
Citation: Wells, L.A.; Chung, W.

Real-Time Computer Vision for Tree

Stem Detection and Tracking. Forests

2023, 14, 267. https://doi.org/

10.3390/f14020267

Academic Editor: Eduardo Tolosana

Received: 28 December 2022

Revised: 20 January 2023

Accepted: 27 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Real-Time Computer Vision for Tree Stem Detection
and Tracking
Lucas A. Wells *,† and Woodam Chung

Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University,
Corvallis, OR 97331, USA
* Correspondence: lucas@silvxlabs.com
† Current affiliation: Silvx Labs, Missoula, MT 59802, USA.

Abstract: Object detection and tracking are tasks that humans can perform effortlessly in most
environments. Humans can readily recognize individual trees in forests and maintain unique
identifiers during occlusion. For computers, on the other hand, this is a complex problem that
decades of research have been dedicated to solving. This paper presents a computer vision approach
to object detection and tracking tasks in forested environments. We use a state-of-the-art neural
network-based detection algorithm to fit bounding boxes around individual tree stems and a simple,
efficient, and deterministic multiple object tracking algorithm to maintain unique identities for stems
through video frames. We trained the neural network object detector on approximately 3000 ground-
truth bounding boxes of ponderosa pine trees. We show that tree stem detection can achieve an
average precision of 87% using a Jaccard overlap index of 0.5. We also demonstrate the robustness
of the tracking algorithm in occlusion and enter–exit–re-enter scenarios. The presented algorithms
can perform object detection and tracking at 49 frames per second on a consumer-grade graphics
processing unit.

Keywords: object detection; multiple object tracking; convolutional neural network; machine vision;
stereo vision

1. Introduction

Sustainable forest management has been the central concept of managing forests
throughout the past several decades and is widely recognized as an essential tool in mitigat-
ing climate change [1]. This paradigm shift has had considerable impacts on silvicultural
systems and how they are implemented in many places around the world [2,3].

In order to meet a diverse set of objectives, silvicultural treatments have evolved into
more elaborate, often spatially-explicit prescriptions [4]. However, these new prescrip-
tions can undoubtedly cause an increase in implementation costs due to more time and
personnel invested to layout prescriptions, the reduction in harvesting productivity, and
the increased level of administration and monitoring needed to ensure environmentally
compliant operations and desirable future conditions. Therefore, it has been the central
focus of forest engineering and operations communities worldwide to devise forest prac-
tices that accommodate the need for complex silvicultural and harvesting prescriptions
without compromising economic efficiency, safety, and environmental quality [5]. One
solution is to leverage new technologies to improve forest operations’ sustainability by
providing improved data and augmenting equipment operators through intelligence and
automation [6,7].

We have developed a vision-based automatic tree measurement and mapping system
to contribute to sustainable forestry. The system consists of three components: automatic
stem detection and tracking, automatic dendrometry, and vision-aided localization and
mapping. The system is intended to help reduce silvicultural treatment costs by eliminating
the need for individual tree marking, lessen the mental workload of equipment operators

Forests 2023, 14, 267. https://doi.org/10.3390/f14020267 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14020267
https://doi.org/10.3390/f14020267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-9210-8112
https://orcid.org/0000-0001-9203-7166
https://doi.org/10.3390/f14020267
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14020267?type=check_update&version=1

Forests 2023, 14, 267 2 of 18

by providing data regarding prescription compliance in real-time, and advance forest
operational planning and automation through 3D visualization and mapping of trees and
work environments.

This paper introduces computer vision algorithms for real-time tree detection and
tracking as the first part of our vision system. Due to the complexity and details of each
component, we intend to introduce the other two components in subsequent papers.

Object detection and tracking are tasks that humans can perform effortlessly in most
environments. For example, humans can easily recognize trees in a forest and reassociate
previously detected trees after occlusion or re-entry to the field of view. However, object
detection and tracking is a complex problem for computers, and only recent research has
successfully provided robust and reliable solutions. In this work, we present computer
vision algorithms for two fundamental visual tasks in forestry: tree stem detection and
temporal tracking in a 6-DoF camera. Object detection algorithms localize the spatial extent
of some object (e.g., a tree stem) in an image. Tracking, on the other hand, maintains
knowledge of the detected object through time; measurements made on a tree stem in
one frame (e.g., a segmentation of the stem for diameter estimation) are available in the
next frame of the video sequence. Tracking an object means that the segmentation only
needs to be refined instead of segmenting the tree with no previous knowledge, which can
be computationally expensive. Furthermore, a unique identifier can be maintained for a
specific tree stem so that uncertainties in measurement, such as diameter, can be reduced
by averaging the measurements over time.

1.1. Object Detection

An object detection system combines two fundamental problems in computer vision:
object localization and classification. Localization seeks to recognize instances of an object
in an image, typically represented by a bounding box. Classification assigns a probability
that describes the likelihood of the object belonging to some class. Traditionally, object
detection systems used sliding windows techniques to extract features from regions of the
image and performed classification on these features using support vector machines or
random forest classifiers. The most notable works on sliding window-based object detection
are the Viola–Jones detector [8], the histogram of oriented gradients (HOG) detector [9],
and the deformable parts-based model (DPM) [10].

In 2012, Krizhevsky et al. [11] achieved an unprecedented classification error rate
on the ImageNet large-scale visual recognition challenge [12] using a deep convolutional
neural network (CNN). The seminal work by [11] motivated research to integrate CNNs in
object detection pipelines. CNN-based objection detection algorithms are broadly catego-
rized into two-stage methods [13–18] and one-stage methods [19–24]. Two-stage methods
perform CNN feature extraction on multiple regions in the image. One-stage methods
frame detection as a regression problem and perform detection and classification by passing
the entire image through the network once. We refer the reader to [25] for a review of deep
learning applied to object detection.

In the context of precision forestry, more research should be dedicated to real-time tree
stem detection using camera sensors due to their low costs and robustness to environmental
conditions. Current research has focused on sensor fusion methods using cameras and
LiDAR [26,27] or short-range structured light systems [28]. Other vision-based methods
have been proposed [29–31] but rely on unrealistic assumptions about the visual contrast
between the edges of the stem and the background.

