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Abstract: Evaluating the long-term urban forest ecological environmental quality (EEQ) and analyzing
the drivers of its spatiotemporal changes can provide a scientific basis for making long-term urban
forest planning decisions. Taking into account the characteristics of urban forest parks with low
area proportions of construction land and bare land, high vegetation coverage, and serious forest
disturbances, we constructed a modified urban forest park EEQ evaluation index based on a remote
sensing ecological index named MRSEI, which is composed of the Landsat enhanced vegetation
index (EVI), wetness, land surface temperature (LST), and forest disturbance index (FDI). We selected
the Nanjing Zijin Mountain National Forest Park as the study area, used landsat time series stack
(LTSS) remote sensing images from 1990 to 2020 as the main data source, and adopted the suggested
modified MRSEI, the Theil-Sen median method, and the Hurst index to evaluate the EEQ to analyze its
spatiotemporal variations and its driving factors in the study area. The main research results were as
follows: (1) the EEQ of Zijin Mountain showed an up-and-down, overall slowly increasing trend from
1990 to 2020, while the spatial auto-correlation coefficient showed an overall decreasing trend; (2) the
area percentage of the EEQ-persistent region accounted for 78.69%, and the anti-sustainable region
accounted for 21.31%; (3) the spatial centers of the EEQ in the study area were mainly concentrated
on the middle and upper part of the southern slope of Zijin Mountain, moving southward from
1990 to 2020; (4) the analysis of drivers showed that climate factors, forest landscape structure, forest
disturbances, and forest growth conditions were the main driving factors affecting the EEQ in the
study area. These results provide a research framework for the analysis of EEQ changes over a
long-term period in the urban forest parks of China.

Keywords: ecological environment; Landsat time series stack (LTSS); spatial-temporal analysis;
modified remote sensing ecological index (MRSEI); Zijin Mountain National Forest Park

1. Introduction

The ecological environment is the basic guarantee for human survival and the founda-
tion for social development. Dynamic changes in the ecological environment will directly
affect the quality of human life [1]. Ecological environment quality (EEQ) generally refers
to the quality of the ecological environment under the resources and environmental factors
within a specific time and space range [2]. Studying the long-term regional EEQ changes
and its driving factors can provide a scientific basis for the development of long-term
regional forest planning.

With the advantages of efficient, real-time, and dynamic monitoring, remote sensing
has become an effective method for assessing changes in regional forest ecosystems by
providing a better description of ecological patterns and processes [3]. To a large extent,
remote sensing can overcome these limitations. On 1 September 2008, the United States
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Geological Survey (USGS) opened Landsat archived remote sensing data to users world-
wide free of charge. It is characterized by wide coverage, sufficient spectral information,
high revisiting frequency, and spatial resolution (30 m× 30 m) similar to the size of forest
management unit (1000 m2). Therefore, by using Landsat time series data (LTSS), we can
provide a fine-scale description of regional forest ecosystem change and its driving factors
on a regional long-time scale [4], which has become a hot-spot for remote sensing study in
forestry [5].

At present, many methods including the analytical hierarchy process (AHP), fuzzy
clustering method (FCM), and index evaluation method are widely used to evaluate the
urban forests’ regional EEQ [6,7]. However, the above methods are somewhat subjective in
the selection of indicators, making it difficult to comprehensively evaluate the ecological
quality of the region [8]. The Ministry of Ecological Environment of China promulgated
the “Technical Specification for Eco-environmental Status Evaluation” in 2006, which
gives the definition and calculation method of the ecological index (EI) [9]. A total of
five evaluation indices were selected in the specification, namely: biological abundance,
vegetation coverage, water network density, land degradation, and environmental quality.
The ecological environment index (EI) is formed through weighted summation of five
indices. Since 2006, EI has been widely used in China, but a number of problems have
been found in the trial, such as the reasonableness of the weights [10,11], the setting of the
normalization coefficients [12,13], the ease of access to the indexes, etc. There is also an
obvious shortcoming when the EI indexes can only illustrate the ecological status of an area
in a general manner, but cannot be visualized to show the spatial distribution of different
ecological conditions. In addition, spatial changes in the ecological environment cannot
be analyzed. EI has coupled several ecological impact elements such as human activities,
pollution indicators, biological abundance, water network density, vegetation cover, etc.
However, the persistence of parameter weights makes it difficult to meet the monitoring
needs of different ecosystems [14].

The greenness, humidity, heat, and dryness in the remote sensing ecological index
(RSEI) proposed by Xu et al. are four important indicators in nature and closely related to
human survival [15]. In RSEI, the greenness index is similar in meaning to the vegetation
cover index in EI, and it is highly related to its biological abundance index; because the
calculation bases of biological abundance and vegetation cover in EI are the same, only the
weights are slightly different. The humidity indicator is the same as the water network
index indicator in EI, but the humidity indicator can represent not only the open water body,
but also the humidity of the soil and vegetation which is highly relevant to the ecological
environment. The bare soil index indicator represents dryness and is closely related to the
land degradation indicator in EI; the higher the bare soil index, the barer the surface, and
the more serious the land degradation. Therefore, the three indicators in the new RSEI are
closely related to the four indicators in the EI. Since the environmental quality index in the
EI relies on annual statistical data rather than spatial data and is given the least weight in
the EI, the index is not used in EI ecological grading. Therefore, the proposed RSEI index
and ecological index (EI) are strongly comparable. Since the RSEI index established by
principal component analysis (PCA) of the four indicator factors have a good agreement
with the EI index, RSEI can be used as a new index for EEQ evaluation. RSEI has shortened
the interval of EEQ monitoring with the advantages of fast calculation speed, less auxiliary
parameters required, and high reliability of results.

