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Abstract: Some tree species respond to disease by producing basal sprouts from the base and root
system of a dying tree, which can alter disease dynamics by altering demography. In the case of
many lethal, airborne tree diseases, the production of basal sprouts can be a key contributor to
population resurgence post-epidemic, but the effect in lethal, vector-borne tree diseases has not yet
been studied. To determine the role of basal sprout production and secondary infection via the root
system of infected parent trees in lethal, vector-borne tree diseases, we develop a stage-structured SI-X
mathematical model and use laurel wilt, a vector-borne tree disease in which infected trees provide
suitable material for vector reproduction, as our model system. The mathematical model shows that
the production and secondary infection of basal sprouts do not affect the short-term dynamics of
laurel wilt but profoundly alter the long-term dynamics of the laurel wilt epidemic. In particular, in
the absence of basal sprout infection, basal sprout production yields a larger host population after
disease establishment, but as secondary infection increases, the utility of basal sprouts to maintain the
host population decreases. Results suggest management strategies for lethal, vector-borne diseases
should depend on the ratio of the basal sprout production rate to the secondary infection rate.

Keywords: laurel wilt; forest pathology; mathematical modeling; plant population dynamics; disease
ecology; conservation epidemiology

1. Introduction

Since 1850, sixteen nonnative forest pathogens that kill or damage trees have been
introduced to the United States, and at least five these pathogens are vectored by insects [1].
Introduced forest pathogens have devastating effects on forest ecosystems, affecting both
the trees themselves and other plant and animal species that depend on the affected tree
species. This results in an estimated loss of $2.1 billion in forest products per year in
the United States [2]. It is important to develop management strategies quickly after the
introduction of a new forest pathogen into an ecosystem to either eradicate it or mitigate its
effects. An understanding of the role of specific factors that influence disease dynamics
can assist in developing better management strategies for current diseases and future
disease introductions.

Below-ground basal sprouting and root suckering (stems which sprout from the
root system of an existing tree) are commonly observed forms of vegetative growth in
angiosperms and are often induced when damage (e.g., fire, logging, disease) kills the
main stem of a tree but the root system remains intact [3]. Demographic shifts (increased
population size and altered stage structure) following disease-induced production of
basal sprouts may be both ecologically and epidemiologically important. Of ecological
importance, the production of basal sprouts by damaged trees can maintain (or increase)
host population size following a disturbance [4]. Because widespread mortality of trees can
inhibit seed production, basal sprouting by damaged trees represents the main path for
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host reproduction especially if the reliance on, or longevity of, seed banking is limited [5].
Of epidemiological importance, replacement of mature stems with basal sprouts may
cause a demographic shift toward smaller stemmed trees. Pre-disturbance changes in
the demography of the tree host can affect disease dynamics [6]. Similarly, basal sprouts
produced in response to pest attack and/or pathogen infection in a vector-borne tree disease
system may then affect the ecological and epidemiological dynamics of the disease through
changes in the overall demography of the host population [3].

In vector-borne disease systems, the specific influence of basal sprout production on
disease dynamics is relatively unknown, and existing mathematical models for vector-
borne diseases are insufficient to determine it. Pine wilt is a vector-borne disease caused by
a parasitic nematode (Bursaphelenchus xylophilus) and transmitted by pine sawyer beetles
(Monochamus spp.) [7]. This vector-borne disease kills pine trees (Pinus spp.) and has been
modeled extensively [8,9]. However, the infected gymnosperms do not respond to infection
by producing basal sprouts. As such, production of basal sprouts is not included in models
of pine wilt. Dutch elm disease, which is caused by Ophiostoma spp. and vectored by the
elm bark beetle (Scolytus multistriatus), has caused widespread mortality of elm (Ulmus
spp.) trees across the globe, and some (but not all) species of elm respond to infection by
producing basal sprouts [10]. However, the vector that transmits Dutch elm disease is only
attracted to mature trees, leading to disease cycles as young trees mature. An untested
hypothesis suggested that basal sprout production could account for some of difference
between disease dynamics in some species [11,12]. Dutch elm disease models that included
the growth of root suckers predicted either an endemic disease state or a disease-free
state, depending on parameter values, but the models do not differentiate saplings from
basal sprouts; accordingly, the specific role of basal sprouting could not be investigated
independently using this model [13,14]. Thus, the specific role of basal sprouts in lethal,
vector-borne disease systems is relatively unknown, despite the potential importance of
this trait on disease dynamics and host population outcomes.

In producing the first model to investigate the role of basal sprouts in a vector-borne
disease system, we focus on laurel wilt as our case study. Laurel wilt is a lethal, vascular
tree disease, caused by the fungus Raffaelea lauricola and vectored by the redbay ambrosia
beetle (Xyleborus glabratus) [15]. The insect-pathogen complex is not considered a pest
in its native range of Asia, but the fungus is pathogenic to trees within the laurel family
(Lauraceae) in its introduced range in North America [16]. Upon infection, the fungus
moves systematically through the xylem of the host and induces a host response that leads
to crown dieback, leaf wilting, and sapwood discoloration [15]. Disease kills the main stem
of trees within weeks (at most two months), inhibiting seed production and inducing the
production of basal sprouts from the still-living root system [17].

The redbay ambrosia beetle is a wood-boring beetle that has a symbiotic relationship
with the pathogenic fungus and requires dead and dying laurel trees for successful brood
production. Female ambrosia beetles bore into the woody material of dying host trees
(male ambrosia beetles are flightless and do not attack trees), creating small tunnels called
galleries in which they cultivate their symbiotic fungus to feed their larvae. In contrast to
other species of ambrosia beetle, redbay ambrosia beetles will also bore into healthy host
trees with no signs of distress, with a preference for large-stemmed trees. Boring attempts
into healthy trees do not yield successful brood production and are abandoned; however,
enough fungal pathogen is transferred to infect the tree with laurel wilt. This contact is the
primary transmission route for laurel wilt [15]. As they start to die, infected trees provide
suitable host material for redbay ambrosia brood production, but tree material is eventually
degraded by excessive gallery production.

