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Abstract: Smouldering combustion can emit a large amount of CO2, CO and particulate matter (PM).
Moisture content is an important factor of the emission characteristics. As the hot spot of forest
smouldering combustion, the gas and particulate emissions of the Huzhong National Nature Reserve
with different moisture contents are discussed herein. The emission factors (EF) of CO2 and CO
were 100.71 ± 39.14 g/kg and 11.76 ± 3.89 g/kg, respectively. The EF of PM2.5, PM4 and PM10 were
87.11 ± 19.47 g/kg, 353.37±159.25 g/kg and 602.59± 276.80 g/kg, respectively. PM2.5 accounted for
16.59 ± 5.25% of the PM, and PM4 and PM10 were 54.03 ± 13.46% and 91.00 ± 10.81%, respectively.
There was no significant difference in the EF of CO2 and CO with different moisture contents, nor
in the EF of PM2.5, but there was a significant difference in the EF of PM4 and PM10 with different
moisture contents. In addition, the peak of CO2 and CO appeared at 2~3 h; the peak of PM2.5 lagged
behind that of PM4 and PM10. According to the regression analysis, experimental expressions were
obtained for the modified combustion efficiency (MCE) and the EF of PM.

Keywords: Huzhong National Nature Reserve; Pinus pumila; smouldering combustion; gas emission;
particulate emission

1. Introduction

Forest smouldering combustion mainly occurs in the humus layer and the peat layer,
and spreads slowly with no flame. Because of the low degree of external disturbance
and strong concealment, the smouldering could last for a long time, even up to several
years [1,2]. Smouldering combustion can still spread in the soil layers in winter, like Arctic
and boreal areas, and could even survive below −35 ◦C [3]. Whenever heterogeneous
oxidation occurs on the surface of the soil [4], a variety of emissions will be discharged into
the environment during smouldering combustion, especially CO2, CO and the particulate
matter (PM) [5–7], and the emission of CO2 could go up to about 400 t/ha [8]. The PM were
dominated by fine particles that were mainly composed of organic constituents [9]. The
carbonaceous fraction constituted 50%–70% of the PM and inorganic constituents comprised
about 15% of the PM [10]. CH4, NH3, SO2 and other non-methane organic compounds
were also detected in smouldering combustion [11–13]. A previous study pointed out that
smouldering combustion produced 130% more CO and 670% more hydrocarbons, but
15% less CO2 and no NOx [14], while NO and NO2 were found with low EF values in
some other studies [15,16]. In general, CO2, CO and CH4 were the most abundant gas
types [17,18]. In addition, more than 100 types of gas were released from the smouldering
combustion, and the large amounts of terrestrial carbon released in the atmosphere will
accelerate climate warming [19–21].

One study found that CO2 and CO were the largest proportion of gas emissions [22],
and they were regarded as the trace gas emissions of the smouldering combustion [18,23,24].
The PM could be suspended in the air for a long time, therefore the PM would continuously
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accumulate and lead to large-scale haze [25,26]. Moreover, the PM might contain a large
number of harmful components, which could lead to respiratory diseases and acute in-
flammation [27–29]. The smouldering combustion in Indonesia during 1997–1998 released
about 81 to 257 million tons of carbon, which was equivalent to 13%–40% of the mean
annual global carbon emissions from fossil fuels, and led to large-scale haze, with more than
2000 mg/m3 TSP detected in Kalimantan and Sumatra [7,30]. The smouldering combustion
in Russia in 2010 and in South Sumatra, Indonesia in 2015 led to large-scale of air pollution
with PM2.5. The pollutant standards index went up to 1500, which caused serious impacts
on the ecological environment and human health [31,32]. There were about 11,000 death
reports from nonaccidental causes during the 2010 smouldering combustion in Russia,
with the most common cases being related to cardiovascular and respiratory issues [33].
Similarly, in North Carolina during the 2008 smouldering combustion, 2081 respiratory
events and 1817 cardiac events were reported [34].

