the burial environment of archaeological oak wood,
suggesting that only a small amount of polysaccharides, mainly hemicellulose, under-
went a chemical transformation during burial [22]. Analysis of the chemical components
and micromechanical properties of load-bearing archaeological oak wood in the Oseberg
Viking ship showed that although hemicellulose and the amorphous region of cellulose
were significantly degraded in the archaeological wood, the longitudinal micromechanical
properties of cell walls in the archaeological wood were increased by nanoindentation
testing [23].

This study hypothesizes that the ancient architectural wood and recent larch wood
will exhibit differences in microstructures and chemical components in wood cell walls,
and therefore, their physical and mechanical properties will differ. This study aims to inves-
tigate the deterioration of microstructures and properties in the ancient architectural wood
taken from the upper part of a baluster in the Yingxian Wooden Pagoda (1056 AD) located
in Shanxi province, China (Figure 1b–d), where the annual average temperature is 1.84 ◦C
with a minimum of −15.20 ◦C in December and a maximum of 15.55 ◦C in July, and the
annual average environmental humidity is 52.8% with a minimum of 36.2% in March and a
maximum of 68.2% in August [8]. The ancient architectural wood has been identified micro-
scopically as larch wood (Larix principis-rupprechtii Mayr.), as reported previously [3], and
shows many cracks due to long-term natural aging. The deterioration of microstructures
and properties of the ancient architectural wood was studied using various characteri-
zation techniques, including optical microscopy and atomic force microscopy (AFM) to
investigate the destruction degree of cell wall structures, Fourier-transform infrared (FTIR)
spectroscopy, and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to eval-
uate the degradation of chemical components in the cell walls, X-ray diffraction (XRD) to
determine changes in cellulose crystalline structures, and nanoindentation testing to study
the mechanical properties of cell walls at the nanometer level. A clear understanding of the
deterioration in the microstructures and properties of ancient architectural wood during
long-term natural aging is crucial for developing protection technology for the wooden
cultural heritage and the continued use of ancient timber constructions.

2. Materials and Methods
2.1. Materials

An ancient wooden baluster from the Yingxian Wooden Pagoda (1056 AD), provided
by the Chinese Academy of Cultural Heritage, was used for the research. The age of
the ancient architectural wood was estimated to be 108 years, based on its size and the
average width of its growth ring, which was determined to be 1.6 mm from limited samples.
As a reference, a 35-year-old recent larch (Larix principis-rupprechtii Mayr.) wood was
used from the Saihanba Forest in Chengde City, Hebei province, China. For the ancient
architectural wood, three positions in its outer and inner parts were sampled for repeated
measurements (Figure 1c). Similarly, for the recent larch wood, three positions in its
sapwood and heartwood were sampled for repeated measurements. The sapwood of
the recent larch wood (SRW) was used as the reference for the outer part of the ancient
architectural wood (OAW), while the heartwood of the recent larch wood (HRW) was used
as the reference for the inner part of the ancient architectural wood (IAW). All samples
were stored under laboratory conditions before testing.
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2.2. Transversal Microscopical Structure Analysis

Wood samples were transversely sliced using a sliding microtome (SM2010R, Leica,
Baden-Württemberg, Germany) with a section thickness of 20 µm. The sections were
stained with a 1% safranin solution and observed under an optical microscope (CX31,
Olympus, Tokyo, Japan) at a magnification of 400×.

2.3. AFM Analysis

The wood samples with dimensions of 1× 1× 2 mm3 (Radial× Tangential× Longitudinal,
R × T × L) were embedded with SPI-PON™ 812 resin, which was polymerized in an oven
at 60 ◦C until solidification. The embedded samples were then cut perpendicular to
the fiber direction using an ultramicrotome (Ultracut UCT, Leica, Baden-Württemberg,
Germany) equipped with a diamond knife (Diatome, Nidau, Switzerland) to produce a
1 × 1 mm2 smooth surface for AFM investigation. The tracheid cell walls ultrastructures
were examined using an AFM (Dimension Edge, Veeco, New York, NY, USA) equipped with
a standard tapping mode probe (RTESP-300, Veeco, New York, NY, USA). The cantilever
length was 125 µm, and the resonance frequency was 300 kHz. The scanning rate was set
at 0.5 Hz, and the images were captured with a digital resolution of 512 × 512 pixels and a
scan size of 50 × 50 µm2. All data processing and image analysis were performed using
Nanoscope Analysis software (Version 1.40, Bruker, Billerica, MA, USA).