Redbay (Persea borbonia (L.) Sprengel) and sassafras (Sassafras albidum (Nutt.) Nees)
are two ecologically important members of the laurel family and are susceptible to laurel
wilt. Redbay is an evergreen tree with natural range covering the southeastern coastal
plain and Florida, and sassafras is a deciduous tree that spans the majority of Eastern
United States [18,19]. Laurel wilt is known to kill greater than 90% of large redbay stems in
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2–3 years [20]. About half the range of sassafras occurs in regions with winter temperatures
consistent with redbay ambrosia beetle cold tolerance, but as of now, laurel wilt is present
in only a small portion of the range of sassafras [21]. Accordingly, studies of laurel wilt
infection in sassafras over long time scales have not been done yet, and little is known
about the disease dynamics in this new host range.

Newly infected redbay and sassafras trees can respond to laurel wilt infection by
producing healthy basal sprouts or epicormic shoots [20]. These basal sprouts are not
infected but can become infected via direct contact with the root system of the infected
parent tree, representing the secondary transmission route for laurel wilt. Because redbay
ambrosia beetles rarely attack small diameter stems, infection of basal sprouts via secondary
transmission can occur more quickly than infection via primary transmission; a sprout
must mature sufficiently to be attractive enough for primary transmission to occur [16].
The degree to which trees produce basal sprouts in response to infection and the rate of
secondary transmission via connected root systems are both species dependent, so these
differences could lead to qualitatively different disease dynamics in different species of
susceptible host populations.

Our aim is to investigate, through mathematical modeling, the ecological and epi-
demiological dynamics of laurel wilt as a case study by which to provide broader insight
into the processes of all lethal, vector-borne tree diseases. We build and analyze a model
to determine the potential impact of basal sprout production and infection on stand-level
disease progression and survivorship. Understanding the role of basal sprouts in epi-
demic progression will provide insight into how to best manage for lethal, vector-borne
diseases and illuminate differences to expect in host species that respond with basal sprout
production at varying intensities. Mathematical models can isolate the effects of specific
components of tree disease dynamics in ways that cannot be manipulated for empirical
study directly (i.e., limiting physical or temporal constraints); therefore, as introductions
of new tree diseases threaten arboreal biodiversity across the globe, increasing the set of
appropriate mathematical models available as tools to support management and mitigate
long-term consequences will be critical.

2. Materials and Methods

We develop a mathematical model for laurel wilt using ordinary differential equations
following the SI-X framework [22] (with X representing vector population as a proxy for
total inoculum) and incorporate discrete host-stage structure. Host trees are considered
infected if they harbor the fungal pathogen (and thus provide suitable host material for
vector brood production) and susceptible otherwise. We separate susceptible and infected
trees into several discrete classes representing host size, consistent with size classes often
reported in data collection [20]. In particular, we separate susceptible trees into PS(t),
MS(t), LS(t), and BS(t) representing the number of susceptible saplings, medium trees,
large trees, and basal sprouts, respectively, in each size class and then separate infected trees
into PI(t), MI(t), LI(t), and BI(t) representing the volume of suitable host material (rather
than the number of trees) for vector brood production provided by saplings, medium trees,
large trees, and basal sprouts respectively. The host seed bank is denoted by D(t) and is
considered neither susceptible nor infected. The final class, X(t), represents the number
of female adult vectors. Due to the obligate nature of the vector–pathogen system [18], all
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vectors are assumed to carry the pathogen. The differential equations of the model are
given by

dD
dt

= rM MS + rLLS − γD− µDD

dPS
dt

= γD− gPPS − µPPS − βPPSX

dMS
dt

= gPPS + gBBS − gM MS − µM MS − βM MSX

dLS
dt

= gM MS − µLLS − βLLSX

dBS
dt

= ρM
MI
vM

+ ρL
LI
vL
− (σ + gB + µB)BS

dPI
dt

= vPβPPSX− δPPI X

dMI
dt

= vMβM MSX− δM MI X

dLI
dt

= vLβLLSX− δLLI X

dBI
dt

= vBσBS − δBBI X

dX
dt

= ωX
(

1− v0X
PI + MI + LI + BI

)
.

(1)

A flow diagram representing the movement between compartments of the model is shown
in Figure 1.
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Figure 1. Flow diagram for Model (1). Solid lines represent flow between host size and infection
classes that occurs independent of vector population size, and dashed lines represent flow between
host size and infection classes that is dependent on vector population size. Lines directed upward
represent maturation between host stages, curves directed downward represent host reproduction
(seed and basal sprout production), and lines with lateral direction represent death, infection, or
degradation of host trees.

2.1. Host Dynamics

Susceptible host dynamics include seed germination, maturation, natural mortality,
and seed production. Saplings mature to medium susceptible trees at rate gP, and suscepti-
ble medium trees mature to susceptible large trees at rate gM. Similarly, susceptible basal
sprouts mature to medium trees at rate gB. Saplings, medium trees, large trees, and basal
sprouts suffer natural mortality at rates µP, µM, µL, and µB, respectively. Both susceptible
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medium and large trees contribute to the seed pool at rates rM and rL, respectively. Seeds
either deteriorate at rate µD or germinate into susceptible saplings at rate γ. Neither redbay
nor sassafras maintain long-term seed pools (redbay seed are not viable after two years [17]
and sassafras seeds can remain viable up to 5-6 years, but the germinative capacity after 5
years is low [23]), so we only consider appropriately large values for µD.