Christian et al. found that the emission factor (EF) of CO2 could even reach 1703 g/kg
from the smouldering combustion of South Sumatra tropical plantations [35]. The EF of
CO2 also rose as high as 1579 g/kg from Malaysian peatlands [36]. However, the EF of
CO2 was only about 420 g/kg from boreal peat [37]. In fact, CO2 from the smouldering
combustion of the tropical area was generally higher than those from the boreal and
temperate areas [22,24,25,38]. Apart from that, tropical smouldering combustion emitted
more CO, with an average EF of 248 g/kg than those of the boreal and temperate areas,
with EF of 179 g/kg [22]. The difference of the carbon content in the soil might be the
significant factor for the EF of CO2 and CO [39–41].

The PM from the smouldering combustion ranged from PM0.1 to PM1, PM2.5 and
PM10 [42]. The PM of boreal and temperate areas might be higher than that of tropical
areas [25,43,44]. The average EF of PM2.5 was 19.17 g/kg in boreal and temperate areas,
but was 17.3 g/kg in tropical areas [22]. The EF of PM2.5 were 16.9 g/kg during flaming
combustion and 38.8 g/kg during smouldering combustion [45]. There are several levels
of PM (PM1 to TSP in general), but the research results concerning the EF of PM with
different levels were inconsistent. PM2.5 was found to be the largest proportion of PM from
smouldering combustion in North Carolina, but PM10 was the most emitted PM according
to Akagi et al. [15].

The Daxing’an Mountains are one of the most sensitive regions to global climate
change, and the impact of the change in climate could last for a long time [46]. The region
is also a hot spot for all kinds of forest fires [47]. The frequency and intensity of forest
fires in this region have been on the rise in recent years as a result of global warming [48].
Huzhong National Nature Reserve (HNNR) is located in the core area of the Daxing’an
Mountains where the forest vegetation remains in the original state, and as the largest cold
temperate coniferous forest ecosystem nature reserve of China, HNNR has great practical
and scientific value in the global carbon cycle, biodiversity and environmental protection.
HNNR is an important distribution area of Pinus pumila, which is commonly used in slope
greening and soil and water conservation for its resistance to cold, drought and leanness,
and it also serves as an important habitat for rare wild animals and as an economic plant
for food and medicine [49]. The smouldering combustion will destroy the physical and
chemical composition of the soil, vegetation roots and ecological balance. Moreover, the
PM will deposit on the surface of leaves for a long time, and cause a serious impact on the
existent environment of Pinus pumila [50]. It is difficult for Pinus pumila to recover from
fires and return to its climax community by natural succession because of its weak seed
dispersal ability.

However, studies on the smouldering combustion of Pinus pumila are not sufficient.
Previous studies on the emissions from smouldering were mostly carried out on laboratory
or commercial peat under microcosmic scale, which could hardly reflect the emission char-
acteristics of gas and particles in the actual smouldering process. The EF is an important
indicator for the analysis of emissions during the combustion [51], and EF could simplify
the vast complexity of natural conditions [37]. Moisture content has been found to be the
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most important factor of the ignition and the spread of smouldering combustion [52,53].
Therefore, our research aimed to study the EFs of gas and particulate, and the emission char-
acteristics with different moisture contents in order to determine the actual smouldering
situation of Pinus pumila in HNNR and provide reference for the smouldering monitoring
of Pinus pumila in follow-up studies.

2. Methods
2.1. Study Area

HNNR of the Daxing’an Mountains (122◦42′14′′~123◦18′05′′ N, 51◦17′ 42′′~51◦56′31′′ E)
is located in the Daxing’an Mountains of Heilongjiang Province (Figure 1), China, and the
northeast slope is between the main vein of the Daxing’an Mountains and the Yilehuli
Mountains. HNNR, one of the most typical and intact cold temperate coniferous forest
ecosystems in China, is divided into 3 major zones: the core area (54,087 ha), the buffer
area (45,493 ha) and the experimental area (67,633 ha). The annual average temperature is
−4.3 ◦C and the rainfall is 350~500 mm, with short summers and long winters. The high
temperature occurs in spring and autumn, along with low humidity and strong wind that
can easily cause forest fires. Forest vegetation features cold and temperate coniferous forest,
Larix gmelina being the dominant tree species. The main coniferous species are Larix gmelina,
Pinus sylvestris var. mongolica, Picea koraiensis and Pinus pumila. The latter mostly grows in
the high-altitude area and constitutes the unique subalpine landscape and the undergrowth
shrub of the sparse coniferous forest in the cold temperate zone of the mountains. The main
broad-leaf species are Betula platyphylla, Populus davidiana and Chosenia arbutifolia [54,55].
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2.2. Experimental Method