1.2. Multiple Object Tracking

Multiple object tracking (MOT) is a well-developed problem in computer vision
where the task is to detect multiple objects of some desired class or classes and track their
identities through a sequence of images. Thus, MOT algorithms that do not require manual
initialization of object boundaries rely on an object detection system to localize objects.
Situations when the object detection system fails to detect an object or when the object

Forests 2023, 14, 267 3 of 18

becomes occluded or out-of-sight are typically handled by predicting the object’s trajectory
based on previous observations. The Kalman filter [32] is a popular method for trajectory
prediction in dynamical systems that are assumed to be linear-Gaussian. In situations with
non-linear Gaussian motion, tracking systems appeal to the extended Kalman filter. If
neither assumption can be validated, such as in cases where the camera motion is sporadic
and cannot be sufficiently described by some underlying motion model, then tracking
systems typically use a deterministic approach where heuristics are employed to temporally
match objects across frames. The tracking algorithm presented in this work is categorized as
the latter. We refer the reader to [33] for a comprehensive review of multiple object tracking.

MOT is often framed in the context of a stationary camera where multiple dynamic
objects enter and exit the frame, such as in video surveillance [34,35], or as a dynamic cam-
era tracking multiple dynamic objects, such as tracking objects from a moving vehicle [36].
Since trees are stationary objects, our problem is framed as tracking static objects from
a dynamic camera, reducing the problem to estimating the motion of the camera. With
knowledge of camera motion, we can make detection predictions and find an optimal as-
signment between predictions and new detections. However, when stems become occluded
or exit and re-enter the frame, difficulties arise. The tracking algorithm presented in this
chapter handles both cases.

We are not aware of any work dedicated to the problem of real-time tree stem tracking
in video sequences. The work by [26] handles temporal detection matching in a simul-
taneous localization and mapping (SLAM) setting using the extended information filter.
However, their proposed SLAM correction step is computationally expensive and unsuit-
able for real-time performance.

In the following sections, we provide a detailed description of the CNN-based object
detector and present our methods for validation. We also describe our algorithm for
tracking detected tree stems through a video sequence. Finally, we discuss our detection
system’s accuracy and demonstrate our tracking algorithm’s capacity concerning stem
identity maintenance and occlusion handling.

2. Materials and Methods

For data acquisition, we used a custom-built 30 cm baseline stereo camera with two
high-definition image sensors (Shenzhen Ailipu Technology Co., Ltd., Shenzhen, China)
in a fronto-parallel configuration. The stereo camera was calibrated using a chessboard
pattern mounted on a rigid plane following methods presented in [37]. The camera was
calibrated before each field visit for data collection.

In our method description below, we denote vectors as bold lowercase letters, e.g., v,
matrices as bold capital letters, e.g., M, and scalars as lowercase italic letters, e.g., s. We use
the notation ‖·‖ as shorthand for ‖·‖2, i.e., the Euclidean norm. We represent images as
functions, I : Ω → R3 for 3-channel color images, and I : Ω → R for gray-scale images
where Ω ⊂ R2 is the image domain. Sets are denoted by capital script letters, e.g., A, and
the number of elements in a set is given by |A|.

2.1. Detection

Given a 3-channel color image, I : Ω → R3, we seek a set of bounding boxes,
{b1, b2, . . . , bn}, such that each bounding box is parameterized as a vector, bi = (x, y, w, h)T

where (x, y) is the center of the bounding box in the image coordinate frame, w is the width
of the bounding box along the u-axis of the image, and h is the height of the bounding box
along the v-axis of the image. A bounding box encloses a tree stem from the ground to the
canopy base or the height of the image if the canopy base is not within the image domain.
We use the index set B to index the bounding boxes, bi∈B, and |B| to indicate the number of
such boxes. A bounding box implies a sub-domain of R2, i.e., the interval [x− w/2, x + w/2]
along the u-axis and [y− h/2, y + h/2] along the v-axis; thus bounding boxes are axis-aligned
rectangles. For reasons that will become clear when we present the tracking algorithm, we
do not restrict this domain to be a subset of the image domain, Ω.

Forests 2023, 14, 267 4 of 18

In this work, we solve for the parameters of bounding boxes representing tree stems using
a modified version of the You Only Look Once (YOLO) detection algorithm [19,21,24]. At
the time of this research, Redmon and Farhadi [24] was a state-of-the-art multi-class CNN-
based model that performs object detection on an entire image via a single forward pass
through a convolutional network. The algorithm takes a three-channel (RGB) image and
resizes it according to the first layer in the network. The network’s output is a tensor that
encodes an object’s predicted bounding box coordinates, confidence, and class probabilities
(Figure 1). In the following sections, we describe the network architecture, the loss function,
and the modifications we made to improve performance in the problem domain of tree
stem detection.

7x17x5

Calculate Loss
and BackProp

anchor
box

e ŵ ijpw(n(w, h) = ehˆij)ph, m

(x, y) = (σ() + j, σ() + i)x̂ ij ŷij

pos

neg
pw

ph

≥ θĉij

< θĉij

H

Testing

Training

IoU

Predicted
Ground
truthn

m

j

i

hˆijŵ ijŷijx̂ ijĉij

224x544x32 112x272x64

56x136x128 28x68x256
14x34x512 7x17x1024

(x, y) = (,)
nx

W

my

H

(w, h) = (,)
nw

W

mh

H

Resize image to
network input

W

Figure 1. Conceptual diagram of the detection algorithm.

Forests 2023, 14, 267 5 of 18

2.1.1. Network Architecture

The original network presented in [19] used fully connected layers on top of the feature
extraction layers to predict the location of the bounding box and the confidence and class
probabilities. This approach led to instability in network training as the bounding box
dimensions were unconstrained. This issue was improved upon in [21] by removing the
fully connected layers and predicting bounding box coordinates as offsets from anchor
boxes [16], resulting in a fully convolutional network that could be resized without retrain-
ing. The anchor boxes used in [21] were automatically calculated using k-means clustering
on the ground-truth boxes in the training set. The authors heuristically selected k = 5
boxes for a general detection dataset including objects of drastically varying dimensions,
e.g., pedestrians and cars. Therefore, each cell in the output layer predicts k bounding boxes
for a total of M/2s × N/2s × k box predictions per image where M and N are the sizes of
rows and columns in the input layer, respectively, and s is the number of down-sampling
layers in the network.