Infected host classes do not grow or contribute to the seed pool, but infected medium
and large trees respond to laurel wilt infection by producing susceptible basal sprouts
at rates ρM and ρL, respectively. This production is scaled by νM and νL, the volume of
medium and large trees, respectively. Infected host material of all classes is degraded
through the use of infected trees by vector for brood production, rendering it unsuitable
for future beetle brood production. This degradation is represented by the outgoing terms
δZZI X, where Z is a place holder for the volumes of infected saplings, medium trees, large
trees, and basal sprouts and δZ is the size-specific degradation rate.

2.2. Vector Dynamics

In laurel wilt and other vector-borne tree diseases, the vector requires infected host
material for successful reproduction, and vector populations decline as disease prevalence
declines [24,25]. Accordingly, we assume the vector population growth depends on both
the current beetle population size and the volume of infected trees. We capture these
assumptions through logistic growth with a nonconstant carrying capacity dependent on
the total amount of infected host volume. We define the nonconstant carrying capacity, K,
as the ratio of the total available volume of infected tree and the volume of infected host
required for each beetle gallery (v0), i.e.,

K =
PI + MI + LI + BI

v0
.

For simplicity, we assume that beetles reproduce equally efficiently in any equivalent vol-
ume of infected material, regardless of the size of tree from which that material originated
(despite some empirical evidence suggesting otherwise [25]; extensions of this work to relax
this assumption are planned for the future; preliminary sensitivity explorations suggest
that the outcome may be robust across sizes).

2.3. Infection Transmission

Transmission of the fungal pathogen occurs via two routes. The primary transmission
occurs with contact between vector and susceptible tree at rates βZ, with incidence terms
βZZSX, where Z is a place holder for the volumes of infected saplings, medium trees,
and large trees. This transmission route represents the abandonment of unsuccessful
boring attempts into healthy trees. We take βP < βM < βL to account for the vector’s
preference for large stems. Incidence terms are scaled by the tree’s volume, vZ, producing a
positive term vZβZZSX into each of the differential equations for the volume of infected
saplings, medium trees, and large trees. Secondary transmission is the direct transmission
of pathogen from infected medium and large trees to susceptible basal sprouts and occurs
at rate σ. Susceptible basal sprouts are scaled by νB, the volume of a basal sprout, and
transferred into the infected basal sprout class. This secondary transmission occurs without
vector involvement because basal sprouts are physically attached to an infected tree via the
root system.

2.4. Model Parameterization and Analysis

We consider numerical approximations of solutions to the differential equations in and
equilibria of Model (1) using a biologically feasible range of parameter values. The default
value for each parameter is listed in Table 1. When possible, values are estimated from data.
In absence of data, values were assumed and then varied to test the sensitivity of the model
to the assumption. See Appendix A for further detail on chosen parameter values.
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To reduce the degrees of freedom among the parameters and to maintain ecologically
relevant orderings of parameters even when exact values are not known, we assume
relationships among stage-specific host parameters. We assume the rate of seed production
for medium trees is 90% that of large trees, the medium tree and basal sprout maturation
rates are equivalent and are 40% that for large trees, and the natural mortality rates of
saplings and medium trees are twice and thrice that of large trees, respectively. We further
assume that size specific primary transmission rates increase with tree size such that the
rates for sapling and medium trees are 1% and 25% that of large trees, respectively. As
a gross estimate for volume of trees, we assume that infected saplings and basal sprouts
contribute equivalent volume and that medium and large trees contribute twice and four
times as much, respectively. Due to a lack of differentiating information, we assume that
basal sprout production is equivalent for large and medium trees (ρ := ρM = ρL) and
host degradation rate is equivalent for all stems (δ := δB = δP = δM = δL). In all cases,
the scaling values are chosen arbitrarily to yield a parameter regime with the desired
parameter inequalities.

Table 1. Summary of stage specific parameters and their default values used in Model (1). See
Appendix A for calculations and references. Values are presented with one significant digit.

Description Units Symbol Default Value

Seed production rate year−1 rL 0.3
rM 0.9rL

Seed germination rate year−1 γ 0.1

Maturation rate year−1 gP 0.08
gB gP
gM 0.4 gP

Natural mortality rate year−1 µD 0.3
µL 0.01
µM 2 µL
µP 3 µL
µB 0.001

Primary transmission rate year−1beetle−1 βL 0.02
βM 0.3 βL
βP 0.01 βL

Secondary transmission rate year−1 σ 1

Basal sprout production rate year−1 ρL 2
ρM ρL

Volume of host units3 vL 4
vM 2
vP 1
vB 1

Host degradation rate year−1beetle−1 δL 0.02
δM δL
δP δL
δB δL

Volume of beetle gallery units3 v0 0.3

Vector per capita reproductive
rate year−1 ω 8
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When parameters are changed from the default, we define low and high values as 50%
and 200% of the default value, respectively. When considering a range of values of certain
parameters, we use Latin hypercube sampling and sample values between the low and
high value for each parameter. Related parameters are varied proportionally, and when a
parameter is not varied, its default value is used. (Note: the set of parameters we assumed
to be related were chosen such that independent variations would not affect the qualitative
outcomes of the modeled dynamics, only the rapidity and magnitude of the outcomes).

3. Results

We investigate both the short-term (transient) and long-term (asymptotic) dynamics
of the mathematical model, focusing on the effects of the rates of basal sprout production
(ρ) and secondary infection (σ). We first consider the dynamics of the system without
basal sprouting (ρ = 0). In the absence of basal sprouting (and otherwise at default
parameter values), all host populations decline after disease introduction, with the large
tree population hitting 80% mortality first after 1.46 and the vector population reaching a
peak at 1.56 years (Figure 2, solid line). Within a parameter space of 250 samples varying
rZ, γ, gZ, µD, and βZ, trajectories follow similar dynamics, but the timing of crashes and
peaks varies. In particular, with varied host growth and transmission parameters, the large
tree population reaches 80% mortality between 1.0 and 2.6 years after infection, and the
vector population peaks between 1.2 and 2.2 years.