2.4. FTIR Spectroscopy

The wood samples were ground into powders using a low-temperature grinder (935A,
HATTIECS, Kirchlengern, Germany), and the resulting material was sieved through a
200-mesh screen. FTIR spectra of the dried powder samples were collected using an FTIR
spectrometer (TENSOR 27, Bruker, Billerica, MA, Germany) in transmission mode. The
spectra were obtained in the 4000–400 cm−1 wavenumber range, with 32 scans taken at a
resolution of 4 cm−1. The acquired spectra underwent baseline correction.

2.5. Solid-State 13C NMR Spectrum Measurement

The dried powder samples underwent solid-state 13C cross-polarization/magic-angle
spinning (CP-MAS) NMR spectroscopy at room temperature using a solid-state NMR spec-
trometer (JNM-ECZ600R 600M, JEOL Japan Electronics Co., Ltd., Tokyo, Japan) equipped
with a 3.2 mm tube. The 13C Larmor frequency was 150.913 MHz. The spectra were
obtained at a MAS frequency of 12 kHz, with 2000 scans accumulated and a relaxation
delay of 2 s. The 13C chemical shift was determined relative to the -CH2 peak at 38.52 ppm
of adamantane, which was an external reference for tetramethylsilane (TMS).

2.6. Determination of Main Chemical Components

The main chemical components of the wood samples, including lignin, cellulose, and
hemicellulose, were determined using the standard approach outlined by the National
Renewable Energy Laboratory (NREL, Golden, CO, USA) protocol [24].

2.7. Measurement of Relative Crystallinities

The relative crystallinities of the dried powder samples that had passed through an
80-mesh screen were determined using an X-ray powder diffractometer (D8 Advance,
Bruker, Ettlingen, Germany) with Cu Kα1 radiation. The instrument was operated at a
voltage of 40 kV and a current of 40 mA, and the data was collected over a 2θ range of 5◦ to
40◦ with a step length of 0.05◦ and a scan rate of 0.1 ◦/s. The crystallinity index (CrI) of the
wood samples was calculated as follows [25]:

Cr I =
I002 − Iam

I002
× 100% (1)
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where I002 is the maximum diffraction intensity of the 002 crystallographic planes at
2θ ≈ 22.4◦ and Iam is the minimum diffraction intensity of the amorphous region of
cellulose at 2θ ≈ 18.5–19.2◦.

2.8. Quasi-Static Nanoindentation Test

The mechanical properties of the tracheid cell walls of the wood samples were studied
using a nanoindentation instrument (TI 950, Hysitron Inc., Minneapolis, MN, USA). The
samples were first cut into cubes with dimensions of 7 × 7 × 15 mm3 (R × T × L), and a
cross-section of about 1 × 1 mm2 was then polished perpendicular to the fiber direction
from the top of the cubes using the ultramicrotome equipped with the diamond knife.
The polished samples were allowed to equilibrate in the chamber of the nanoindentation
instrument for at least 4 h before testing.

The experiments were performed with a triangular pyramid diamond indenter (Ti-
0039, Berkovich, Hysitron Inc., Minneapolis, MN, USA) and were carried out in a load-
controlled mode with a peak indentation load of 150 µN. The loading and unloading
time were set to 5 s, and the holding time was set to 2 s. A minimum of 20 indents were
performed on the transverse sections of each sample. The reduced elastic modulus (Er) and
hardness (H) of the samples were calculated from the initial unloading stiffness (S), contact
area (A) at peak indentation load, and peak indentation load (Pmax) as follows [26]:

Er =

√
π

2β

S√
A

(2)

H =
Pmax

A
(3)

where β is a correction factor related to the geometry of the Berkovich indenter (β = 1.034).

2.9. Data Analysis

The FTIR spectra were analyzed using OPUS 8.5 software (Bruker Inc., Germany). The
statistical significance of the differences between the wood samples was evaluated using
Analysis of Variance (ANOVA) and Least-Significant-Difference (LSD) tests, performed
with IBM SPSS Statistics software (Version 26, SPSS Inc., Armonk, NY, USA), with a 95%
confidence interval of probability. The peak intensity ratios calculated from the average
FTIR absorbance spectra, the relative crystallinities, as well as reduced elastic modulus and
hardness of tracheid cell walls were analyzed.