Being located in urban planning areas, the EEQ of China’s urban forest parks is
characterized by rapid spatial-temporal changes compared to that of suburban forests [16].
In the urban forest parks of southern China, the spectral signals of land conversion, forest
cutting, forest tending, and regeneration on remote sensing images become unrecognizable
after only a few years because of regional favorable hydrothermal conditions and short-
term forest renewal cycles. At present, the ecological environment evaluation of forest
parks based on RSEI in China usually takes long interval 1 phase or 2–3 phases of remote
sensing data for static or dynamic evaluation [17]. It is difficult to capture the effects of
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burst forest disturbances (forest harvesting, deforestation), slow disturbances (climate
change), and forest restoration processes (artificial regeneration, closing the mountains for
reforestation) using this evaluation method. In addition, the studies on EEQ evaluation
rarely analyze the long-term spatial-temporal changes and the driving factors of EEQs
from the perspectives of forest disturbance, landscape pattern changes, and climate factors,
which makes it difficult to delineate the complex relationships among forest disturbance,
landscape pattern changes, climate change, and EEQs. Thus, these results cannot provide a
scientific basis for the making of sustainable management measures for urban forest.

In China, as the green lungs of cities, urban forest parks usually have higher vegetation
coverage [18]. At the same time, because most urban forest parks are located in urban plan-
ning areas, they are seriously affected by natural and human disturbances including tree
cutting, forest land reversion, and the invasion of exotic pests [19]. Among the current EEQ
evaluation studies based on the RESI, a set of indicator system targeting the characteristics
of urban forest parks has not yet been formed [20]. In the RSEI model, the normalized differ-
ence building-soil index (NDBSI) used to express dryness consists of two parts: the building
index and the bare soil index, which reflects the impact of urbanization on the regional land
use pattern [21]. However, the calculation formula of NDBSI is complex, and the indicator
is less targeted for urban forest parks with low building area and high vegetation coverage.
In the RSEI model, greenness is usually expressed by the normalized difference vegetation
index (NDVI), but the NDVI has the disadvantage of being easily saturated and having
reduced sensitivity to areas with high vegetation coverage [22]. Compared with NDVI, the
Landsat enhanced vegetation index (EVI) corrects for some atmospheric conditions and
canopy background noise, and is more sensitive in densely vegetated areas of urban forest
parks [23]. Compared with the NDBSI, the forest disturbance index (FDI) proposed by
Masek et al. is relatively simple and can better distinguish forest pixels from other land use
types [24]. Therefore, we constructed a modified RSEI called MRSEI by replacing NDVI
with EVI and NDBSI with FDI.

Zijin Mountain National Forest Park is located in the eastern part of Xuanwu District
in the Nanjing metropolitan area. Since the beginning of 1990s, as the park is located
within the urban planning area, with convenient transportation and many residents living
around, the ecological quality of the park has been disturbed by many natural and human
factors such as invasion of alien pests and diseases, nibbled forest land by real estate
development, environmental improvement projects around the periphery of the scenic area
and the trampling of vegetation by mountaineering enthusiasts [25]. The ecological and
environmental problems encountered in the Nanjing Zijin Mountain National Forest Park
are very common in China, so they can be regarded a typical representative of urban forest
parks in the country. In this study, we took the Nanjing Zijin Mountain National Forest
Park as the case study area, and used the LTSS remote sensing images from 1990 to 2020
as the main information source, and adopted the MRSEI to analyze the spatial-temporal
dynamics of the EEQ in the study area and its driving factors of spatiotemporal changes.
Therefore, the objectives of this study were the following: (1) construct a modified RSEI
which can specifically evaluate the EEQ of urban forest parks over 30 years in China; (2)
reveal the spatial-temporal patterns of EEQ changes in the study area in long time series
and predict the future trends of EEQ changes; (3) clarify the main driving factors affecting
EEQ and provide suggestions on continuously improving EEQ of the urban forest park.

2. Materials and Methods
2.1. Study Area

Zijin Mountain National Forest Park, which is located in the eastern part of Nanjing,
Jiangsu, China (Figure 1), is the first large urban forest park in China entitled “National
Forest Park”. The park belongs to the first batch of national 5A-level tourist attractions,
and is a demonstration site of Chinese ecological culture [26], playing a key role in the
urban tourism of Nanjing. The park is divided into six divisions: the Mingxiao Mausoleum
Scenic Division, the Sun Yat-sen Mausoleum Scenic Division, the Linggu Temple Scenic
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Division, the Mountain Park Scenic Division, the White Horse Park Scenic Division, and the
Nature Landscape Scenic Division. In the park, Toutuo Ridge, with an altitude of 448.9 m,
is the highest peak in the Nanjing and Zhenjiang mountain range of Jiangsu Province. Zijin
Mountain is located on the edge of the northern subtropics, with annual precipitation of
900 to 1000 mm, and the average annual temperature of 15.7 ◦C [27].
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The park has the unique advantages of superior natural conditions and abundant
historical sites. There are more than 200 natural and historical sites in the area, which
include one world heritage site, 15 major historical and cultural sites protected at the
national level in China, and 31 cultural sites protected at the provincial level [28]. The
forest cover rate in this study area is 78.2%, accounting for 15.6% of the total forest area
in Nanjing [29]. With the development of the regional economy and the improvement of
the living standards of local residents, Zijin Mountain National Forest Park has gradually
changed from a suburban scenic area to a recreational urban park for the local residents.
With the increasing spiritual and cultural needs of the tourists and local residents, the
impact of various natural and human disturbances on the forest ecological environment
has gradually increased. In recent years, the number of visitors to the forest park has been
on the rise year by year, and the overall annual flow of tourists from other places has been
around 10 million, while the annual number of local residents visiting the park fluctuating
around 9 million [30]. In 1982, the alien invasive species Bursaphelenchus xylophilus was
introduced to Zijin Mountain from Japan, and the area of forests infected by this alien pest
has been expanding since then. A large number of scenic forest trees, which are mainly
black pine and Masson pine, have died. At the same time, due to the impact of tourism
activities, much of the wildlife, including Luehdorfia chinensis, a kind of rare butterfly which
is on the list of National Grade II protected species, is at risk of extinction. The vegetation
on both sides of the Zijin Mountain hiking trail are trampled and severely damaged. In
2009, a large area of landslides and serious soil erosion occurred on the southern slope of
Zijin Mountain [31].
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2.2. Data Collection and Pre-Processing