We use a single anchor box to detect tree stems and compute the dimensions by taking
an average over all the ground-truth boxes in our dataset. We use a single anchor box
since the aspect ratio of bounding boxes representing tree stems does not vary signifi-
cantly. Futhermore, since we are only predicting one class, we do not need more than
one box prediction per grid cell, given that our output resolution is sufficient. Thus, the
dimensions of the output tensor for a network predicting one anchor box and one class per
cell is M/2s × N/2s × 5. Each prediction is encoded as (ĉij, x̂ij, ŷij, ŵij, ĥij) where ĉij is the
confidence, (x̂ij, ŷij) is the center of the bounding box, (ŵij, ĥij) are the width and height,
respectively, and (i, j) are the indices to the output tensor along the first 2 dimensions.

We used a variant of the network presented in [21] and modified the number of
filters in the final convolutional layer to accommodate one class and one anchor box. We
also modified the input dimensions of the network. The original network has an input
dimension of 416× 416 with five down-sampling layers, resulting in an output tensor
with 13 rows and 13 columns. We stretch the input layer along the u-axis and shrink it
along the v-axis to increase the prediction space for tree stems distributed horizontally
across the frame. Therefore, the input dimensions to our network version are 224 rows and
544 columns. We keep the number of down-sampling layers equal to 5, which produces
an output tensor with dimensions 7× 17× 5 (bottom of Figure 1), and maintain the same
convolutional structure as the original network except for the pass-through layer (see [21]).
We perform batch normalization on all convolutional layers and use a Leaky Rectified
Linear Unit activation function for all layers except the final layer, which is linear. Table 1
describes the layers of the network in detail.

Table 1. Layer descriptions of the convolutional neural network for tree stem detection. Architecture
modified from [21]. (Input image (rows× cols× chan): 224× 544× 3).

Layer Operation Activation Function Filters Size/Stride Output Size (Rows× Cols)

Convolution φ(x) † 32 3× 3 224× 544

Maxpool - - 2× 2/2 112× 272
Convolution φ(x) 64 3× 3 112× 272

Maxpool - - 2× 2/2 56× 136
Convolution φ(x) 128 3× 3 56× 136
Convolution φ(x) 64 1× 1 56× 136
Convolution φ(x) 128 3× 3 56× 136

Maxpool - - 2× 2/2 28× 68
Convolution φ(x) 256 3× 3 28× 68
Convolution φ(x) 128 1× 1 28× 68
Convolution φ(x) 256 3× 3 28× 68

Forests 2023, 14, 267 6 of 18

Table 1. Cont.

Layer Operation Activation Function Filters Size/Stride Output Size (Rows× Cols)

Maxpool - - 2× 2/2 14× 34
Convolution φ(x) 512 3× 3 14× 34
Convolution φ(x) 256 1× 1 14× 34
Convolution φ(x) 512 3× 3 14× 34
Convolution φ(x) 256 1× 1 14× 34
Convolution φ(x) 512 3× 3 14× 34

Maxpool - - 2× 2/2 7× 17
Convolution φ(x) 1024 3× 3 7× 17
Convolution φ(x) 512 1× 1 7× 17
Convolution φ(x) 1024 3× 3 7× 17
Convolution φ(x) 512 1× 1 7× 17
Convolution φ(x) 1024 3× 3 7× 17

Convolution ψ(x) ‡ 5 1× 1 7× 17

Output tensor (rows× cols× depth): 7× 17× 5
† Leaky ReLU: φ(x) = x if x > 0 and 0.1x otherwise. ‡ Linear: ψ(x) = x.

2.1.2. Training

We acquired 208 images of a ponderosa pine (Pinus ponderosa Douglas ex Lawson)
forest in Western Montana and manually annotated 531 ground-truth bounding boxes. We
used a minimum projected width threshold of θ = 10 pixels to discourage the network
from detecting small and distant stems. We used the following procedure to consistently
annotate each tree in a frame.

1. Locate the next tree in the image.
2. Measure the projected width of the stem in the pixels and assign it to variable p.
3. If the projected width, p, is less than θ, then go to step 1. Otherwise, go to step 4.
4. Position an axis-aligned minimum bounding rectangle enclosing the tree stem from the

point of the intersection with the ground to the canopy base. The bounding box is
encoded as (xmin, ymin, xmax, ymax).

5. Increase the maximum x coordinate by p/2 and decrease the minimum x coordinate
by p/2, i.e., (xmin − p/2, ymin, xmax + p/2, ymax).

6. Convert the box extent representation to the xy-wh representation, (1
2 (xmin + xmax),

1
2 (ymin + ymax), xmax − xmin, ymax − ymin).

7. Go to step 1.

We augmented the training set by randomly applying the following strategies: color
shift by a factor of U(0.5, 1.5), brightness shift by a factor of U(0.5, 1.5), contrast shift by a
factor of U(0.5, 1.5), and reflection along the y-axis. We apply each augmentation with a
probability of 0.5. The notation U(a, b) specifies a random variate drawn from a uniform
distribution on the interval [a, b]. We did not include image rotation in the augmentation
since the camera’s roll angle was always aligned with the ground plane to distribute trees
horizontally in the image. Augmentation was carried out for five cycles so that our final
training set had 1040 images and 2655 annotated tree stems. To train the network, we
minimized the following sum of squared errors loss function adapted from [19],

L = α
m

∑
i=1

n

∑
j=1

1pos
ij

{[nxij

W
−
(

σ(x̂ij) + j− 1
)]2

+

[myij

H
−
(

σ(ŷij) + i− 1
)]2

}

+ α
m

∑
i=1

n

∑
j=1

1pos
ij

[(nwij

W
− npweŵij

)2

+

(mhij

H
−mpheĥij

)2
]

+ β
m

∑
i=1

n

∑
j=1

1pos
ij

[
cij − σ(ĉij)

]2
+ γ

m

∑
i=1

n

∑
j=1

1neg
ij σ(ĉij)

2 . (1)

Forests 2023, 14, 267 7 of 18

We modified the original loss function presented in [19] to accommodate non-square
input images, single class predictions, and single anchor box priors, and incorporated the
improvements to coordinate predictions outlined in [21]. In the loss function, 1pos

ij ∈ {0, 1}
equals 1 if there is a ground-truth object in cell (i, j) of the output tensor, and 0 otherwise.
Conversely, 1neg

ij ∈ {0, 1} equals 1 if there is not a ground-truth object in the (i, j) cell of the
output tensor, and 0 otherwise.