The Pinus pumila forest that had been attacked by the smouldering combustion in
HNNR was selected as the study area. Five sample points were randomly selected in the
unfired area. We dug quadrats of 0.5 m × 0.5 m and took all the subsurface smoldering
combustibles in the quadrats to the laboratory (Figure 2a). We mixed the five samples
evenly, which were used to represent the soil conditions of the Pinus pumila. Based on the
results of the field measurement, the samples were placed in a cool and ventilated space to
dry naturally (drying them in an oven if necessary), and the MC was measured every 24 h
using a rapid moisture meter until the MC reached 2%, 12% and 22%. The soil samples
were then sealed for the smouldering experiments. Three duplicate tests were set at each
MC gradient and at each point. The samples after smouldering combustion are shown in
Figure 2b.
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The smouldering combustion installation is shown in Figure 3. The smoldering fur-
nace was placed into the tank (35 cm in length, 35 cm in width, 90 cm in height) with a
monitoring window, which could be opened according to the requirement of measurement.
The concentrations of CO2 and CO were detected using the multifunctional flue gas ana-
lyzer (ecom-J2KN), and the concentrations of PM2.5, PM4, PM10 and TSP were monitored
using the particulate monitor (MetOne831). The measurement range of MetOne831 is
0~1000 µg/m3, with a measurement accuracy of 0.1 µg/m3. The sampling time could be
up to 6 s/time and was collected 10 times for the mean value. The concentration of the
emissions was detected every 30 min according to the results of the preliminary experiment.
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2.3. Emission Factor

The emission factor (EF) in this paper was calculated as:

EFi =
Mi

M f uel
(1)

where EFi is the emission factor of the combustion emissions i, g/kg; Mi is the total mass
of the combustion emissions i, calculated by the concentration of the emissions i and the
volume of the seal box, g; and Mfuel is the total mass of the combustion soil in the smoldering
furnace, calculated by the soil quality difference in the smoldering furnace before and after
smouldering combustion, kg.
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2.4. Modified Combustion Efficiency and Emission Ratio

The modified combustion efficiency (MCE) was calculated as:

MCE =
CCO2

CCO2 + CCO
(2)

where MCE is the modified combustion efficiency; CCO2 is the mass concentration of CO2,
mg/m3; and CCO is the mass concentration of CO, mg/m3. Generally, flame combustion
has an MCE higher than 0.99, while the smouldering combustion has an MCE between 0.75
and 0.84 [15].

The emission ratio (ER) in this paper was calculated as:

ERCO/CO2 =
CCO
CCO2

(3)

where ERCO/CO2 is the ratio of CO to CO2; CCO is the mass concentration of CO, mg/m3;
and CCO2 is the mass concentration of CO2, mg/m3. ERCO/CO2 can reflect the conversion
trend from the smouldering combustion to the flame combustion.

2.5. Statistical Analysis

Statistical analysis was performed by SPSS 19.0. Correlation analysis and nonlinear
regression were used to establish the regression equations. Statistical significance was
accepted at * = p < 0.05, ** = p < 0.01. The data are shown as mean ± standard deviation
and the confidence interval was calculated at 95% confidence level of normal distribution.
The figures were furnished by Origin-Pro 9.1.

3. Results
3.1. Main Gas Emissions in the Smouldering Combustion
3.1.1. EF of CO2 and CO

In the smouldering combustion of this study, the average EF of CO2 was
100.71 ± 39.14 g/kg, the EF of CO was 11.76 ± 3.89 g/kg and the EF of CO2 and CO
with different MCs are shown in Table 1. The lowest EF of CO2 and CO occurred at 12%
MC. There were no significant differences in the EF of CO2 (p = 0.906, p > 0.05) and the EF
of CO (p = 0.913, p > 0.05) with different MCs.

Table 1. The EF of CO2 and CO from the smouldering combustion (g/kg).

MC (%) CO2 CO

2 107.27 ± 39.83 12.10 ± 3.65
12 91.63 ± 29.36 10.87 ± 1.07
22 103.23 ± 59.01 12.30 ± 6.65

3.1.2. Emission Characteristics of CO2 and CO

The concentrations of CO2 and CO with different MCs both showed a rising trend
followed by a decline with the ongoing smouldering combustion (Figure 4). With the
increasing MC, it took a shorter amount of time for CO2 and CO to reach the peak concen-
tration. The peak concentration for CO2 and CO were detected at 3 h with 2% MC, 2.5 h
with 12% MC and 2 h with 22% MC.