The data used in this study are: (1) Landsat TM/ETM+/OLI data for the study area
from 1990 to 2020 provided by the USGS (http://earthexplorer.usgs.gov/, accessed on
1 July 2023). Image acquisition date is selected from April to October, which are the
vegetation growing seasons. Cloud cover of most images is less than 5%. The spatial
resolution of the multi-spectral band is 30 × 30 m and the panchromatic band is 15 × 15 m.
Due to limitations of cloud cover and image striping, the images are selected in 2-year
intervals (Table 1); (2) “Detailed Planning of Sun Yat-sen Mausoleum Scenic Area” prepared
by the Urban Planning and Design Research Institute of Southeast University, China;
(3) “Peripheral Planning of Zijin Mountain Scenic Area” prepared by EDAW Landscape
Design, San Francisco, United States in August 2004; (4) “Retrospective Environmental
Impact Report on the Periphery of Sun Yat-sen Mausoleum Scenic Area” prepared by
Nanjing Zijin Mountain Scenic Area Construction Development Co. Ltd, Nanjing, China;
(5) “The Master Plan of Nanjing Zijin Mountain National Forest Park” prepared by Nanjing
Forestry University (2014–2023).

Table 1. Basic characteristic of Landsat TM/ETM+/OLI data during 1990 to 2020.

Image ID Acquisition Date Sensor Type Cloud Coverage/% Data Level

LT51200381990304HAJ00 31 October 1990 Landsat TM 0.02 L1TP
LT51200381992294BJC01 20 October 1992 Landsat TM 11.86 L1T
LT51200381994139HAJ00 19 May 1994 Landsat TM 0.00 L1T
LT51200381996113HAJ00 12 April 1996 Landsat TM 0.00 L1T
LT51200381998150ULM00 30 May 1998 Landsat TM 0.00 L1T
LT51200382000284BJC00 10 October 2000 Landsat TM 0.00 L1T
LT51200382002193BJC00 12 July 2002 Landsat TM 0.00 L1T
LE71200382004127EDC02 6 May 2004 Landsat ETM+ 0.00 L1TP
LT51200382006092BJC00 2 April 2006 Landsat TM 0.00 L1T
LE71200382008122EDC00 1 May 2008 Landsat ETM+ 1.00 L1TP
LE71200382010095EDC00 5 April 2010 Landsat ETM+ 1.00 L1TP
LE71200382012293EDC00 19 October 2012 Landsat ETM+ 0.00 L1TP
LC81200382014162LGN01 11 June 2014 Landsat OLI_TIRS 8.86 L1TP
LE71200382016256EDC00 12 September 2016 Landsat ETM+ 2.00 L1TP
LC81200382018301LGN00 28 October 2018 Landsat OLI_TIRS 0.06 L1TP
LE71200382020139EDC00 18 May 2020 Landsat ETM+ 4.00 L1TP

Since the acquired remote sensing images of the study area from 1990 to 2020 belong
to L1T/L1TP products and have been geometrically orthorectified by the USGS EROS
Center before downloading, the pre-processing of Landsat TM/ETM+/OLI time series
data is mainly focused on radiometric correction, water, and cloud detection [32,33]. The
radiometric calibration tool in ENVI 5.3 was used to perform radiometric calibration of
LTSS images. Then, the FLAASH tool of ENVI 5.7 software was applied to conduct the
atmospheric correction of LTSS images. Automatic identification and masking of clouds
was performed by using the algorithm for automatic cloud assessment [34]. There are many
stripes on Landsat-7 ETM+ SLC OFF images acquired after 31 May 2003, so the add-on tool
DeStripe [35] of ENVI was used to repair them.

After pre-processing, the LTSS was classified by using oriented classification software
eCognition Developer 9.01 into six land use types: forest, crop, water, grass, built-up, and
bare land for the temporal trajectory analysis of the forest landscape pattern index. A total
of 350 random points were generated in ArcGIS based on the historical statistical area
proportions of various land cover types in Purple Mountain National Forest Park in the
“Nanjing Xuanwu District Statistical Yearbook”, including 150 forest points, 50 crop points,
40 water points, 30 grass points, 50 built-up points, and 30 bare land points. A total of
70% of the random points of each land type were randomly selected for training and 30%
were used for testing. After supervised classification of the Landsat images, combined
with the original remote sensing images, a visual interpretation was carried out with

http://earthexplorer.usgs.gov/
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reference to the historical Google Earth images and field survey data of the corresponding
year, and the actual land cover type of random point location was determined. Then, the
overall classification accuracy and the classification accuracy of each land cover type were
calculated accordingly. The calculation results show that from 1992 to 2020, the average
overall classification accuracy of 16 remote sensing images was 89.38%, and the average
classification accuracy of forest, crop, water, grass, built-up, and bare land was 91.84%,
83.40%, 96.00%, 80.76%, 99.45%, and 82.34%, respectively.

2.3. MRSEI

The modified remote sensing ecological index (MRSEI) is constructed using these four
in dictators, as shown in Equation (1):

MRSEI − f (EVI, Wet, LST, FDI) (1)

where EVI is the vegetation index, Wet is the soil moisture, LST is the surface temperature,
and FDI is the forest disturbance index.

2.3.1. Landsat Enhanced Vegetation Index (EVI)

EVI is similar to NDVI and can be used to quantify vegetation greenness. However,
EVI corrects for some atmospheric conditions and canopy background noise and is more
sensitive in areas with dense vegetation [25]. As shown in Equation (2):

EVI = 2.5 ×
(

NIR − R
NIR + 6.0 × R − 7.5 × B + 1

)
(2)

where NIR/R/B is the near-infrared, red, and blue band of Landsat remote sensing images
reflectivity.