Figure 2. Susceptible large tree population and vector population over three years with no basal
sprout production (solid line), basal sprout production with no secondary infection (dashed line),
and basal sprout production with secondary infection (dotted line). (a) Initial decline of susceptible
population is invariant under basal sprout production and infection. (b) The vector population peaks
at 1.56 years. The maximum size of the vector population is dependent on basal sprout production
and infection, but when the maximum occurs is invariant with respect to basal sprout production
and infection. Unless zero, all parameters take the default values.

We then consider low, default, and high rates of basal sprout production (ρ) with
coupled with no, low, default, and high rates of secondary infection (σ) for all 250 samples.
Throughout this parameter space, the time to 80% mortality changes by at most 0.23 years
(with the largest changes occurring when β is smallest). The time of the peak of the
vector population is largely unaffected by basal sprouting, with the peak changing by at
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most 0.03 years for varied values of ρ and σ. However, the size of the beetle population
at the peak does increase as either ρ or σ increase. Throughout this parameter space,
large values of ρ and σ yield a peak population size no more than about 25 beetles larger
than the peak population size in absence of basal sprouting. Trajectories of the large tree
and vector populations at the default parameter values with no basal sprout production,
sprout production in absence of secondary infection, and sprout production with secondary
infection are given in Figure 2.

Equilibrium analysis of the system shows three biologically feasible equilibria: a vector-
and-host extinction equilibrium, a disease-free equilibrium, and an endemic equilibrium.
The disease-free equilibrium is a boundary case that only exists when growth and death
parameters balance correctly. The endemic and extinction equilibria both exist. The
extinction equilibrium is unstable, and numerical simulations suggest the stability of the
endemic equilibrium is robust throughout the biologically feasible parameter space (see
Appendix B). In particular, the production and secondary infection of basal sprouts do not
affect the existence or stability of equilibria.

The production and secondary infection of basal sprouts have profound effects on
the size of both host and vector populations at the endemic equilibrium. In the absence of
secondary infection (σ = 0), the production of basal sprouts yields a larger host population
at endemic equilibrium. Although the host population can persist without basal sprouting
(ρ = 0) when seed production and germination are high (γ and rZ 200% of default), the
number of susceptible medium trees at the endemic equilibrium is nearly zero, and thus
not biologically feasible when ρ = 0. In either case, the number of susceptible medium
trees at the endemic equilibrium increases approximately linearly as ρ increases (Figure 3).
Other classes of susceptible hosts follow similar trends.

Figure 3. Medium tree population size at equilibrium with no secondary infection for low (dashed,
50% of default) and high (solid, 200% of default) seed production and germination. The size of
the medium tree population at the endemic equilibrium increases as basal sprout production rate
increases when there is no secondary infection in both cases.

In the case of basal sprout production with secondary infection (ρ > 0, σ > 0),
the production of basal sprouts increases the host population compared to that with no
production for small rates of basal sprout infection. In particular, when the ratio of basal
sprout secondary infection rate to basal sprout production rate is low ( ρ

σ < 10−3), the
effect of secondary infection is negligible. Host populations at equilibrium are only slightly
smaller than they are with no secondary infection. However, as the rate of basal sprout
secondary infection increases relative to the production rate, the utility of basal sprouts
decreases and host populations at equilibrium decline significantly (Figure 4). When seed
production and germination rates are low, high ratios of basal sprout infection rate to
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production rate yield medium tree population sizes at equilibrium near zero (Figure 4a),
comparable to the population at equilibrium without basal sprout production (ρ = 0).
When seed production and germination rates are high, high ratios of basal sprout secondary
infection rate to production rate yield medium tree population sizes at equilibrium much
larger than zero. However, the population is smaller than that with no basal sprout
production (Figure 4b).

Figure 4. Medium tree population at equilibrium size with secondary infection (a) with low values
of seed production and germination (r and γ, 50% of default) and (b) with high values of seed
production and germination (200% of default). As basal sprout secondary infection (σ) increases,
the medium tree population at equilibrium declines for low (solid), default (dashed), and high (dot
dashed) basal sprout production (ρ).

4. Discussion

Our results show that the production and secondary infection of basal sprouts by
infected trees in response to disease are unlikely to affect the short-term dynamics of the
disease but can profoundly affect the size of host population over longer time scales. Basal
sprouts do not affect the initial spread of disease and tree mortality because the time scale
of initial disease dynamics is much faster than the time scale of basal sprout production.
If disease dynamics could be artificially slowed through active management (such as
sanitation efforts to remove infected trees as has been done in beech bark disease [26]
and Dutch elm disease [27]), then early production of basal sprouts could affect the initial
dynamics of disease spread.

Over longer time scales, basal sprout production yields a larger host population and
is necessary to maintain the host population when reproduction via seeds is unlikely.
The efficacy of basal sprout production in either case decreases as secondary infection
increases. When compared to no sprouting at all, basal sprouting with very high rates of
secondary infection yields a similarly exhausted host population when seed production
and germination are low but an even smaller host population when the seed production
and germination are high. This suggests that basal sprouts should be considered even
when reproduction via seeds is not fully limited by disease. Moreover, this suggests that
management strategies that protect susceptible basal sprouts from secondary infection
could sufficiently increase the host population to save the host from local extinction.

The dynamics of this mathematical model are consistent with time-series data of
disease progression in redbay. Field work in redbay shows that vector populations exhibit
great increase immediately after introduction and that both host and vector populations
exhibit substantial decline over 2–5 years. In many locations, vector populations are
maintained at very low levels for many years after the initial infestation, and in others
no beetles were trapped in postepidemic plots [18,20,25]. It was hypothesized that vector
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populations were being maintained through the use of small stems for brood production,
despite their poor quality as host material. Our model supports this hypothesis because
it yields an endemic equilibrium with positive host and vector populations, and those
populations are very small under poor host growth and high basal sprout secondary
infection. While our model does not predict extinction, it does allow for population levels
so small that extinction is likely through stochastic events (e.g., increased vulnerability due
to the small population paradigm [28]).