The first term in the loss function computes the error between the ground-truth box
center, (x, y), and the predicted center, (x̂, ŷ). The ground-truth center is scaled to the
output grid dimensions, m× n, according to the image width, W, and height, H. Finally,
the predicted center is positioned in the output grid by first constraining the coordinates to
fall in the interval [0, 1] with a logistic function, σ(·), then adding the position index, (i, j).

The second term compares the ground-truth width and height, (w, h), to the predicted
width and height (ŵ, ĥ). The ground-truth width and height are scaled to the output grid
dimensions (as with the first term). The predicted width and height are calculated by
raising Euler’s number, e, to the network’s prediction and multiplying with the anchor
box dimensions, (pw, ph), then scaling to the output grid dimensions. The logistic function
makes the values easier for the network to learn and adds stability during training [21].

The third term calculates the error between the ground-truth confidence, c, and the
predicted confidence, ĉ. The ground-truth confidence is simply the Jaccard index, also
referred to as the intersection over union (IoU), between the ground-truth bounding box
and the predicted bounding box, defined as

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| . (2)

The index returns a value in the interval [0, 1], where 1 means the bounding boxes com-
pletely overlap, while 0 indicates that the boxes do not overlap at all. We use a logistic
function to constrain ĉ to fall in the interval [0, 1].

Finally, the last term encourages the predicted confidence to be 0 when there is no
observed tree stem at the (i, j) position in the output grid. The relative importance of each
term in the loss function is controlled by the scalars α, β, and γ, where α is the coordinate
scale, β is the object scale, and γ is the no object scale. Through the empirical investigation, we
determined α = 5, β = 1, and γ = 0.25 to be adequate values for the hyper-parameters.

We trained the network for 200 epochs using a batch size of 64 images, a momentum
of 0.9, and a decay rate of 5× 10−4. We scheduled the learning rate with an initial value
of 10−4, then increased it to 10−3 at 10 epochs and 10−2 at 20 epochs. The network was
trained at 10−2 for 160 epochs, then the learning rate was decreased to 10−3 for 10 epochs
and decreased again to 10−4 for the final 10 epochs.

2.1.3. Inference

Using the trained network, we perform bounding box prediction on a new image by
resizing it to increase the detection resolution along the u-axis, then passing it through
the network and extracting the output layer, i.e., the prediction tensor. The tensor is
decomposed along the depth dimension as five matrices: Ĉ, X̂, Ŷ, Ŵ and Ĥ corresponding
to the confidence, position along the u-axis, position along the v-axis, width along the
u-axis, and height along the v-axis, respectively. Each matrix has the dimensions m× n,
where m and n are the rows and columns in the output tensor. For each row-column index
to the confidence matrix, Ĉ, we compare the confidence score, ĉij, against some threshold θ.
If the confidence is greater than or equal to the threshold, then we keep the prediction and
process the coordinates with

Forests 2023, 14, 267 8 of 18

b̂ij =

σ(x̂ij) + j− 1
σ(ŷij) + i− 1

pweŵij

pheĥij

 ∈ R4, ∀{({i}m
1 × {j}n

1) : ĉij ≥ θ} . (3)

Next, we perform non-maximum suppression by computing the Jaccard index between
all combinations of bounding box predictions and suppressing predictions with an inferior
confidence score and a Jaccard overlap with another prediction greater than ζ. In this work,
we use θ = 0.5 for the confidence threshold and ζ = 0.3 for the suppression threshold.
Finally, we scale the bounding boxes to the size of the original image by

bij = b̂ij �
(

W
n

,
H
m

,
W
n

,
H
m

)T

, (4)

where the notation � denotes element-wise multiplication and (W, H) is the width and
height of the original image. We use the index set, B, to index the scaled predictions
that pass the confidence threshold and non-maximum suppression, bi∈B = (x, y, w, h)T.
Figure 2 illustrates the inference pipeline of an example image.

(a) Input image (b) All detections: ĉij ≥ 0, line width ∝ ĉij

(c) Threshold confidence: ĉij ≥ 0.5 (d) Non-maximum suppression

Figure 2. Inference pipeline: (a) Input image. (b) All predictions after forward pass through the
network. Line widths are proportional to confidence. (c) Retained predictions after thresholding on
the confidence. (d) Final prediction following non-maximum suppression.

2.1.4. Testing

We tested the object detector on 103 images from the same forest where we collected
the training data. We annotated the test set following the same procedure used to annotate
the training set. In the test set, there were 690 ground-truth bounding boxes. We made
bounding box predictions for each test image using the CNN object detector and compared

Forests 2023, 14, 267 9 of 18

them to the ground-truth bounding boxes. We calculated precision as the number of true
positives over the sum of true positives and false positives. The recall was calculated as the
number of true positives over the sum of true positives and false negatives.

We used the Jaccard index to determine if a predicted bounding box corresponds to a
ground-truth box. We calculated precision–recall curves at Jaccard index thresholds from
0.5 to 0.75 in 0.05 intervals. The Jaccard index threshold is denoted as Jθ , where θ/100 is the
threshold value. Thus, J50 indicates a Jaccard index threshold of 0.5. We compute each
Jaccard threshold’s average precision (AP) by integrating the area under the precision–
recall curve.

2.2. Tracking

In this section, we describe our stem tracking algorithm. We have organized this
algorithm into four main components: measurement, prediction, matching, and correction.
The measurement step runs the object detector described in the previous section and assigns
a depth value to the bounding box. The prediction step uses the estimated ego-motion of
the camera to predict the location of the detection in the current frame. The matching step
finds the optimal assignment strategy between the predicted detections and new detections
provided by the measurement step. Finally, the correction step updates the tracking list by
replacing the predictions with matched measurements from the detector and handles the
insertion and deletion of stems in the tracking list.