2.3.2. Wetness
K-T transform is an empirical linear orthogonal transformation of images based on the

information distribution structure of soil and vegetation in multidimensional spectral space
of multispectral remote sensing, which is an effective data compression and redundancy
removal method [36]. The brightness, greenness, and wetness components extracted from
K-T transform are directly related to the physical parameters of the ground surface, so
they have been widely used in ecological environment monitoring [37–39]. The humidity
index used in this paper is represented by the wetness. However, the wetness equations
vary with different sensors, as shown in Equation (3) by Chander et al. [40] for Landsat
TM+ data; Equation (4) by Crist, Eric [41] for Landsat ETM+ data; and Equation (5) by Baig
et al. [42] for Landsat OLI data:

WetTM+ = B × 0.0315 + G × 0.2021 + R × 0.3102 + N × 0.1594 − M1 × 0.6808 − M2 × 0.6109 (3)

WetETM+ = B × 0.2626 + G × 0.2141 + R × 0.0926 + N × 0.0656 − M1 × 0.7629 − M2 × 0.5388 (4)

WetOLI+ = B × 0.1511 + G × 0.1973 + R × 0.3283 + N × 0.3407 − M1 × 0.7117 − M2 × 0.4599 (5)

where B, R, G, M1, and M2 represent the blue, green, red, near-infrared band, mid-infrared
1, and mid-infrared 2 reflectance of TM/ETM+/OLI data, respectively.

2.3.3. Land Surface Temperature (LST)

To reduce the influence of different acquisition dates of remote sensing images on the
study results, the remote sensing image on 2 July 2002 was chosen as the reference image,
and 37 pseudo invariant feature (PIF) points from the buildings and roads in the study
area were generated to perform relative corrections on other 15 phases of land surface
temperature raster extracted from thermal infrared band, respectively [43]. Land surface
temperature (LST) was calculated by using the model in Landsat user manual [44]. As
shown in Equation (6):
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T =
K2

ln(K1 + 1)
(6)

where T is the temperature of the sensor; K1 and K2 are two calibration coefficients. For TM+,
K1 = 60.776 mWcm−2 sr−1µm−1, K2 = 1260.56 K. For ETM+, K1 = 66.609 mWcm−2 sr−1µm−1,
K2 = 1282.71 K. For TIRS, K1 = 77.489 mWcm−2 sr−1µm−1, K2 = 1321.08 K.

Sensor temperature T is converted to land surface temperature LST by using Equa-
tion (7) [45].

LST = T/[1 + (λT + ρ) ln ε] (7)

where LST is the land surface temperature; λ is the center wavelength of the thermal
infrared band; ρ = 1.438 × 10−2 mK; ε is the emissivity of ground objects, and its value is
estimated using NDVI based on Sobrino’s model [46].

2.3.4. Forest Disturbance Index (FDI)

In the histogram of the red band of Landsat image after masking dark matters, pixels
whose reflection values are lower than the forest peak value are called pure forest pixels.
On the basis of extracting LTSS pure forest pixels, tasseled cap transform was conducted
for each image [26]. Forest disturbance index is calculated by Equation (8):

FDIp =
bp − b
SDp

−
gp − g
SDg

−
wp − w

SDw
(8)

where SDp, SDg, and SDw, respectively, represent the mean and standard deviation of
brightness, greenness, and wetness of pure forest training samples on remote sensing
images of the study area, while bp, gp, and wp represent the brightness, greenness, and
wetness of pixel p on the image. Since forest pixels have lower brightness values, higher
greenness, and wetness values, it can be seen from Equation (8) that the smaller the FDIp,
the more likely the pixel is a forest pixel. Conversely, the larger the FDIp, the more likely
the pixel is a non-forest pixel.

2.3.5. Construction of MRSEI Model

Due to the dimensional inconsistency of the four indicators, the weights of each
indicator would be unbalanced if used directly in the principal component analysis (PCA).
It was necessary to standardize these four indicators before doing the analysis of PCA to
unify their magnitudes between [0, 1]. Then, PCA was performed to obtain the variance
contribution of each principal component. In PCA, most of the normalized indicators
are explained by the first principal component (PC1) and then the initial remote sensing
ecological index (MRSEI0) was obtained [47]. The equation is shown in Equation (9):

MRSEI0 = 1 − {PC1[ f (EVI, Wet, LST, FDI)]} (9)

Additionally, the MRSEI0 was standardized to facilitate index comparison. The closer
the MRSEI0 is to 1, the greater the EEQ [19,22].

2.3.6. Water Masking

Before the analysis of PCA, the water bodies needed to be masked because of the
influence of the water bodies on the humidity indicator. The newly modified normalized
difference water index MNDWI, which can solve the difficult problem of separating water
and shadow, was used in this study. MNDWI can reduce the error of expanding the actual
water body extent by using NDWI, and can better reflect the detailed characteristics of water,
such as the content of suspended sediment [48]. MNDWI is calculated by Equation (10):

MNDWI =
Green − MIR
Green + MIR

(10)
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where MIR is the mid-infrared band, such as band 5 of the TM/ETM+ image, and Green is
the green band, such as band 2 of the TM/ETM + image.

2.4. Analysis of Driving Factors
2.4.1. Landscape Pattern Index

Landscape pattern index can reflect the structure composition and spatial configuration
of the research object at the landscape scale. Since highly condensed landscape structure
information can be extracted from landscape pattern index, it is possible to measure the
correlation between ecological process and spatial structure using the landscape pattern
index [49]. The selection of a reasonable landscape pattern index has an important impact
on forest landscape pattern research. Based on LTSS supervised classification, 72 forest
patch indices from the aspects of average forest patch area, patch size, patch shape, patch
connectivity, patch similarity, and core patch ratio were selected.