Forests 2023, 14, 364 6 of 14

Forests 2023, 14, x FOR PEER REVIEW 6 of 14 
 

 

When the MC was 2%, the average concentration of CO2 was 24,138.83 ± 4720.71 
mg/m3 and the peak concentration was 30,642.86 mg/m3; the average concentration of CO 
was 3096.68 ± 775.79 mg/m3 and the peak concentration was 3992.17 mg/m3. When the MC 
was 12%, the average concentration of CO2 was 30,933.35 ± 13,970.85 mg/m3 and the peak 
concentration was 49,834.75 mg/m3; the average concentration of CO was 4214.74 ± 2026.51 
mg/m3 and the peak concentration was 6914.33 mg/m3. When the MC was 22%, the aver-
age concentration of CO2 was 17,681.63 ± 3902.97 mg/m3 and the peak concentration was 
23,891.46 mg/m3; the average concentration of CO was 2249.69 ± 627.76 mg/m3 and the 
peak concentration was 3315.95 mg/m3. At 12% MC, the average and peak concentration 
of CO2 and CO were the highest, and the variation range of the gas emissions was the 
largest, while at 22% MC, the average and peak concentration of CO2 and CO were the 
lowest, and the variation range of the gas emissions was the smallest. 

 
Figure 4. Gas emissions from the smouldering combustion: (a) gas emissions at 2% MC; (b) gas 
emissions at 12% MC; (c) gas emissions at 22% MC. 

3.2. Particulate Emissions in the Smouldering Combustion 
3.2.1. EF of PM 

In this study, the average EF of PM2.5, PM4 and PM10 were 87.11 ± 19.47 g/kg, 87.11 ± 
353.37 ± 159.25 g/kg and 602.59 ± 276.80 g/kg, respectively, as is shown in Table 2. With 
different MCs, there were no significant differences in the EF of PM2.5 (p = 0.347, p ˃ 0.05), 
but there was a significant difference in the EF of PM4 (p = 0.011, p ˂ 0.05) and PM10 (p = 
0.003, p ˂ 0.05). The lowest EF of PM2.5, PM4 and PM10 all occurred at 12% MC; the EF of 
PM2.5 at 22% MC was lower than that at 2% MC, but the EF of PM4 and PM10 at 22% were 
higher than that at 2% MC. 

Table 2. The EF of PM from the smouldering combustion (g/kg). 

MC (%) PM2.5  PM4 PM10 TSP 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

4.0×103

8.0×103

1.2×104

1.6×104

2.0×104

2.4×104

2.8×104

3.2×104

G
as

 e
m

iss
io

ns
 (m

g/
m

3 )

Time (h)

 CO2
 CO

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

5.0×103

1.0×104

1.5×104

2.0×104

2.5×104

3.0×104

3.5×104

G
as

 e
m

iss
io

ns
 (m

g/
m

3 )

Time (h)

 CO2 

  CO
c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1×104

2×104

3×104

4×104

5×104

6×104

G
as

 e
m

iss
io

ns
 (m

g/
m

3 )

Time (h)

 CO2 

  CO
b)(b)(a)

(c)

Figure 4. Gas emissions from the smouldering combustion: (a) gas emissions at 2% MC; (b) gas
emissions at 12% MC; (c) gas emissions at 22% MC.

When the MC was 2%, the average concentration of CO2 was 24,138.83± 4720.71 mg/m3

and the peak concentration was 30,642.86 mg/m3; the average concentration of CO was
3096.68 ± 775.79 mg/m3 and the peak concentration was 3992.17 mg/m3. When the
MC was 12%, the average concentration of CO2 was 30,933.35 ± 13,970.85 mg/m3 and
the peak concentration was 49,834.75 mg/m3; the average concentration of CO was
4214.74 ± 2026.51 mg/m3 and the peak concentration was 6914.33 mg/m3. When the
MC was 22%, the average concentration of CO2 was 17,681.63 ± 3902.97 mg/m3 and
the peak concentration was 23,891.46 mg/m3; the average concentration of CO was
2249.69 ± 627.76 mg/m3 and the peak concentration was 3315.95 mg/m3. At 12% MC, the
average and peak concentration of CO2 and CO were the highest, and the variation range of
the gas emissions was the largest, while at 22% MC, the average and peak concentration of
CO2 and CO were the lowest, and the variation range of the gas emissions was the smallest.