3. Results and Discussion
3.1. Morphological Structure Analysis

The morphological characteristics of ancient architectural woods were investigated
to evaluate the degree of deterioration using optical microscopy and AFM. In contrast to
the integrity of cell structures in HRW, the morphology of cells in the earlywood of IAW
showed moderate destruction after long-term natural aging, whereas the morphology of
cells in the latewood of IAW showed no signs of destruction (Figure 2). AFM analysis
revealed that the earlywoods of IAW and OAW showed moderate to severe destruction,
while the latewoods of IAW and OAW showed slight destruction (Figure 3). The destruction
of cell walls in ancient architectural woods was mainly transverse transwall destruction
on radial cell walls and interfacial debonding. The transverse transwall destruction on
radial cell walls occurred mainly at both ends of pits in earlywoods, propagating along the
interface of cell walls, inducing interfacial debonding due to many pit structures in radial
cell walls of earlywoods in softwoods [27–29]. In latewoods, with fewer pit structures, the
transverse transwall destruction on radial cell walls was near cell corners, subsequently
propagating along the interface of cell walls, inducing interfacial debonding. The results
obtained from optical microscopy and AFM indicated that the microstructures of cell walls
in the outer part of the ancient architectural wood were destructed, while there was less
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destruction in the microstructures of cell walls in the inner part of the ancient architectural
wood during long-term natural aging.

Figure 2. Optical micrographs taken from cross-sections of the heartwood of the recent larch wood
(HRW) and the inner part of the ancient architectural wood (IAW). (a) The earlywood of HRW.
(b) The latewood of HRW. (c) The earlywood of IAW. (d) The latewood of IAW.

Figure 3. AFM images of cross-sections in recent larch woods and ancient architectural woods.
(a) The earlywood of SRW. (b) The earlywood of HRW. (c) The earlywood of OAW. (d) The earlywood
of IAW. (e) The latewood of SRW. (f) The latewood of HRW. (g) The latewood of OAW. (h) The
latewood of IAW. The white arrows indicate transverse transwall destruction; the black arrows
indicate interfacial debonding.

3.2. Chemical Components Analysis

The chemical composition of wood plays a crucial role in determining its mechanical
properties [13]. In the case of ancient architectural woods, the chemical components can
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undergo characteristic degradation over extended periods of natural aging. This study
provides a comprehensive examination and comparison of the chemical components of
both recent larch woods and ancient architectural woods (Figure 4).

Figure 4. Chemical analysis of recent larch woods and ancient architectural woods. (a) Average FTIR
absorbance spectra in 1800–800 cm−1. (b) The relative intensity ratio of I1736, I1372, and I1159 versus
I1510. (c) Solid-state 13C NMR spectra. (d) Contents of lignin, cellulose, and hemicellulose.

FTIR spectroscopy was employed to examine the difference of functional groups in the
chemical components between recent larch woods and ancient architectural woods. The
average FTIR absorbance spectra of recent larch woods and ancient architectural woods in
the fingerprint region of 1800–800 cm−1 are shown in Figure 4a. All FTIR absorbance spectra
were normalized at the highest absorbance intensity in the 1800–800 cm−1 region. The
peak with the highest absorbance intensity of recent larch woods and ancient architectural
woods was observed at 1060 cm−1, corresponding to the stretching vibrations of C–O
in polysaccharides [19]. The results showed that the intensities of the absorbance peaks
at 1736 cm−1 (stretching vibrations of unconjugated C=O of the carbonyl, carboxyl, and
acetyl groups in xylan, a component of hemicellulose), 1372 cm−1 (bending vibrations
of C–H in polysaccharides), and 1159 cm−1 (asymmetric stretching vibrations of C–O–
C in polysaccharides) were reduced in ancient architectural woods compared to recent
larch woods, indicating partial depletion of polysaccharides, particularly hemicellulose, in
ancient architectural woods [1,13,14,19,20,30–34]. On the other hand, the intensities of the
absorbance peaks at 1608 cm−1 (stretching vibrations of the aromatic skeleton combined
with the stretching vibrations of C=O in lignin), 1510 cm−1 (stretching vibrations of the
aromatic skeleton in lignin), 1458 cm−1 (asymmetric bending vibrations of C–H of –CH3
and –CH2 groups in lignin), and 1425 cm−1 (stretching vibrations of the aromatic skeleton
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combined with in-plane bending vibrations of C–H in lignin) were either similar or slightly
increased in ancient architectural woods, indicating well preservation of lignin during long-
term natural aging [1,13,14,19,20,31–33,35]. However, the peak at 1651 cm−1 for oxidized
lignin units with carbonyl groups at Cα was absent in the spectra of ancient architectural
woods, indicating degradation of the side chains in lignin [33].