2.4.2. Analysis Method of Driving Factors

In this study, the EEQ extracted from MRESI0 was selected as the dependent variable,
and the mean annual temperature, mean annual precipitation, temperature in the month of
image acquisition (month temperature), precipitation in the month of image acquisition
(month precipitation), 72 landscape pattern indices of forest patches and vegetation index
of greenness extracted from K-T transform were used as independent variables for Pearson
correlation analysis. In addition, in order to analyze the influence of different factors on
the EEQ, Pearson correlation analysis was used to analyze the driving factors. From the
Pearson correlation analysis, the variables with significant correlation with the dependent
variable were selected to establish the multiple regression model [50].

2.5. Analysis of Spatial-Temporal Variation of EEQ
2.5.1. Analysis of Temporal Variation

The Theil-Sen median, which is a calculation method applicable to trend analysis for
long-term series data, is computationally efficient, insensitive to measurement errors. This
method can be combined with the Mann–Kendall trend analysis method to study the trend
of long-term EEQ change of Zijin Mountain [51,52]. The method is shown in Equation (11):

β = median
( MRSEIi − MRSEIj

i − j

)
(11)

where median represents taking the median value; MRSEIi and MRSEIj are the correspond-
ing data of MRSEI in year i and j, respectively, and j > i; when β = 0, MRSEI has no change,
when β > 0, MRSEI increase, and vice versa. The significance of the β values was further
tested using the Mann–Kendall method [53].

2.5.2. Spatial Variation Analysis

Spatial auto-correlation analysis can reveal the regional structure pattern of spatial
variables and obtain the spatial distribution characteristics. Global spatial auto-correlation
describes the spatial dependence of an object within the total spatial range, which can be
expressed by Moran’s I index and Geary‘s C index. Among these two indices, Moran’s
I is more often used to verify whether adjacent areas within the study area have the
same change trend (positive spatial correlation), opposite (negative spatial correlation), or
independent (random distribution) [54,55]. Moran’s I > 0 means positive spatial correlation,
and the larger the value, the more obvious the spatial correlation; Moran’s I < 0 means
negative spatial correlation, and the smaller the value, the greater the spatial difference;
otherwise, Moran’s I = 0 means random distribution.

The shift in the centers of gravity of EEQ can reflect the spatial and temporal aggrega-
tion of EEQ in the process of spatial evolution. The gravity center coordinates of weighted
average EEQ (that is, the average of the centroid coordinates of all EEQ sample elements)
are calculated. Then, the iterative EEQ is used to find the coordinate position of the point
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which can make the Euclidean distance between all EEQ in the data set reach the minimum.
The gravity centers equation of EEQ is expressed as follows:

Xt =
∑n

i=1 wixi

∑n
i=1 wi

, Yt =
∑n

i=1 wiyi

∑n
i=1 wi

(12)

where
(
Xt, Yt

)
is the weighted average center coordinate; (xi, yi) is the coordinate of EEQ

sample elements; n is the sum of EEQ sample elements; and wi stands for the weight of
EEQ of sample i.

2.6. Future Change Trend Analysis of EEQ

The Hurst index based on the re-scaled range (R/S) analysis is an important indicator
for quantitatively describing the long-term dependence of time series data, and its basic
principle, is that within a time series ξ(t) (t = 1, 2, . . .), for any positive integer ≥ 1, there is
a mean series [56]:

ζτ =
1
τ

τ

∑
t=1

ξ(t) (τ = 1, 2, . . .) (13)

The cumulative deviation is obtained as:

X(t, τ) =
τ

∑
t=1

[ζ(u)− ζτ ]? (1 ≤ t ≤ τ) (14)

The polar difference R is defined as:

R(τ) = max
1≤t≤τ

X(t, τ)− min
1≤t≤τ

X(t, τ)? (τ = 1, 2, · · ·) (15)

The standard deviation S is defined as:

S(τ) =

[
1
τ

τ

∑
t=1

(ξ(t)− ξτ)
2

] 1
2

(τ = 1, 2, . . .) (16)

R, S, and τ satisfy the general relationship:

R(τ)
S(τ)

= c · τH (17)

Least squares fitting is defined as:

log(R/S)τ = log c + H log τ (18)

where c is a constant, R(τ)/S(τ) is the re-scaled range, and H is the Hurst index. The Hurst
index indicates the range of the cumulative deviation from the mean of the time series over
time. The value of Hurst index of the time series is between 0 and 1. There are three main
scenarios: (1) 0 < H < 0.5, indicating that the future trend of the EEQ is anti-persistence, i.e.,
it opposite to the past trend; (2) 0.5 < H < 1, indicating that of the future trend of the EEQ is
persistence, i.e., it consistent with the past trend; or (3) H = 0.5, indicating that the future
trend of the EEQ is random.

3. Results
3.1. Change Analysis of Annual Mean EEQ

In this study, the principal component transformation (PCA) was used to synthesize
MRSEI which is represented by EVI, Wet, LST, and FDI from 1990 to 2020 with the in-
formation of the first principal component (PC1). Since PC1 had the largest covariance
eigenvector among the four principal components and its contribution was above 75%
(Table 2), it was figured out to represent the EEQ in this study according to Equation (9).
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Table 2. Principal component load matrix table from 1990 to 2020.