2.2.1. Measurement

Let M ⊂ N be an index set returned by the CNN stem detector. We call this the
measurement index set. The cardinality of this set, |M|, is the number of unique detections
and the index j ∈ M corresponds to a specific detection. We denote the coordinates
of detection by the vector µ̂j∈M = (x, y, w, h, d)T ∈ R5, where (x, y) is the center of the
bounding box, (w, h) is the width and height, and d is the disparity assigned to the bounding
box. Disparity assignment is given by the function δ : R2 → R+ defined as

δ(Ψ) = argmax
i∈{1,N}

∑
x∈Ψ

1iD(x), (5)

where the argument Ψ ⊂ Ω is a subset of the image domain bounded by [x− w
2 , x + w

2] and
[y− h

2 , y + h
2] and N is the number of disparity planes in the disparity function D(·). The

indicator 1i ∈ {0, 1} is 1 if i equals the disparity function evaluated at x, and 0 otherwise.
To decrease the computational demand imposed by the detector, we run the detection

network only when the camera is displaced by more than 30 cm or is rotated about the x, y
or z-axis more than 0.2 radians. We do this by first estimating the ego-motion of the camera
using the direct image alignment approach based on [38]. Then, we compose the estimated
ego-motion parameters until one of the above conditions is satisfied. Once the detector
is executed to yield a new measurement set, the composed motion parameters are reset
to zero.

2.2.2. Prediction

Let P be an index set to temporal detections tracked over image frames. We call this
the prediction index set. The cardinality of this set, |P|, is the number of active detections,
i.e., the detections currently being tracked. We encode the coordinates of a unique detection
i ∈ P, as we did in M, with the vector φi∈P = (x, y, w, h, d)T ∈ R5. Each detection in P at
time t corresponds to the detection from M at time t− n, where n is the number of frames
since the prediction has been updated. We predict the center of the bounding box in frame
It by

ρ =
(
ρx, ρy, ρd

)T
= ñ

(
PT(ξ i)

−1P−1φ̃i

)
, (6)

Forests 2023, 14, 267 10 of 18

where φ̃i = (x, y, d, 1)T is the center of the bounding box in homogeneous coordinates,
ξ i∈P ∈ se(3) is the pose parameters describing the camera motion from time t − n to t,
T(ξ i) = exp(ξ̂ i) ∈ SE(3) is a homogeneous rigid transformation matrix, and ñ(·) performs
homogeneous division of the coordinates, i.e., ñ

(
(x, y, z, s)T

)
= (x/s, y/s, z/s)T. The

camera projection matrix, P, and its inverse, P−1, are explicitly defined as

P =

1 0 cu/ f 0
0 1 cv/ f 0
0 0 0 b
0 0 1/ f 0

 , P−1 =

1 0 0 −cu
0 1 0 −cv
0 0 0 f
0 0 1/b 0

, (7)

where (cu, cv) is the principle point in the image coordinate plane, f is the focal length in
pixels and b is the stereo baseline in cm. Now that the box center has been projected onto
the current frame, we can specify the predicted bounding box in frame It as

φ̂i =

(
ρx, ρy,

wρd
d

,
hρd
d

, ρd

)T

, (8)

where w and h are the width and height from φi. In summary, we warped the center of the
bounding box according to the pose parameters and scaled the width and height according
to the change in depth. Scaling the width and height, as opposed to warping the entire
bounding box, prevents the rectangle from distortions resulting from projective projection.

For each i ∈ P we also maintain a binary variable, νi ∈ {0, 1}, to indicate if the
predicted bounding box is visible in the current frame. A visible bounding box must satisfy
that its domain is a subset of the image domain and it is not a subset of another bounding
box in P. Formally, this condition is written as

νi =

{
1 if

(
φ̂i ⊂ Ω

)
∧
(
φ̂i 6⊂ φ̂i′ , ∀i′ ∈ P \ {i}

)
0 otherwise

. (9)

Finally, for each i ∈ P, we use a variable κi ∈ N to indicate the number of frames that
a bounding box φi has been visible, but has not been matched with detection from the
measurement index set, M. We call this the kill incrementer. If the predicted bounding box is
not matched, then we increment the variable by κi ← κi + νi. Thus, κi is only incremented
when the predicted bounding box is visible.

2.2.3. Matching

Given the coordinates of bounding boxes, µ̂j∈M, representing tree stems detected in
frame It, and the predicted coordinates of previously detected stems, φ̂i∈P, our objective is
to find the optimal temporal matching strategy. First, we construct a cost matrix, C, where
each entry in the matrix, cij, is calculated by

cij = 1− J3D
(
φ̂i, µ̂j

)
νi, (10)

where J3D(·, ·) is the Jaccard index, as defined in Equation (2) but modified for 3-dimensional
bounding boxes. A 3-dimensional bounding box is constructed by extruding the 2D
bounding box by w/2 and −w/2 about the estimated depth value z = f b/d, again where d is
the assigned disparity value for the bounding box.

Next, we find the optimal matching via linear sum assignment. The cost matrix is
augmented to a squared matrix by appending rows or columns, whichever is necessary,
and filling with costs greater than 1. We denote entries in the augmented cost matrix with
c̄ij. Using the augmented cost matrix and a binary matrix, B̄, where

Forests 2023, 14, 267 11 of 18

b̄ij =

{
1 if φ̂i is assigned to µ̂j

0 otherwise,
(11)

we minimize the following objective function:

min ∑
i

∑
j

c̄ij b̄ij (12a)

s.t. ∑
j

b̄ij = 1 ∀i (12b)

∑
i

b̄ij = 1 ∀j (12c)

b̄ij ∈ {0, 1} ∀i, j. (12d)

The assignment problem can be solved in O(n3), where n = max(rows, cols) in C, using
the Hungarian algorithm [39]. Finally, we calculate the assignment matrix, X, by ensuring
that a candidate match in B has an associated cost less than some threshold,

xij =

{
1 if bij = 1∧ cij < ϑ

0 otherwise,
(13)

where cij and bij are entries within the dimensions of the original cost matrix. Thus, the
dimensions of X are equal to the dimensions of C prior to augmentation.

2.2.4. Correction

Now that we have the optimal matching strategy, the last step is to update the pre-
diction set and handle the unmatched detections. To update the detection coordinates in
the prediction set P, we first stack the column vectors encoding the coordinates of all the
detections in the measurement set M,

M =
(

µ̂j, . . . , µ̂|M|
)T

. (14)

Thus, M is a matrix with |M| rows and 5 columns, where each row encodes the coordinates
of each detection µ̂j∈M. The matrix multiplying with X and transposing effectively copies
the detections in M to the corresponding prediction in P,(

φi, . . . , φ|P|
)

5×|P|
= (XM)T. (15)

So, the coordinates in the prediction set that were matched to the detection in M are updated
with new bounding box coordinates and any prediction that was not updated has the zero
vector for its coordinates. An equivalent operation could be performed by searching over
the assignment matrix and replacing the prediction with a measurement when a non-zero
value is encountered. However, the expression in Equation (15) is more direct and concise.