Time series data on disease progression in sassafras (outside of the range of redbay) is
not available, but our results give a framework of what to expect in laurel wilt in sassafras
stands. Sassafras does not respond to laurel wilt infection by producing basal sprouts,
but sassafras has been known to produce epicormic shoots off the trunk or lower crown
of the tree. These epicormic shoots can grow into branches and persist without infection
symptoms for several years, despite infection in the main stem [20]. It is unclear how the
production of epicormic shoots will affect disease dynamics. If matured epicormic shoots
function as independent trees themselves, then our mathematical model suggests that a
high rate of epicormic shoot production coupled with a low rate of secondary infection will
maintain the population size. However, if the placement of epicormic shoots on decaying
stems inhibits them from maturing into independent, tree-like stems, then our mathematical
model suggests that epicormic shoot production is unlikely to preserve host populations
from extinction. Further study of the function of epicormic shoots in sassafras trees infected
with laurel wilt is merited.

The formulation and results of our model align to some degree with other ordinary
differential equation models that do not specifically consider basal sprout production
in vector-borne plant disease systems. Models of Dutch elm disease include host stage
structure and dependence of the vector population on infected host material as does our
model, but the models do not isolate basal sprout production [13]. Models of pine wilt
disease have similar transmission terms as in our model, but many assume a constant
influx of vector population independent of available material, which is inconsistent with
redbay ambrosia beetle reproduction [8,9]. In the models for each of these diseases, vectors
can be noncarriers of the pathogen. This assumption is also poor for laurel wilt due to the
obligate nature of the vector-pathogen complex. Despite these differences, the dynamics of
our model generally align with the dynamics of these aforementioned vector-borne disease
models that predict either a stable disease-free equilibrium or a stable endemic equilibrium,
depending on the size of the basic reproductive number. Our model also yields a stable
endemic equilibrium but does not yield a disease-free equilibrium for a majority of the
biologically feasible parameter space because a limit on host growth is not incorporated.
A basic reproductive number thus was not calculated; however, we find that the endemic
equilibrium is always stable, with trajectories never experiencing unbounded growth with
or without disease.

Of course, there are disease systems to which this direct model does not apply. As
a model for vector-borne tree disease, our model captures both the epidemiological im-
pact of vector population size on disease progression and the ecological impact of disease
progression on vector population size. Tree diseases transmitted without a vector are
likely to have different dynamics and should be modeled differently. However, basal
sprouts are also commonly produced in response to diseases with other modes of transmis-
sion, so similar questions are relevant and have been studied both empirically and with
mathematical models.

In the case of airborne tree disease systems, the production of basal sprouts maintains
the population despite high disease-induced mortality. For example, the fungal pathogen
(Cryphonectria parasitica) that causes chestnut blight kills the main stem of American chestnut
(Castanea dentata) and prevents seed production, but infected American Chestnuts can
regenerate through the still-living root system [29]. Most sprouts of mature American
Chestnuts are ripped out when the main stem falls, but the sprouts of infected saplings
survive; thus, nearly all mature American Chestnut trees alive today in New England are
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the matured sprouts of blight-infected saplings [29,30]. The tree disease sudden oak death
is caused by an airborne, fungus-like pathogen (Phytophthora ramorum) and causes high
mortality in mature coast live oak (Quercus agrifolia) and tanoak (Notholithocarpus densiflorus).
Infected trees respond to infection by producing basal sprouts while root systems are
still intact, and mathematical models suggest that this production will maintain the tree
populations postepidemic [31] and impacts the efficacy of management strategies [32]. In
the sense that basal sprouting in an airborne tree disease keeps the host population from
extinction and that sprouting should be considered in the development of management
strategies, our results are consistent with models of airborne diseases. However, we find
the case of vector-borne diseases that basal sprouting can only maintain the population for
small rates of basal sprout infection via secondary transmission.

All mathematical models include assumptions about population interactions that
could affect model outputs. Most assumptions in our model are supported by empirical
evidence, but at times sufficient empirical evidence is lacking to support one assumption
over another. In particular, little is known specifically about how the beetle and infected host
trees interact, so assumptions regarding this interaction had to be made. We have assumed
that vectors are more strongly attracted to large stems than small stems (i.e., βP < βM < βL).
If this assumption were relaxed, we expect host mortality to be spread more evenly over
stage classes rather than being highest for large trees. This could slow the speed of disease
transmission because medium and small trees offer less volume of infected material for
vector reproduction. We have also assumed that all equivalent infected volumes support
equivalent vector reproduction. Although this is mathematically more tractable, in reality,
galleries in small diameter stems produce smaller broods and have longer maturation
times than galleries in large diameter stems [25]. As a result, our model could overestimate
the utility of infected basal sprouts for vector reproduction and thus overestimate vector
population at equilibrium. This could mean that the vector population could go locally
extinct (as per the small population paradigm) if infected basal sprouts are of insufficient
quality for substantial vector reproduction. Lastly, it is unclear how vector utilization of
host material for reproduction contributes to the degradation of material. It is possible
that this degradation is density independent (occurring to the same degree regardless of
vector population size) or density dependent (with more degradation occurring when
the vector population is large). With an absence of empirical evidence, we have assumed
density-dependent degradation. An exploration of the consequences of this assumption is
planned in future work.

5. Conclusions

We have created a mathematical model for the epidemiology of a lethal, vector-borne
tree disease with host stage structure and basal sprout production by infected trees using
laurel wilt as a model system. We assumed that all vectors carry the pathogen and that
transmission could occur via contact with a vector or through direct contact between
infected trees and their attached basal sprouts. We found that in vector-borne tree disease
systems, the production of basal sprouts by an individual infected tree affects the disease
dynamics on the population level. The disease remains endemic regardless of basal sprout
production or secondary infection, but the host population is maintained at high levels
only when basal sprout secondary infection is sufficiently infrequent when compared to
basal sprout production. When basal sprout infection is high, the host population levels
many years after initial introduction are the same or lower than in the absence of basal
sprout production.