Year Variable PC1 PC2 PC3 PC4

1990 Covariance eigenvalue (%) 73.54 17.23 7.84 1.39
1992 Covariance eigenvalue (%) 79.81 14.53 4.76 0.91
1994 Covariance eigenvalue (%) 82.13 13.89 2.88 1.11
1996 Covariance eigenvalue (%) 80.27 11.13 7.04 1.55
1998 Covariance eigenvalue (%) 86.49 10.78 2.28 0.45
2000 Covariance eigenvalue (%) 85.52 11.62 2.31 0.55
2002 Covariance eigenvalue (%) 86.91 10.20 2.30 0.60
2004 Covariance eigenvalue (%) 82.47 12.48 4.33 0.71
2006 Covariance eigenvalue (%) 81.98 13.15 3.96 0.92
2008 Covariance eigenvalue (%) 82.66 10.89 5.78 0.67
2010 Covariance eigenvalue (%) 77.32 12.31 8.60 1.78
2012 Covariance eigenvalue (%) 75.52 15.92 7.47 1.09
2014 Covariance eigenvalue (%) 82.65 13.87 3.16 0.32
2016 Covariance eigenvalue (%) 77.83 14.91 6.51 0.75
2018 Covariance eigenvalue (%) 76.34 18.56 4.75 0.34
2020 Covariance eigenvalue (%) 78.53 15.76 5.21 0.50

The closer the MRSEI value is to 1, the better the EEQ. The MRSEI values were divided
into five equal-interval classes (Figure 2): “excellent” (0.8–1.0); “good” (0.6–0.8); “medium”
(0.4–0.6); “poor” (0.2–0.4); and “bad” (0.0–0.2) [18,21]. The results showed that from 1990 to
2020, the overall MRSEI of Zijin Mountain was high and the overall EEQ was good, while
the small areas with low EEQ were located in the southern and eastern part of the park
with dense residents and convenient road traffic conditions.
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From 1990 to 2020, the EEQ in the study area showed an overall slow upward trend,
rising from 0.754 in 1990 to 0.762 in 2020. To further investigate the pattern of change, we
divided the EEQ variations in the study period into 5 phases (Figure 3): the EEQ showed
a steady upward trend from 1990 to 2002 (phase 1), a downward trend from 2002 to 2010
(phase 2), followed by an upward trend from 2010 to 2014 (phase 3), then a downward
trend from 2014 to 2018 (phase 4), and finally a slow upward trend from 2018 to 2020 (phase
5). In 1990, with the deepening of reform and opening up, regional economic development
was relatively rapid, and the Nanjing municipal government increased the investment
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in ecological environment construction. After the national market economy status was
established in 1992, a real estate boom began to occur around the study area, and some
forest land was converted into residential areas. Since 1993, a real estate boom has emerged
across the country. To promote the tourism economy in Nanjing, many hotels, restaurants,
and other tourist facilities such as an aquarium named the “Underwater World” were
constructed in the park, causing the decrease in forest land, which affected the EEQ in the
study area during 1994–1996. From 2002 to 2010 (phase 2), 13 villages and several factories
on the peripheral areas of the park were moved out of the study area and replaced by
many trees and grasses. During the process of the large-scale environmental improvement
project named Relocation and Greening, the area of bare land caused by a large number
of infrastructural projects increased dramatically, causing the decrease in EEQ in the park.
During phase 3 (2010–2014), after the environmental improvement project was completed
in 2008, the forest cover in the park increased, together with an increase in EEQ. From 2014
to 2018 (phase 4), in order to enrich the tourist resources, a number of tourism communities
and cultural museums had been established, causing the increase in built-up area and the
decrease in EEQ in the park. Finally, due to the outbreak of the coronavirus disease in 2019
(COVID-19), the number of tourists had decreased sharply, and human disturbance had
also been greatly reduced, making the EEQ stably increase during 2018–2020 (phase 5).
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Figure 3. Change curve of annual EEQ of Zijin Mountain from 1990 to 2020.

3.2. Analysis of EEQ Spatial-Temporal Variation
3.2.1. Temporal Variation Analysis

The results of the Theil-Sen median slope estimation for the EEQ during the period
of 1990–2020 indicated that the area of positive β values was significantly larger than the
area of negative values (Figure 4). Specifically, there were 92.92% of the regions with an
increasing trend and 7.08% of the regions with a decreasing trend. The mean value of
β was 2.02, indicating that the EEQ of Zijin Mountain had been in an overall increasing
trend in the past 31 years. We further performed Mann–Kendall test on the EEQ trends,
and the results showed that there were significant spatial heterogeneity of the EEQ of
Zijin Mountain (Figure 5). The area percentage with an extremely significant increase
accounted for 39.21%, the non-significant increases accounted for 54.81%; the area with
an extremely significant decrease accounted for only 0.72%, the non-significant decrease
regions accounted for 5.26%, and the percentage of regions with no change was small. In
terms of spatial distribution, the areas of significant increase were mainly located in the
southwestern part of the region with gentle slope and many cultural attractions; the area
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with significant decrease was mainly distributed in the southeast part and the edge of the
park with dense residents and convenient traffic conditions. Regions of non-significant
decrease were intertwined with regions of significant decrease, mainly distributed in
residential areas on the edge of the park.
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3.2.2. Spatial Auto-Correlation Analysis

The values of the Moran’s I for EEQ during the period of 1990–2020 were given in
Figure 6. As shown in Figure 6, the spatial auto-correlation coefficients of the EEQ in
the park were all positive, with a mean value of 0.6532, indicating that the EEQ of Zijin
Mountain had been in a distribution pattern of significant spatial aggregation from 1990
to 2020. The trend line showed an overall decreasing aggregation trend of the EEQ in the
study area from 1990 to 2020. This trend was closely related to the continuous intensive
forest management measures and greening projects on the edge of the park during the
study period. During the period 2002 to 2008, a large-scale relocation and greening project
on the edge of the park was launched. Many villages and factories were moved out of the
park and a lot of trees and grasses were planted on the original building sites. During the
process of relocation and greening, the area of bare land increased, causing the widening
EEQ gap between the edge area and the core area of the park. In 2008, the project was
finished and a large amount of construction land was replaced by forest and grass, rapidly
reducing the EEQ gap between the edge and the core area.



Forests 2023, 14, 2458 13 of 20
Forests 2023, 12, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 5. Mann–Kendall test for the EEQ trends of Zijin Mountain from 1990 to 2020. 