If the updated coordinates are equal to the zero vector we simply retain the prediction,
compose the prediction’s pose parameters with the current estimate of the pose increment,
∆ξ, and update the kill incrementer. Otherwise, we reset the prediction’s pose parameters
and retain the current kill incrementer.

(φi, ξ i, κi) =

{(
φ̂i, ξ i ◦ ∆ξ, κi + νi

)
if φi = 05

(φi, 06, κi) otherwise
. (16)

Next, we deactivate any prediction that has not been updated during a θt displacement
of the camera or has a κ value greater than θκ . In this work, we used θt = 30 cm and
θκ = 0.2 radians. The pose parameters, ξ i, represent the composed camera motion since the

Forests 2023, 14, 267 12 of 18

last update. Thus, we can decompose the translation vector with
(

R(i)|t(i)
)
= exp(ξ̂ i) and

test the following logic,

Q =

{
Q ∪ {i} if

(
‖t(i)‖ > θt

)
∨ (κi > θκ)

Q otherwise,
(17)

where Q is a set of indices that, according to the test, should be deactivated. We remove
the indices in P by set difference, P′ = P \ Q, and redefine the prediction index set as
P = {1, 2, . . . , |P′|}. Finally, the indices of the prediction components are updated by

φi = φ f (i), (18a)

ξ i = ξ f (i), (18b)

κi = κ f (i), (18c)

where f : N → N is an ordered bijective mapping between the sets P and P′. The last
step is to check if any detections from the measurement set have not been matched. First,
we perform the same operations as before for mapping predictions onto measurements
through the assignment matrix, X; however, now we do the inverse,

Φ =
(

φ̂i, . . . , φ̂|P|
)T

, (19)(
µj, . . . , µ|M|

)
5×|M|

=
(

XTΦ
)T

. (20)

If any vector µj∈M is equal to the zero vector, then we insert the measurement into the
prediction set by P ∪ {|P|+ 1} and initialize the new prediction as φ|P|+1 = µj.

3. Results and Discussion
3.1. Detection

In Figure 3, we show images from the test set with predicted and ground-truth
bounding boxes superimposed as red and green rectangles, respectively. In subfigures (a),
(d), and (f), the detector performed without error since all predicted bounding boxes have
a Jaccard index with the ground-truth box greater than 0.5. The detector also performed
as desired in subfigure (c), as there were no false positives. In subfigure (b), there are
two true positives and one false positive. In subfigure (e), there are two true positives
and one false negative. We found that nearly all false negatives and positives occurred
on boundary trees: trees having a projected width close to the threshold width used to
determine whether a stem should be included in the training. One approach to circumvent
this issue would be to annotate every tree in the image and train the network to detect all
trees regardless of their projected size. However, this poses a significant burden on the
network since trees far from the camera do not have the same visual features as trees close
to the camera. Furthermore, the variance of bounding box dimensions would increase,
demanding the inclusion of more anchor boxes during training. Therefore, we do not
consider the false detections on boundary trees a significant problem since the detector
will eventually correctly identify the tree stem when the projected width increases as the
camera moves closer to the stem.

Forests 2023, 14, 267 13 of 18

(a) Two true positives (b) Two true positives and one false positive

(c) No detections (d) Two true positives

(e) Two true positives and one false negative (f) Two true positives

Figure 3. Example detections with ground truth boxes in green and predicted boxed in red.

Figure 4 shows the precision–recall curves for Jaccard index thresholds between 0.5
and 0.75. The detector performs increasingly worse with higher Jaccard index thresholds.
This is expected since perfect alignment with ground-truth bounding boxes is never realized
in practice. The average precision (AP) for the detector at J50 is 89%. The mean average
precision (mAP) for all Jaccard thresholds from 0.5 to 0.75 is 44%. We consider a Jaccard
overlap of 0.5 sufficient for localizing tree stems. Again, we emphasize that all the true
positives in Figure 3 have a Jaccard index of 0.5 or greater.

Forests 2023, 14, 267 14 of 18

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

J50, AP=0.89
J55, AP=0.87
J60, AP=0.78
J65, AP=0.76
J70, AP=0.63
J75, AP=0.50

Figure 4. Precision–recall curves for the tree stem detection algorithm.

As mentioned earlier, the CNN is fully convolutional. Thus, we can vary the input
image resolutions without retraining the network. In practice, this typically implies a
speed–accuracy trade-off. In Table 2, we show the effect of input resolution on frames per
second and average precision. The training resolution is shown in bold. We increased and
decreased the resolution while roughly maintaining the same aspect ratio. By decreasing
the resolution to 96× 288 the detector runs at 47 fps. However, the mAP decreases to 0.21.

Table 2. Speed-accuracy trade-off for tree stem detection. The row in bold indicates the training resolution.

Resolution FPS mAP
Average Precision

J50 J55 J60 J65 J70 J75

96× 288 47 0.21 0.59 0.49 0.35 0.25 0.17 0.13
128× 352 38 0.24 0.63 0.53 0.43 0.31 0.23 0.14
160× 416 26 0.33 0.79 0.74 0.66 0.49 0.31 0.17
192× 480 23 0.41 0.85 0.78 0.68 0.66 0.53 0.36
224× 544 19 0.44 0.87 0.84 0.76 0.67 0.51 0.33
256× 608 14 0.44 0.89 0.85 0.76 0.65 0.52 0.35
288× 672 12 0.47 0.88 0.87 0.78 0.74 0.62 0.42

Conversely, increasing the resolution results in a marginal improvement of mAP, but
significantly reduces the speed. In situations where the detector is required to execute on
every frame in the video, it is advantageous to decrease the resolution and accept lower
precision. On the other hand, if the camera’s ego-motion is known, it is beneficial to run the
detector intermittently on selected keyframes at a higher resolution and use the motion to
predict the position of the bounding boxes between keyframes. Using the latter approach,
we achieved a speed of 49 frames per second. This frame rate includes the processing
time required to compute stereo correspondence, estimate ego-motion parameters, and run
the tracking algorithm, which only takes a couple of milliseconds. We also note that the
detection algorithm does not depend on a disparity map. The disparity map is only needed
for the tracking algorithm. Thus, when multiple GPU devices are available, the detection
algorithm and stereo correspondence can be executed simultaneously, increasing the frame
rate. The run-time tests were carried out on an Nvidia GeForce GTX 780M GPU.