Basal sprout production and secondary infection can have profound effects on disease
dynamics in trees. To include these effects in best practices for management and mitigation
of a newly introduced vector–pathogen duplex, rapid experimentation to determine a
number of factors related to basal sprouting will be critical. These, at least, include the rate
of production of basal sprouts by infected trees, the rate of secondary infection of basal
sprouts via root systems, and the nature of disease transmission, host association, and
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vector biology. When these factors together reveal the potential reliance on basal sprout
production for tree population persistence, management should potentially explore such
interventions as active clearance of infected biomass, while otherwise strategies may be
more effective when focusing on interruption of the spread of the vector. Models, such as
the one here presented, provide a critical tool for proactive management as global spread
of vectors and pathogens expose old forests to new threats.
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Appendix A. Calculation of Parameter Values

When possible, parameter values are estimated from the literature. Estimates on the
diameter growth, survival, and volume of sassafras and other hardwoods is given in [33].

Appendix A.1. Host Tree and Seed Mortality

Average size-based yearly survival probability for other hardwoods is 0.967 for
saplings, 0.972–0.987 for medium trees, and 0.987–0.997 for large trees. Thus, we as-
sume each year 1% of large trees die (µL = 0.01 trees/year), 2% of medium trees die
(µM = 0.02 trees/year), and 3% of saplings die (µP = 0.03 trees/year). Redbay seeds re-
main viable for 1–2 years [17], and sassafras remain viable for 5–6 years [23]. We choose an
intermediate viability of 3 years, and the yearly mortality rate is given by the reciprocal of
the average lifespan (µD = 1

3 seeds/year).

Appendix A.2. Host Maturation

Size based maturation rates are calculated from data on the mean annual diameter
growth by diameter class [33]. Within the category other hardwoods (data for sassafras not
given individually), yearly growth rates corresponding to medium trees (2.5 cm–10 cm)
vary between 0.11–0.98 cm/year. We choose a conservative annual diameter growth rate
of 0.24 cm/year for medium trees. Accordingly, trees spend 31.25 years in this category
( 10 cm−2.5 cm

0.24 cm/year ), which yields maturation rate of gM = 1/(31.25 years) = 0.032 trees/year.
Data is unavailable for yearly diameter growth rate for stems under 2.5 cm. We assume
a slightly smaller growth rate of 0.2 cm/year, which implies trees spend 12.5 years in the
sapling category ( 2.5 cm−0 cm

0.2 cm/year = 12.5 years). We then take the maturation rate to be the
reciprocal of the time spent as a sapling (i.e., gP = 0.08 trees/year). We assume that basal
sprouts and saplings mature at the same rate (i.e., gB = gP = 0.08 trees/year).
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Appendix A.3. Seed Production and Germination

An estimate for the seed production rate was difficult to obtain from data. The
mean yearly seed rain for sassafras is 0.0063 seeds/m2/year [34]. Assuming one tree
spreads seeds over an area of 50 m2 (arbitrarily selected), we have a per tree output of
approximately rL = 1/3 seed per year. We assume medium trees have a slight reduction
in seed production and take rM = 0.9rL. To an average reader, these quantities seem quite
small. No data is available for seed germination rates in a forest setting. Accordingly, we
select a seed germination rate of 10%, which yields a positive population growth rate in
absence of disease. This rate seems quite high, perhaps in part because it is compensating
for a small seed production rate.

Appendix A.4. Tree Volume

Regarding the volume of trees, we assume that large trees provide twice as much
suitable material as medium trees. Moreover, we assume medium trees provide twice as
much suitable material as saplings and basal sprouts.

Appendix A.5. Basal Sprout Parameters

In the absence of data to the contrary, we assume that basal sprouts and saplings
mature at the same rate (i.e., gB = gP = 0.08 trees/year). Evans et al. [17] reported a very
high redbay sprout mortality rate (79%) years after introduction of disease, but this statistic
is not decoupled from mortality due to secondary infection. It is likely that most of the basal
sprout mortality reported is due to secondary infection rather than naturally occurring
mortality. We assume that natural (not disease-induced) mortality of basal sprouts is much
lower than that of saplings because basal sprouts have the support of an existing root
system. Thus, we take µB = 0.0013 trees/year.

In redbay plots, two-thirds of infected trees had at least one sprout 1.5 years after
infection, and infected trees had on average 5 basal sprouts 7 years after infection [20].
Accordingly, rates for basal sprout production and infection were chosen on be on the
magnitude of one basal sprout produced every six months to two years, and basal sprout
infection was chosen on a similar magnitude.

Appendix B. Equilibrium Analysis

We perform an equilibrium and stability analysis on Model (1). We do this by comput-
ing the Jacobian of Model (1), evaluating at the equilibrium, and determining the sign of
the eigenvalues of the resulting matrix. If the eigenvalues all have negative real part, the
equilibrium is called stable. Otherwise, the equilibrium is unstable. For more information,
see [35,36].

We begin by determining equilibria. From the last differential equation equated to
zero, we have that either X = 0 or X = K, representing either extinction or maintenance of
the vector population at equilibrium. We proceed with the former.

Appendix B.1. Extinction of Vector Population

Equating all differential equations to zero and assuming X∗ = 0 immediately implies
BS
∗ = 0 and that MI

∗ is a negative multiple of LI
∗ (assuming all positive parameters).

Thus, the only biologically feasible equilibrium without vectors has BS
∗ = MI

∗ = LI
∗ = 0.