3.2. Particulate Emissions in the Smouldering Combustion
3.2.1. EF of PM

In this study, the average EF of PM2.5, PM4 and PM10 were 87.11 ± 19.47 g/kg,
87.11 ± 353.37 ± 159.25 g/kg and 602.59± 276.80 g/kg, respectively, as is shown in Table 2.
With different MCs, there were no significant differences in the EF of PM2.5 (p = 0.347,
p > 0.05), but there was a significant difference in the EF of PM4 (p = 0.011, p < 0.05) and
PM10 (p = 0.003, p < 0.05). The lowest EF of PM2.5, PM4 and PM10 all occurred at 12% MC;
the EF of PM2.5 at 22% MC was lower than that at 2% MC, but the EF of PM4 and PM10 at
22% were higher than that at 2% MC.
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Table 2. The EF of PM from the smouldering combustion (g/kg).

MC (%) PM2.5 PM4 PM10 TSP

2 100.34 ± 24.05 290.54 ± 29.91 547.29 ± 4.91 549.35 ± 32.80
12 70.64 ± 19.09 219.80 ± 69.65 327.76 ± 44.82 333.96 ± 42.77
22 90.35 ± 6.26 594.76 ± 18.46 932.72 ± 76.93 950.70 ± 90.35

Among all the particulate emissions (TSP) collected in the smouldering experiments,
the average EF of PM2.5 accounted for 16.59 ± 5.25%, while the proportion for PM4 and
PM10 were 54.03 ± 13.46% and 91.00 ± 10.81%, respectively. As can be seen in Figure 5,
there was a significant difference in the EF proportion of PM2.5 (p = 0.007, p < 0.05), but
there were no significant differences in the EF proportion of PM4 (p = 0.096, p > 0.05) and
PM10 (p = 0.355, p < 0.05) with different MCs.
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Figure 5. Comparison of the EF proportion of PM with different moisture contents: (a) EF proportion
of PM2.5; (b) EF proportion of PM4; (c) EF proportion of PM10. The letters a and b mean that if there
is any same letter in the figure, the difference is not significant.

3.2.2. Relationship between EF and MCE

As a parameter that is commonly used to study the combustion state of biomass, the
MCE suggests the flame combustion when it reaches 0.99, and the smouldering combustion
when it is 0.75~0.84 [15]. There is a correlation between the MCE and EF of gas emissions
according to previous studies [45,56]. Therefore, we researched the relationship between
the MCE and EF of the PM.

In the smouldering combustion in this study (Figure 6), when the MCE was 0.75~0.85,
the EF of PM2.5, PM4 and PM10 varied in the same way. The peak values of EF were all
detected at MCE 0.81~0.82, and the EF gradually decreased with the increase of MCE.
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Regression analysis showed that the relationship between the MCE and EF of PM could be
fitted by cubic functions (Equations (4)–(6), p < 0.05), but the R2 values were all below 0.80.

ln EFPM2.5 = –294.50MCE3 + 351.31MCE2 − 69.14
(

R2 = 0.688
)

(4)

ln EFPM4 = –248.68MCE3 + 397.21MCE2 − 56.84
(

R2 = 0.655
)

(5)

ln EFPM10 = –151.46MCE3 + 177.82MCE2 − 29.88
(

R2 = 0.682
)

(6)
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3.2.3. Emission Characteristics of PM

The variation of particulate emissions with combustion time showed that the par-
ticulate emissions first increased and then decreased, and the variation trends of PM2.5,
PM4 and PM10 were basically the same (Figure 7). The peak concentrations of PM2.5,
PM4 and PM10 were 1,580,100 mg/m3, 6,126,300 mg/m3 and 8,687,200 mg/m3, respec-
tively, at 2% MC; the peak concentrations of PM2.5, PM4 and PM10 were 1,585,400 mg/m3,
4,882,400 mg/m3 and 6,621,800 mg/m3, respectively, at 12% MC; the peak concentrations
of PM2.5, PM4 and PM10 were 1,324,200 mg/m3, 11,476,900 mg/m3 and 22,974,400 mg/m3,
respectively, at 22% MC.