Forests 2023, 14, 267 15 of 18

3.2. Tracking

Figure 5 shows selected frames from a video sequence while tracking tree stems. The
video was captured using a 12 cm baseline stereo camera operated at VGA resolution
(480 × 640) and a frame rate of 10 Hz. The camera moved through the forest at approxi-
mately 1 ms−1. In the first frame, the object detector localizes two tree stems. The colors
represent their identities. In frame 35, the stem bounded by the green rectangle becomes
occluded by the tree in the red bounding box. The location of the green stem is maintained
during occlusion using the ego-motion of the camera. The stem reappears in frame 50, and
a third stem is detected (shown in the blue bounding box). In the next frame, frame 85, the
tree bounded by the blue rectangle is no longer in the field of view; however, its position
is still correctly predicted. Finally, in frame 110, the tree bounded by the blue rectangle
is partially occluded by the tree bounded by the red rectangle. Although the detection
algorithm cannot identify these stems as two separate instances, their correct identities
and locations in the image are maintained since they were detected as individual stems in
previous frames.

(a) Frame 1 (b) Frame 20

(c) Frame 35 (d) Frame 50

(e) Frame 85 (f) Frame 110
Figure 5. Selected frames from a video sequence in which tree stems are tracked. The colors of the
bounding boxes indicate the stem’s identity.

Forests 2023, 14, 267 16 of 18

Except for the measurement step, which relies on the stem detection algorithm, and
ego-motion estimation, all other computations involved in the tracking algorithm are
efficient, taking only 1–2 milliseconds to execute. As discussed in the previous section,
the detection algorithm runs 19 frames per second. However, since the tracking algorithm
only runs the detector when the camera is displaced or rotated by a certain amount,
we can achieve a higher frame rate. In order to estimate the ego-motion of the camera,
it was necessary to perform stereo matching in each frame. We used a real-time GPU
implementation of semi-global stereo matching presented in [40] and achieved a frame
rate of 90 FPS. Furthermore, we performed ego-motion estimation on 120 × 160 resolution
images and obtained a frame rate of over 200 FPS. Therefore, stereo matching and ego-
motion estimation can be executed at approximately 60 FPS. We found the average run
time for the tracking algorithm, including stem detection, stereo matching, and ego-motion
estimation, to be approximately 49 FPS on the GTX 780M GPU.

We do not present quantitative results for the tracking algorithm. We did not encounter
any instances of switching identities or new identities assigned to stems in the active track-
ing list in our dataset. Although we expect this to be an issue in dense forests, we consider
intermittent identity confusion to be non-detrimental to the system since this algorithm is
intended to reduce variance through the temporal accumulation of measurements (such
as diameter) and to provide real-time visual information during operation. However, an
incorrect temporal association must be avoided in mapping systems, as it can cause the
system to fail completely. We will address the data association issue in a future publication
that presents an approach for large-scale forest mapping.

Although it is common practice in the MOT field to compare results to existing
tracking algorithms, we were not successful in finding an implementation that works in
this specific problem domain where the camera is moving with a known ego-motion and
the tracked objects are stationary and intermittently detected by a separate process. We are
actively working on gathering a publicly-available dataset that covers many forest types
and structures to aid in developing and comparing object detection and tracking algorithms
in forest operations.

4. Conclusions

This paper presents visual processing algorithms for tree stem detection and tracking in
video sequences. We consider these algorithms fundamental in automatic tree measurement
and mapping systems. Object detection–tracking is a well-developed subdiscipline in
computer vision; however, few studies have applied vision-based detection and tracking
to forestry. To our knowledge, the work presented in this paper is the first attempt at real-
time detection and tracking in forested environments. Tree stem detection and tracking,
coupled with our earlier work on ground plane extraction and breast height estimation [41],
provides a foundation for a system to perform real-time and automatic dendrometry.

A notable limitation of our approach is species classification; tree species play an
essential role in tree selection during prescription development and implementation. Since
our dataset was collected in a forest stand composed of a single species, we did not consider
species classification in our detection algorithm. The CNN detection network presented
here can be extended to multi-class detection with minimal modifications. However, it is
difficult to know the efficacy of species classification using only the tree’s stem as different
species can exhibit similar visual features and patterns on their bark. We consider species
classification a critical step in moving this work forward.

5. Patents

US Patent No. US011481972B2: Method of performing dendrometry and forest mapping.

Author Contributions: Conceptualization, L.A.W. and W.C.; methodology, L.A.W. and W.C.; soft-
ware, L.A.W.; validation, L.A.W. and W.C.; formal analysis, L.A.W.; investigation, L.A.W. and W.C.;
resources, L.A.W.; data curation, L.A.W.; writing—original draft preparation, L.A.W.; writing—
review and editing, L.A.W. and W.C.; visualization, L.A.W.; supervision, W.C.; project administration,

Forests 2023, 14, 267 17 of 18

W.C.; funding acquisition, W.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the U.S. Forest Service National Technology and Development
Program under contract number 16CS-1113-8100-017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rametsteiner, E.; Simula, M. Forest certification—An instrument to promote sustainable forest management? J. Environ. Manag.

2008, 67, 87–98. [CrossRef]
2. Nagel, L.M.; Palik, B.J.; Battaglia, M.A.; D’Amato, A.W.; Guldin, J.M.; Swanston, C.W.; Janowiak, M.K.; Powers, M.P.; Joyce, L.A.;

Millar, C.I.; et al. Adaptive Silviculture for Climate Change: A National Experiment in Manager-Scientist Partnerships to Apply
an Adaptation Framework. J. For. 2017, 115, 167–178. [CrossRef]

3. Seidl, R.; Rammer, W.; Lexer, M.J. Adaptation options to reduce climate change vulnerability of sustainable forest management in
the Austrian Alps. Can. J. For. Res. 2011, 41, 694–706. [CrossRef]

4. Achim, A.; Moreau, G.; Coops, N.C.; Axelson, J.N.; Barrette, J.; Bédard, S.; Byrne, K.E.; Caspersen, J.; Dick, A.R.; D’Orangeville,
L.; et al. The changing culture of silviculture. For. Int. J. For. Res. 2021, 95, 143–152. [CrossRef]

5. Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest
Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [CrossRef]

6. Chung, W.; Lyons, K.; Wells, L.A. Innovations in Forest Harvesting Technology; Burleigh Dodds Science Publishing: Cambridge, UK,
2019; pp. 489–512.