Furthermore, we obtain expressions for D∗, PS
∗, and LS

∗ as positive multiples of Ms
∗. First,

supposing MS
∗ = 0, we yield an extinction equilibrium in which all susceptible host classes

are zero. We have insufficient information to obtain representations for PI
∗ or BI

∗. Any non-
negative value of these would yield a biologically feasible extinction equilibrium. (That is,
extinction of vectors despite unused infected material of small diameter remaining is possi-
ble.) The extinction equilibrium is given by (D∗, PS

∗, MS
∗, LS

∗, BS
∗, PI

∗, MI
∗, LI

∗, BI
∗, X∗),

they are given by Eq0 = (0, 0, 0, 0, 0, PI
∗, 0, 0∗, BI

∗, 0).
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If MS
∗ is nonzero at equilibrium (and thus other susceptible host classes are nonzero),

we yield a nonextinction disease-free equilibrium when γ = γ0 > 0 where

γ0 =
µDµL(gP + µP)(gM + µM)

gP(gMrL + µLrM)− µL(µP + gP)(µM + gM)
. (A1)

This threshold value γ0 is consistent with the minimum germination rate required for
exponential growth (instead of exponential decay) of the host population in the absence
of disease.

Due to the lack of restriction of the representations of PI
∗ or BI

∗, we obtain a plane
of possible equilibria (rather than a unique point). Thus, unused infected tree material
could remain in the disease-free, nonextinction equilibrium. The disease-free, nonextinc-
tion equilibrium, expressed in the form (D∗, PS

∗, MS
∗, LS

∗, BS
∗, PI

∗, MI
∗, LI

∗, BI
∗, X∗), is

given by

Eq1 =

((
gMrL + µLrM
(γ + µD)µL

)
MS
∗,
(

gM + µm

gP

)
MS
∗, MS

∗,
(

gM
µL

)
MS
∗, 0, PI

∗, 0, 0∗, BI
∗, 0
)

,

where MS
∗ is positive and PI

∗ and BI
∗ are nonnegative.

We claim that under reasonable assumptions the disease-free, nonextinction equilib-
rium exists.

Lemma A1. Assume rL > µL and rM > 3µM. Furthermore, assume gM < gP, µM < µP < gP,
and all parameters are positive. Then γ0>0.

Proof. The numerator of Equation (A1) is always positive. Thus Equation (A1) is positive
iff the denominator is positive. The denominator of Equation (A1) is positive iff

rL
µL

> 1 +
µMgP + µMµP + gMµP − rMgP

gMgP
.

By assumption, µP
gP

< 1, gM
gP

< 1, and µP
µM

< 1. Thus,

1 +
µP
gP

+
gM
gP

µP
µM

< 3.

Multiplying by µM and applying the lower bound of rM yields

µM

(
1 +

µP
gP

+
gM
gP

µP
µM

)
< 3µM < rM.

This inequality is equivalent to

µMgP + µMµP + gMµP < rMgP.

Consequently,
µMgP + µMµP + gMµP − rMgP

gmgp
< 0,

and
1 +

µMgP + µMµP + gMµP − rMgP
gmgp

< 1 <
rM
µL

.

This is sufficient to show γ in Equation (A1) is positive.

The assumptions in Lemma A1 are reasonable under normal biological conditions.
Adult trees produce a large quantity of seeds and suffer mortality infrequently. Thus, the
lower bounds on the reproductive output of medium and large trees hold throughout
the biologically feasible parameter space. Regarding the growth rates of medium trees
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and saplings, we note that the medium class represents a larger spread of diameters than
saplings (stems less than 2.5 cm DBH). As such, a tree that grows in DBH linearly will spend
more time in the medium size class than in the sapling class. Thus, gM < gP. However,
medium trees are more resilient than saplings and, as such, have a lower mortality rate, i.e.,
µM < µP. Finally, the assumption that gP > µP requires that more saplings mature than die
in a given time step. We maintain these inequalities throughout the swept parameter space.

Because the assumptions of Lemma A1 hold over the biologically feasible parameter
space, we conclude the boundary representation for γ is positive throughout the biological
feasible parameter space. Moreover, numerical experiments show that the value of γ when
evaluated at parameters within the biologically feasible parameter space is of an order of
magnitude that is also biologically feasible. Thus, we have, mathematically, a biologically
feasible disease-free equilibrium with a viable host population. However, this boundary
case is unlikely to persist through natural perturbations of parameter values.

To determine the stability of these equilibria, we compute the Jacobian of the ODE
system and substitute A = 0. The characteristic polynomial of the Jacobian contains no
other state variables, so we proceed with stability of both equilibria that exclude vectors
simultaneously. The characteristic polynomial in x of the Jacobian of the system at an
equilibrium with no vectors is a tenth-degree polynomial, which can be factored as

x4(ω− x)(gB + µb + σ + x)p(x),

where p(x) is a fourth-degree polynomial in x. Thus, ω, −(gB + µb + σ) , and 0 are
eigenvalues. Because ω is assumed positive, both equilibria are unstable, despite the
zero eigenvalues.

Appendix B.2. Endemic Disease Equilibrium

If X 6= 0, then X = K, where K is a function of the infected classes. That is, X =
BI+LI+MI+PI

v0
. We immediately obtain the expressions

PI
∗ =

PS βP vP
δP

,

MI
∗ =

MS βM vM
δM

, and

LI
∗ =

LS βL vL
δL

.