The combustion time for the peak concentration of PM2.5 lagged behind that of PM4
and PM10, with the time lag being 0.5 h at 2% MC and 12% MC, and 1.5 h at 22% MC; the
concentration of the particulate emissions decreased significantly after 2.5 h, and although
there was a small rise at 4 h, the concentration continued to decrease after 4 h until the
smouldering combustion went out.
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Figure 7. Particle emissions from the smouldering combustion: (a) particle emissions at 2% MC;
(b) particle emissions at 12% MC; (c) particle emissions at 22% MC.

4. Discussion
4.1. EF of the Emissions and Variation Trend

Hu et al. [57] found that the EF of CO2 ranged from 3056~3320 g/kg to 3042~3452 g/kg,
and the EF of CO ranged from 201~ 432 g/kg to 171~ 227 g/kg from the flame combustion
in the Pinus pumila-Larix gmelinii forests and Pinus pumila forests of the Huzhong region in
the Daxing’an Mountains. Chang et al. [58] found that the EF of CO2 was 1393~3328 g/kg
and the EF of CO was 75~195 g/kg from the flame combustion of different forest types in
the Daxing’an Mountains. The studies on the main forest types in the Daxing’an Mountains
showed that, in flame combustion, the average EF of CO2 of branches (leaves) was 1509.25
(1496.59) g/kg and that of CO was 181.51 (180.17) g/kg [59]. All the EF of CO2 and CO in the
studies above were higher than our results. This is consistent with the report that flaming
combustion emitted more gas emissions than smouldering combustion [60]. However, the
ERCO/CO2 values in the studies above were lower than those in our study, which resulted
from the lack of oxygen and incomplete combustion, and was consistent with the reports
of Bonsang et al. [61].

Reisen et al. [45] found that the EF of PM2.5 was 38.8 g/kg from the smouldering
combustion. Hu et al. [6] pointed out that the average EF of PM2.5 was 23.12 ± 1.19 g/kg
at the stable phase of smouldering. Hu et al. [60] reported that the peak EF of PM2.5 was
about 20 g/kg. All the results were lower than the average EF of PM2.5 in this study
(87.11 ± 19.47 g/kg). The higher EF of PM2.5 mainly related to the large carbon content
of the soil samples from HNNR. In addition, the soil samples of this study were from the
area with no experience of smouldering combustion in recent years, so the emissions were
higher than the samples that have experienced fires [25,62,63].

Consistent with previous studies [25,64], the R values for the regression of MCE and
EF were lower (below 0.80) and the curves cannot adequately describe the process of PM
emissions. Considering the complex mechanism of smouldering combustion, tempera-
ture, particle size, porosity and other factors will also affect combustion. Moreover, the
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lower range of MCE during the smouldering combustion would also affect the regression
results [25]. Further studies on the EF of PM remain necessary since little research has been
conducted into particulate emissions during the smouldering combustion.

The peak particulate emissions were detected in the early smouldering combustion
period (before 2.5 h); the peak CO2 and CO were also detected in 2~3 h. Gas and particulate
emissions both indicated a decreasing trend after 3 h. According to the analyses, the content
of O2 in the soil was relatively higher at the beginning phase of smouldering, and the major
reactions, including a pyrolytic reaction and a redox reaction, produced a mass of heat and
released plenty of gas and particulates including coke simultaneously [65]. The results are
also consistent with the finding that PM emissions were mainly in the ignition and spread
stage at different MCs [60]. The heat then diffused outwards continuously with the spread
of the smouldering combustion, the combustibles decreased gradually, and the reaction
rates of the pyrolytic reaction and the redox reaction went down [66,67], as did the gas and
particulate emissions.

4.2. Composition of Particulate Emissions in the Smouldering Combustion

Hu et al. [6] found that PM10 accounted for up to 99% and PM2.5 accounted for 87% of
particulate emissions from the smouldering, and their proportions were close. However,
the proportion of PM2.5 was much lower than that of PM10 in this study. The soil types,
smouldering temperature and detection methods could all affect the composition of the
particle emissions. There should be an in-depth discussion on the factors that influence the
composition of particulate emissions in subsequent research [22,68].