The relative changes in polysaccharides and lignin were calculated using the relative
intensity ratios of the peaks at 1736, 1372, and 1159 cm−1 assigned to the hemicellulose,
polysaccharides (including hemicellulose and cellulose), and crystalline regions in cellulose
against the peak at 1510 cm−1 assigned to lignin [20] (Figure 4b). For recent larch woods,
the value of the hemicellulose to lignin ratio in the SRW was significantly higher than
that in the HRW, while there was no significant difference between the SRW and the
HRW for the ratios I1372/I1510 and I1159/I1510. The ancient architectural woods showed no
significant difference between the OAW and the IAW for the ratios I1736/I1510, I1372/I1510,
and I1159/I1510. The results revealed that the degradation was primarily in hemicellulose
(xylan), and the degradation in the outer part of ancient architectural wood was more
serious than in the inner part during long-term natural aging.

The solid-state 13C CP-MAS NMR spectra were used to investigate the deterioration
of the chemical structures of ancient architectural woods over time (Figure 4c). The results
showed that the signals at 21 ppm and 172 ppm assigned to the –CH3 of acetyl groups in
hemicellulose and carbonyl groups of polysaccharides almost disappear in ancient architec-
tural woods, suggesting cleavage of these groups in the side chains of hemicelluloses [31,32].
Additionally, the intensity ratios of signals at 89 ppm and 84 ppm assigned to C4 crystalline
and amorphous regions of cellulose increased, and the intensity ratios of signals at 65 ppm
and 62 ppm ascribed to C6 crystalline and amorphous regions of cellulose also increased,
indicating degradation of the amorphous region of cellulose and a more ordered arrange-
ment of crystalline cellulose [2,32,36–39]. For recent larch woods, the intensity ratio of the
signal at 151 ppm and 148 ppm attributed to etherified and non-etherified aromatic carbons
in lignin in SRW (0.72) was similar to that in HRW (0.71), while for ancient architectural
woods, the intensity ratio of these signals was found to be lower in OAW (0.63) compared
to IAW (0.71), pointing to depletion of the β-O-4 interlinks in the outer part of the ancient
architectural wood during long-term natural aging [32,37]. The intensity ratios of the signal
at 75 ppm assigned to C–OH in the β-O-4 linked side chain of lignin against the signal at
72 ppm ascribed to C2,3,5 decreased in ancient architectural woods compared to recent larch
woods, suggesting breakage of β-O-4 interlinks in lignin in ancient architectural woods
during long-term natural aging [31].

The degradation degree of ancient architectural woods was estimated by quantitatively
assessing residual chemical components on wood cell walls in ancient architectural woods
compared to recent larch woods (Figure 4d). For recent larch woods, the lignin contents
showed no significant difference between the sapwood and the heartwood, while the
cellulose and hemicellulose contents in the sapwood were significantly higher than that in
the heartwood due to the high content of extractives in the heartwood [40,41]. Compared
with the HRW, the cellulose and hemicellulose contents in SRW increased by 30% and
6%, respectively. For ancient architectural woods, the contents of the main chemical
components showed a similar tendency from the outer to the inner part to that of recent
larch woods. The lignin contents showed no significant difference between OAW and IAW,
while the cellulose and hemicellulose contents in OAW were significantly higher than in
IAW. Compared with IAW, the contents of cellulose and hemicellulose in OAW increased
by 5% and 7%, respectively. The results indicated that the cellulose in the outer part of the
ancient architectural wood was seriously degraded.