3.2.2. Spatial Auto-Correlation Analysis 

The values of the Moran’s I for EEQ during the period of 1990–2020 were given in 

Figure 6. As shown in Figure 6, the spatial auto-correlation coefficients of the EEQ in the 

park were all positive, with a mean value of 0.6532, indicating that the EEQ of Zijin 

Mountain had been in a distribution pattern of significant spatial aggregation from 1990 

to 2020. The trend line showed an overall decreasing aggregation trend of the EEQ in the 

study area from 1990 to 2020. This trend was closely related to the continuous intensive 

forest management measures and greening projects on the edge of the park during the 

study period. During the period 2002 to 2008, a large-scale relocation and greening pro-

ject on the edge of the park was launched. Many villages and factories were moved out 

of the park and a lot of trees and grasses were planted on the original building sites. 

During the process of relocation and greening, the area of bare land increased, causing 

the widening EEQ gap between the edge area and the core area of the park. In 2008, the 

project was finished and a large amount of construction land was replaced by forest and 

grass, rapidly reducing the EEQ gap between the edge and the core area. 

Figure 5. Mann–Kendall test for the EEQ trends of Zijin Mountain from 1990 to 2020.

Forests 2023, 12, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 6. Spatial auto-correlation analysis of the EEQ from 1990 to 2020. 

3.2.3. Spatial Center Dynamic Analysis 

The EEQ spatial center dynamic analysis was performed; the standard deviation el-

lipse and the 16-phase EEQ geographic gravity centers together with an ellipse were 

generated (Figure 7). It can be seen from Figure 7 that the geographic gravity centers of 

the EEQ of Zijin Mountain were mainly concentrated on the upper part of the southern 

slope, gradually shifting southward. The reason for the spatial distribution patterns of 

the EEQ centers was closely related to the distribution pattern of core scenic sites and 

large-scale project of relocation and greening on the edge of the park. The most famous 

scenic sites, such as the Sun Yat-sen Mausoleum, Mingxiao Mausoleum, and Linggu 

Temple, are all concentrated on the upper part of the southern slope. Generally, the for-

est cover and quality around these famous scenic sites are higher than other places. Since 

the beginning of relocation and greening project on the southern edge of the park, a 

large area of built-up land had been replaced by trees and grasses, resulting in the mov-

ing of the geographic gravity center of the EEQ from the upper part to the middle and 

lower part of the southern slope. The center points of 2004 and 2010 are outside the el-

lipse, which may be related to the fallowing of farmland in 2004 and the beautification 

and greening of the environment in 2010. 

Figure 6. Spatial auto-correlation analysis of the EEQ from 1990 to 2020.



Forests 2023, 14, 2458 14 of 20

3.2.3. Spatial Center Dynamic Analysis

The EEQ spatial center dynamic analysis was performed; the standard deviation
ellipse and the 16-phase EEQ geographic gravity centers together with an ellipse were
generated (Figure 7). It can be seen from Figure 7 that the geographic gravity centers of the
EEQ of Zijin Mountain were mainly concentrated on the upper part of the southern slope,
gradually shifting southward. The reason for the spatial distribution patterns of the EEQ
centers was closely related to the distribution pattern of core scenic sites and large-scale
project of relocation and greening on the edge of the park. The most famous scenic sites,
such as the Sun Yat-sen Mausoleum, Mingxiao Mausoleum, and Linggu Temple, are all
concentrated on the upper part of the southern slope. Generally, the forest cover and
quality around these famous scenic sites are higher than other places. Since the beginning
of relocation and greening project on the southern edge of the park, a large area of built-up
land had been replaced by trees and grasses, resulting in the moving of the geographic
gravity center of the EEQ from the upper part to the middle and lower part of the southern
slope. The center points of 2004 and 2010 are outside the ellipse, which may be related to
the fallowing of farmland in 2004 and the beautification and greening of the environment
in 2010.
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The major semi-axis of the ellipse represents the direction of data distribution, and the
minor semi-axis represents the range of data distribution. The greater the value difference
between the long and short semi-axes (the greater the oblateness), the more obvious the
directionality of the data.

3.3. Future Change Trends of EEQ

The future change trend of the EEQ in the park was analyzed at the pixel level using
the Hurst index from 1990 to 2020 (Figure 8). The Hurst index was divided into five classes
according to the value range: strong anti-persistence (SAP) (≤0.25), weak anti-persistence
(WAP) (0.25 < H ≤ 0.5), random (R) (H = 0.5), weak persistence (WP) (0.5 < H ≤ 0.75), and
strong persistence (SP) (H > 0.75). The area percentage of the EEQ persistent region in the
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park was 78.69%, and the anti-persistent region was 21.31%. Among the four classes, the
weak persistence ratio was the biggest with a value of 32.26%, revealing that the future
EEQ in the study area would continue to improve, i.e., with the same trend as the past.
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In order to explore the persistence of the change trend of the EEQ in the park, the
future change trend of the EEQ was obtained by combining the Hurst index and the
grading results of the trend test. A total of 8 trends were produced (Figure 9). Among
them, the percentages of non-significantly increasing-weakly anti-persistent (NSIWAP),
non-significantly increasing-weakly persistent (NSIWP), significantly increasing-weakly
anti-persistent (SIWAP), and significantly increasing-weakly persistent (SIWP) were 28.53%,
32.85%, 15.23%, and 5.29%, respectively. The large area percentage of non-significantly
increasing-weakly persistent (NSIWP) indicated that the EEQ of the study area may exhibit
an increasing trend in the future. This trend is due to the long-term intensive management
measures of the scenic forest such as the relocation and greening project on the edge of
the park, which have played a very important role in the improvement of the EEQ of the
study area.

3.4. Analysis of EEQ Driving Factors

Studies have shown that EEQ in forest areas is related to vegetation growth condition,
forest disturbance, and climatic factors [57]. At the landscape scale, EEQ is also closely
related to forest landscape structure. Therefore, the EEQ during 1990 to 2020 was used
as the dependent variable, the greenness extracted from the K-T transform was used as
an index reflecting the vegetation growth condition, 72 landscape pattern indicators, and
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four climate factors of annual average temperature, annual average precipitation, the
precipitation in the month of image acquisition (month precipitation), and the temperature
in the month of image acquisition (month temperature), were used as independent variables
to conduct Person correlation analysis. It can be seen from (Table 3) that greenness and
month temperature are significantly correlated with EEQ (α = 0.01), and patch connectivity,
patch similarity, and FDI are significantly correlated with EEQ (α = 0.05).
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Table 3. Impact factors significantly correlated with EEQ.