Although the proportion of PM2.5 was lower in this study, the large amounts of PM10
could still lead to respiratory diseases, conjunctivitis and dermatitis [69]. Uttajug et al. [70]
also reported that the concentration of PM10 during forest fire or vegetation burning has a
significant influence on the occurrence of respiratory diseases. In addition, PM10 suspended
in the air will deposit on the surface of plant leaves through adsorption or stagnation and
affect the surface morphology and physiological parameters of plants, resulting in damage
to the cuticle and diminution of the photosynthetic rate and the stomatal numbers in
leaves [48,71,72].

4.3. Effect of MC on Gas and Particulate Emissions

Preheating, drying, pyrolysis and oxidation were the main process of the smouldering
combustion [60], and CO2 and CO were mainly emitted by a char oxidation process [6].
Although the gas emissions decreased with the increase of MC in the research of Huang
et al. [1,73], there were no significant differences in the EFs of CO2 and CO in this study.
The main reason was the lower MC of the soil samples, while the MC was up to 160% in the
previous studies [60], resulting in a very serious heat consumption that would significantly
affect the gas emissions [74].

The EF of PM4 and PM10 at 22% MC were about twice as much as those at 2% MC.
The main reason is that the specific heat capacity of water is large, therefore the increase of
MC will weaken the heat accumulation during combustion, and the evaporation process
will increase the heat loss, leading to the intensification of incomplete oxidation and
particulate emissions [75]. Additionally, water molecules could intensify the carbonization
of carbonaceous organic material through an aromatization reaction and increase the
concentration of particulate emissions [76].

Different from PM4 and PM10, the MC had no significant effect on the EF of PM2.5. The
main reason was the fine particle aggregation of the water droplets and PM2.5 particles by
the inertial collision and mixing reaction. Then the ongoing smouldering led to the decrease
of MC and the particle aggregation also gradually decreased. The peak concentration of
PM2.5 lagged behind PM4 and PM10, and the hysteresis was more obvious at 22% MC.
There was a significant difference in the proportion of PM2.5 emission factors at different
MCs; the proportion of PM2.5 emission factors went down significantly at 22% MC. All the
results could confirm the inference above.



Forests 2023, 14, 364 11 of 14

Compared with other MCs, the characteristics of gas and particulate emissions at 12%
MC are worthy of attention. The EF of CO2 and CO were the lowest at 12% MC (Table 1),
and the smouldering combustion was evident with an average MCE of 0.81, lower than
that at 2% and 22% MC. The EF of PM (PM2.5, PM4, PM10, TSP) at 12% MC were all lower
than those at other MCs (Table 2). In terms of the composition of PM, the proportions of
PM2.5 and PM4 at 12% MC were higher than those at other MCs, but the proportion of
PM10 was close to those at other MCs. It can be inferred that particulates with smaller sizes
are more likely to be released at 12% MC. Combined with the discussion above on MC
and PM, it could be concluded that being affected by the multiple reactions of evaporation,
incomplete oxidation, carbonization and aggregation, 12% MC is a turning point in this
study on the characteristics of gas and particulate emissions. Based on 12% MC, follow-up
studies should be conducted to refine the MC gradient and to further study the effect of
refined MC on the emissions.

5. Conclusions

During the smouldering combustion, the average EF of CO2 was 100.71 ± 39.14 g/kg
and the average EF of CO was 11.76 ± 3.89 g/kg. The average EF of PM2.5, PM4 and PM10
was 87.11 ± 19.47 g/kg, 353.37 ±159.25 g/kg and 602.59 ± 276.80 g/kg, respectively; the
proportion of PM10 was more than 90% and PM2.5 was less than 20%. The MC had no
significant effect on the EF of CO2 and CO; MC also had no significant effect on the EF of
PM2.5, but had a significant effect on the EF of PM4 and PM10. The peak concentrations of
CO2 and CO were detected at 2~3 h; the peak of the particulates was detected before 2.5 h
and the peak of PM2.5 lagged behind that of PM4 and PM10.

Due to the limitations of the experimental conditions, CH4 and other organic gases
were not examined in this study. As one of the trace emissions in the smouldering com-
bustion, CH4 should be considered in future studies. Soil conditions could also affect the
emissions and samples from more areas should be studied in order to accomplish a more
comprehensive analysis of smouldering combustion in the Daxing’an Mountains.
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