We proceed with the remaining differential equations, setting one equal to zero, solving
for a variable, and substituting that expression into the other equations, yielding

BS
∗ =

BI δB X
σ vB

,

PS
∗ =

δP

(
MS gMv0 − LSv0µl − LS βL

(
A− PI

v0

))
LS βL βP vP

,

BI =
σ v0 vB

(
LS βL ρL

δL
+ MS βM ρM

δM

)
δB

LI + MI −
v0

(
LS µL−MS gM+

LS βL (LI+MI)
v0

)
LS βL

 (gB + µB + σ)

,

and

MS
∗ =

D (γ + µD)− LS rL
rM

.
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Doing so increases the degree of the remaining equations to be solved and the process
ultimately fails when two variables remain, Ls and D, and two differential equations, dPs

dt
and dMS

dt . Each differential equation can be expressed in factored form as

dPs

dt
=

a(D, Ls)

LS
2c(D, LS)

and (A2)

dMs

dt
=

b(D, Ls)

Lsc(D, LS)
(A3)

where a(D, LS) is a third-degree polynomial in D and a fourth-degree polynomial in LS
and b(D, LS) is a third-degree polynomial in both variables. Neither differential equation
can be solved for either remaining variable using symbolic algebra in MATLAB.

Despite not having expressions for D∗ and LS
∗, we proceed in search of support that

an endemic equilibrium exists. We see that we have an endemic equilibrium iff there
exists a pair (D∗, LS

∗) such that a(D∗, Ls
∗) = b(D∗, Ls

∗) = 0. These equations cannot be
solved explicitly for either remaining state variable. However, it can be shown (using
an intermediate value theorem argument) that a(D, LS) and b(D, LS) each must have a
nonempty set of positive roots. Moreover, in a sweep of the biologically feasible parameter
space, we demonstrate that the curves of solutions to each equation always intersect.

Numerical investigations suggest that there exists a pair (D∗, LS
∗) such that

a(D∗, Ls
∗) = b(D∗, Ls

∗) = 0 throughout the biologically feasible parameter space. We use
Latin hypercube sampling with N = 1000 samples varying rL, γ, gP, µD, µL, µB, βL, ρ, σ, δP,
and ω between 10−2α and 102α where α is the default value listed in Table 1. Parameters
that depend on the varied parameters were covaried. To ensure that the sampled parameter
space is biologically feasible, we remove samples in which γ > γ0 > 0 does not hold.
This removes, on average, approximately 25% of samples. Parameter combinations that
were removed generally had relatively small values for rl , γ, and gp (parameters that pos-
itively affect host growth) and/or relatively large values for µD, µL, and µB (parameters
that negatively affect host growth). In case this removal left regions of parameter space
insufficiently sampled, we perform a second sweep that restricts rl , γ, and gp to 10−2α and
101α and µD, µL, and µB to 10−1α and 102α, where α is the default value listed in Table 1.
We sample with N = 10, 000 and again remove samples in which γ > γ0 > 0 does not hold
(approximately 95% of samples).

To find the pair (D∗, LS
∗) for each parameter combination, we discretize the set of pos-

itive roots {(LS, Da)} to a(D, LS) and {(LS, Db)} to b(D, LS) by evaluating each expression
at values of LS and approximating the values of Da and Db using the function solve. We in-
spect the discretized set of roots to each equation and search for an intersection of the curves
in the form of a sign change in the expression Da − Db at values of Da and Db that are posi-
tive and real. A positive, real pair (D∗, LS

∗) was located at every combination in each sweep.
Thus, there appears to always be a pair of positive values for the seed population and the
large susceptible tree population that are roots of both a(D, LS) and b(D, LS). By using these
approximations of D∗ and LS

∗, we can approximate the values of all states at the endemic
equilibrium using the algebraic expressions above. For example, the endemic equilibrium
at the default parameter values is given by (D∗, PS

∗, MS
∗, LS

∗, BS
∗, PI

∗, MI
∗, LI

∗, BI
∗, X∗) =

(0.5438, 0.4805, 0.7056, 0.0719, 0.6889, 0.0072, 0.5292, 0.4315, 3.2595, 12.6864). We conclude
that numerical experiments support the existence of an endemic equilibrium throughout
the biologically feasible parameter space.

Appendix B.3. Numerical Support of Stability of Endemic Equilibrium

To determine the stability of the equilibrium, we investigate the eigenvalues of the
Jacobian of the system evaluated at the endemic equilibrium. The eigenvalues of this 10× 10
system cannot be computed algebraically. Thus, we resort to numerical experiments. For
each parameter combination in the sweeps, we evaluate the Jacobian of the system at
both the parameter values and at the approximations of the state variables at the endemic
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equilibrium computed previously. We compute the eigenvalues of the resulting matrix.
Throughout the biologically feasible parameter space, the eigenvalues of the Jacobian have
negative real part. We conclude that numerical experiments support the asymptotic stability
of the endemic equilibrium throughout the biologically feasible parameter space.

Appendix B.4. Numerical Support of Global Stability

To determine the global stability of the endemic equilibrium, we confirm that nu-
merical approximations of the solutions to the ODE system (computed via the MATLAB
function ode45) converge to the theoretical endemic equilibrium. For each parameter com-
bination, we approximate the value of D∞ and LS

∞ by running the model for 10,000 years
or until equilibrium is reached and note the number of seeds and large trees. We compare
the approximations of (D∗, LS

∗) against the values of (D∞, L∞
S ). The Euclidean difference

between these two points can be made less than 10−2 trees throughout the vast majority of
the biologically feasible parameter space by using an increasingly fine mesh to compute D∗

and LS
∗. (This is not the case when host life-cycle parameters are restricted and when β is

less than 1% of the default value. In this case, solutions the pairs (D∗, LS
∗) and (D∞, LS

∞)
can be distant, but both pairs are sufficiently far from the origin. We blame the inconsistency
on numerical error within ode45, solve, or both for exceptionally small values of β.)

We also evaluate |a(D∞, LS
∞)| and |b(D∞, LS

∞)| and confirm the values are near zero
to confirm the system is at equilibrium, which would suggest the equilibrium reached is
the endemic equilibrium. The results are always less than 10−19 and do not vary with the
size of the sampled parameter space or number of parameter combinations considered.
This is numerical support of the global stability of the endemic equilibrium throughout the
biologically feasible parameter space.
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