Impact Factor Correlation

Greenness 0.611 **
Month temperature 0.606 **

Patch similarity −0.439 *
Patch connectivity 0.440 *

Forest Disturbance Index −0.458 *
Note: * indicates significant at the 0.05 level, ** indicates significant at the 0.01 level.

4. Discussion

This study constructs a modified RSEI, which can more accurately evaluate the EEQ
of an urban forest park. During the calculation of PCA of MRESI, in order to avoid the
influence of input sequence of indicator and number of principal components on EEQ,
the four indicators of 16 phases were all input strictly according to the sequence of EVI,
greenness, LST, and FDI. To reduce the influence of inconsistent image acquisition time
on the results of LST, the land surface temperature on 12 July 2002, which was the highest
during 1990 to 2020, was chosen as the reference to relatively correct LST of other periods
using the pseudo invariant feature (PIF) method. In order to reduce the errors caused by
different dimensions, the four indicators were normalized before the analysis of PCA. Since
PC1 and PC2 also contain usable information, contribution-weighted linear combinations
of the three principal components, PC1, PC2, and PC3, should be considered in future
studies to improve the quality of EEQ analysis.
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The research results indicate that from 1990 to 2020, the EEQ of the park shows an up-
and-down, but slowly increasing trend, while the spatial auto-correlation coefficient of the
EEQ shows an overall decreasing trend, and the future EEQ will continue to improve. The
research results of scholars on the ecological environment quality of Nanjing city indicate
that the EEQ in the Zijin Mountain area is gradually improving, which is consistent with the
research results of this study [58]. The study by Zhang Peng et al. shows that the ecological
environment quality of forest parks in Nanjing has changed dramatically in the past thirty
years, and the trend of change is consistent with the results of our study [59]. These trends
of change in the study area are closely related to the long-term intensive forest management
measures from 1992 to 2020, including the relocation and greening project on the edge of
the park [23]. Being in a national 5A scenic area and the leading role in municipal tourism
industry, the forest resources in the park have been under strict protection for a long time,
except for the edges with convenient transportation and high population density. Protected
under such a situation, the forest ecosystems have been in a positive succession trend
from coniferous forest to mixed forest of coniferous and broad-leaved, then to mixed forest
of broad-leaved, resulting in sustained improvement of forest quality [60]. In order to
improve the EEQ of the park, a large-scale relocation and greening project had been carried
out on the edge of the scenic area since 2002, making the EEQ gap between the edge of
the park and the internal core area gradually narrowed. On 22 September 2020, Chinese
government officially proposed the goal of achieving carbon peaking by 2030 and carbon
neutrality by 2060 at the 75th session of the United Nations General Assembly [61]. As
the green lung of Nanjing City, the forest in the park plays an extremely important role in
carbon sequestration and oxygen release, and has been paid unprecedentedly attention by
local government and residents. Therefore, the forest management intensity will be further
improved and the future EEQ will show a continuously increasing trend.

Forest vegetation conditions, climate factors, and the forest landscape structure are the
main drivers affecting the long-term EEQ of the study area [62,63]. Since the forest cover of
the study area is as high as 78.2%, the EEQ is closely related to the conditions of the forest
growth conditions [24]. Temperature, as an important factor, is a key environmental factor
affecting vegetation growth [64,65]. Studies have shown that EVI usually increases with the
increase in temperature. Forest pests and diseases, conversion of forest land, afforestation
projects, and other forest disturbances affect the quality of the regional EEQ by changing the
forest area and affecting forest growth [23]. Changes in forest landscape patterns such as
connectivity and similarity of forest patches often trigger changes in water–heat interactions
at the “ground-atmosphere” interface in the study area, affecting microclimate features and
thus changing forest growth conditions. It should be noted that the above three kinds of
factors do not affect the EEQ of the study area in isolation, but are closely related to each
other [11]. Changes in climate in the study area affect the growth of forest trees, further
causing changes in forest landscape patterns, and ultimately affecting EEQ [66].

After China’s reform and opening up in 1978, with the acceleration of urbanization,
many distant suburban parks became urban forest parks, and forest tourism relying on
urban forest parks has become a pillar industry for regional economic development in many
cities. With the improvement of traffic conditions, and the increase in tourists, many forest
disturbances causing negative impact on the park have happened. These disturbances
mainly include encroachment of forest land by real estate development, forest landscape
fragmentation caused by tourist roads, invasion of alien forest pests and diseases, and
trampling of forest vegetation by local mountaineering enthusiasts [19]. However, forest
disturbance has both advantages and disadvantages. While reducing the EEQ of the park,
active forest management measures such relocation and greening projects greatly improved
the EEQ of fringe areas of the park, narrowing the EEQ gap between the edge area and
internal core area. The ecological and environmental problems encountered in Nanjing
Zijin Mountain National Forest Park are very common in China, especially in southern part
of the country. The EEQ analysis method in urban forest parks proposed in this paper has
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the advantages of low cost, fast calculation, less auxiliary parameters required, and high
reliability of results, and can be extended to other urban forest parks in southern China.

5. Conclusions

From 1990 to 2020, the EEQ of Zijin Mountain showed an up-and-down and overall-
slowly increasing trend. Forest growth conditions, climate factors, forest landscape struc-
tures, and forest disturbances are the main driving factors affecting the long-term EEQ in
the study area. Therefore, preventing and controlling invasive pests and diseases, reducing
negative forest disturbances such as the conversion of forest land, improving forest growth
conditions through forest tendering, and improving forest landscape quality by increas-
ing forest patch connectivity are the main ways to improve the ecological quality in the
study area.
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