All the above results indicated that during long-term natural aging, the polysac-
charides, particularly hemicellulose and the amorphous region of cellulose, in the an-
cient architectural wood have partially degraded, while no obvious changes in the lignin
were observed.
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3.3. Cellulose Crystalline Structure Analysis

The cellulose crystalline structures of recent larch woods and ancient architectural
woods were studied by XRD [42]. The X-ray diffractograms of recent larch woods and an-
cient architectural woods are presented in Figure 5a. All samples displayed typical patterns
of native cellulose Iβ with broad diffraction bands from 14.8◦ to 16.8◦ (101 and 10ı̄ crystal-
lographic planes) and high-intensity diffraction bands at 2θ = 22.4◦ (002 crystallographic
planes) [20,43–47]. However, the intensities of the diffraction bands differed, indicating
changes in relative crystallinities [20]. The HRW presented low-intensity crystalline diffrac-
tion bands compared with other samples, indicating that the relative crystallinity was
lower than those of other samples. The relative crystallinities of recent larch woods and
ancient architectural woods were determined (Figure 5b). The relative crystallinity of recent
larch woods was found to be significantly higher in SRW (45.64%) compared to HRW
(34.67%), while for ancient architectural woods, the increase in crystallinity in IAW (46.21%)
was attributed to the depletion of amorphous polysaccharides resulting in the oriented
arrangement of cellulose molecules during long-term natural aging. However, due to the
initial depletion of amorphous polysaccharides followed by the crystalline cellulose in
OAW during long-term natural aging, there was no significant difference in the relative
crystallinities between OAW (46.65%) and IAW (46.21%) [3]. On the contrary, the study by
Guo et al. found that the waterlogged archeological woods showed lower crystallinities
than those of recent woods due to the depletion of polysaccharides and the modification of
lignin, resulting in the disoriented arrangement of crystalline cellulose [32].

Figure 5. The cellulose crystalline structures of recent larch woods and ancient architectural woods.
(a) X-ray diffractograms. (b) The relative crystallinities.

3.4. Micromechanical Properties

Nanoindentation technology is considered an effective and micro-destructive means
to test the micromechanical properties of wood at the nanometer level, including elastic
modulus, viscoelastic, and creep properties [5,15,31,48,49]. This study applied quasi-static
nanoindentation to examine the longitudinal micromechanical properties of tracheid cell
walls in both recent larch woods and ancient architectural woods without resin embedding,
avoiding the influence of the embedded resin to provide a more accurate assessment of
the tracheid cell walls [31]. Since the S2 layer is the thickest layer of cell walls (more than
80%) and has a dominant impact on the longitudinal mechanical properties of wood cell
walls [15,31,49], the study focused on the differences in micromechanical properties in
the S2 layer of tracheids between recent larch woods and ancient architectural woods
(Figure 6). The results showed that the Er and hardness of sapwoods in recent larch wood
were significantly lower than those of heartwoods (p < 0.05), and the Er and hardness of
earlywoods were significantly lower than those of latewoods (p < 0.05). However, no signif-
icant difference was observed between the outer and inner parts of ancient architectural
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wood in terms of Er and the hardness of latewoods. The hardness of earlywoods also
showed no significant difference between the outer and inner parts of ancient architectural
wood. The Er and hardness of ancient architectural woods were higher than those of recent
larch wood, a phenomenon previously reported in archaeological oak and attributed to a
loss of pectins and modification in the lignocellulosic cell wall polymers [23].

Figure 6. Reduced elastic modulus and hardness of the S2 layer in tracheid cell walls of recent larch
woods and ancient architectural woods. (a) Reduced elastic modulus. (b) Hardness.

4. Conclusions

In this study, a baluster dating back to Song Dynasty was procured and analyzed to
understand the deterioration of microstructures and properties in ancient architectural
wood during long-term natural aging. The results showed that the destruction of cell walls
in ancient architectural woods was mainly transverse transwall destruction and interfacial
debonding, with the outer part of the ancient architectural wood showing more obvious
destruction than the inner part during long-term natural aging. The ancient architectural
woods displayed a partial depletion of polysaccharides, particularly the amorphous regions
(i.e., hemicellulose and amorphous region of cellulose), while no obvious change in lignin
was observed after long-term natural aging. The observed deterioration differed for the
sampling position in the log (outer or inner part) of ancient architectural woods. The
deterioration did not negatively impact the longitudinal micromechanical properties of
wood. These findings provide valuable insights into the deterioration of structures and
properties in ancient architectural woods and have the potential to guide and improve
preservation efforts for ancient wooden artifacts globally.
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