7. Lindroos, O.; Mendoza-Trejo, O.; La Hera, P.X.; Ortíz Morales, D. Advances in Using Robots in Forestry Operations; Burleigh Dodds
Science Publishing: Cambridge, UK, 2019; pp. 233–260. [CrossRef]

8. Viola, P.; Jones, M. Robust real-time object detection. Int. J. Comput. Vis. 2001, 57, 87.
9. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 886–893. [CrossRef]
10. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models.

IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [CrossRef]
11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.
12. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
13. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), Columbus, OH, USA,
23–28 June 2014; pp. 580–587. [CrossRef]

14. He, K.; Zhang, X.; Ren, S.; He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

15. Girshick, R. Fast R-CNN. In Proceedings of the 2015 International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Pro-
ceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015;
pp. 91–99.

17. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the
Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 379–387.

18. Lin, T.Y.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature pyramid networks for object detection. In Proceed-
ings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), Honolulu, HI, USA, 21–26 July 2017;
pp. 2117–2125.

19. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, Real-time object detection. arXiv 2015, arXiv:1506.02640.
20. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the 2016 European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.
21. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242.
22. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002.
23. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
24. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

http://doi.org/10.1016/S0301-4797(02)00191-3
http://dx.doi.org/10.5849/jof.16-039
http://dx.doi.org/10.1139/x10-235
http://dx.doi.org/10.1093/forestry/cpab047
http://dx.doi.org/10.1016/j.scitotenv.2018.04.084
http://dx.doi.org/10.19103/AS.2019.0056.18
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2015.2389824

Forests 2023, 14, 267 18 of 18

25. Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object detection with deep learning: A review. arXiv 2018, arXiv:1807.05511.
26. Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli, R. Optimized EIF-SLAM algorithm for precision agriculture mapping based

on stems detection. Comput. Electron. Agric. 2011, 78, 195–207. [CrossRef]
27. Shalal, N.; Low, T.; McCarthy, C.; Hancock, N. Orchard mapping and mobile robot localisation using on-board camera and laser

scanner data fusion–Part A: Tree detection. Comput. Electron. Agric. 2015, 119, 254–266. [CrossRef]
28. Juman, M.A.; Wong, Y.W.; Rajkumar, R.K.; Goh, L.J. A novel tree trunk detection method for oil-palm plantation navigation.

Comput. Electron. Agric. 2016, 128, 172–180. [CrossRef]
29. Lu, Y.; Rasmussen, C. Tree trunk detection using contrast templates. In Proceedings of the 2011 18th IEEE International

Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 1253–1256. [CrossRef]
30. Shao, L.; Chen, X.; Milne, B.; Guo, P. A novel tree trunk recognition approach for forestry harvesting robot. In Proceedings of the

2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 862–866. [CrossRef]
31. Shao, L.; Mu, Y.; Liu, J.; Dong, G.; Liu, H.; Guo, P. The trunk of the image recognition based on BP neural network. In Proceedings

of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 1800–1805.
[CrossRef]

32. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
33. Luo, W.; Xing, J.; Milan, A.; Zhang, X.; Liu, W.; Zhao, X.; Kim, T.K. Multiple Object Tracking: A Literature Review. arXiv 2014,

arXiv:1409.7618.
34. Wang, X. Intelligent multi-camera video surveillance: A review. Pattern Recognit. Lett. 2013, 34, 3–19. [CrossRef]
35. Koller, D.; Weber, J.; Malik, J. Robust Multiple Car Tracking with Occlusion Reasoning; Technical Report UCB/CSD-93-780; EECS

Department, University of California: Berkeley, CA, USA, 1993.
36. Betke, M.; Haritaoglu, E.; Davis, L.S. Real-time multiple vehicle detection and tracking from a moving vehicle. Mach. Vis. Appl.

2000, 12, 69–83. [CrossRef]
37. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
38. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th

International Joint Conference on Artificial Intelligence, IJCAI’81, Vancouver, BC, Canada, 24–28 August 1981; Morgan Kaufmann
Publishers Inc.: Burlington, MA, USA, 1981; Volume 2, pp. 674–679.

39. Kuhn, H.W.; Yaw, B. The Hungarian method for the assignment problem. Naval Res. Logist. Quart 1955, 2, 83–97. . [CrossRef]
40. Hernandez-Juarez, D.; Chacón, A.; Espinosa, A.; Vázquez, D.; Moure, J.C.; López, A.M. Embedded Real-time Stereo Estimation

via Semi-Global Matching on the GPU. In Proceedings of the International Conference on Computational Science 2016, ICCS
2016, San Diego, CA, USA, 6–8 June 2016; pp. 143–153. [CrossRef]

41. Wells, L.A.; Chung, W. Evaluation of Ground Plane Detection for Estimating Breast Height in Stereo Images. For. Sci. 2020,
66, 612–622. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compag.2011.07.007
http://dx.doi.org/10.1016/j.compag.2015.09.025
http://dx.doi.org/10.1016/j.compag.2016.09.002
http://dx.doi.org/10.1109/ICIP.2011.6115660
http://dx.doi.org/10.1109/ICIEA.2014.6931283
http://dx.doi.org/10.1109/ICMA.2014.6885974
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/j.patrec.2012.07.005
http://dx.doi.org/10.1007/s001380050126
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1016/j.procs.2016.05.305
http://dx.doi.org/10.1093/forsci/fxaa006

	Introduction
	Object Detection
	Multiple Object Tracking

	Materials and Methods
	Detection
	Network Architecture
	Training
	Inference
	Testing

	Tracking
	Measurement
	Prediction
	Matching
	Correction

	Results and Discussion
	Detection
	Tracking

	Conclusions
	Patents
	References

