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Abstract: Aiming to enhance the efficiency and precision of multi-objective optimization in south-
western secondary growth of Pinus yunnanensis forests, this study integrated spatial and non-spatial
structural indicators to establish objective functions and constraints for assessing forest structure.
Felling decisions were made using the random selection method (RSM), Q-value method (QVM),
and V-map method (VMM). Actions taken to optimize the forest stand structure (FSS) through tree
selection were approached as decisions by a reinforcement learning (RL) agent. Leveraging RL’s
trial-and-error strategy, we continually refined the agent’s decision-making process, applying it to
multi-objective optimization. Simulated felling experiments conducted across circular sample plots
(P1–P4) compared RL, Monte Carlo (MC), and particle swarm optimization (PSO) in FSS optimization.
Notable enhancements in the values of the objective function (VOFs) were observed across all plots.
RL-based strategies exhibited improvements, achieving VOF increases of 17.24%, 44.92%, 34.66%,
and 17.10% for P1–P4, respectively, outperforming MC-based (10.73%, 41.54%, 30.39%, and 15.07%,
respectively) and PSO-based (14.08%, 37.78%, 26.17%, and 16.23%, respectively) approaches. The
hybrid M7 scheme, integrating RL with the RSM, consistently outperformed other schemes across
all plots, yielding an average 26.81% increase in VOF compared to the average enhancement of all
schemes (17.42%). This study significantly advances the efficacy and precision of multi-objective opti-
mization strategies for Pinus yunnanensis secondary forests, emphasizing RL’s superior optimization
performance, particularly when combined with the RSM, highlighting its potential for optimizing
sustainable forest management strategies.

Keywords: reinforcement learning methods; Voronoi diagram; forest stand structure; multi-objective
optimization

1. Introduction

Pinus yunnanensis holds a dominant position in the coniferous landscapes of southwest-
ern China, establishing itself as the primary forest type within Yunnan Province. Widely
cultivated for reforestation and ecological engineering endeavors, this species has gar-
nered significant attention [1]. Stretching across the vast expanse of southwestern China, it
swathes approximately 52% of forested terrain and contributes to 32% of the overall timber
yield [2]. As a trailblazing tree species, Pinus yunnanensis thrives in rocky, nutrient-deprived
soils. Its tolerance of shade and resilience in drought conditions, attributed to its deep-
rooted system, further underscore its distinctive attributes [3]. Notably, its significance
extends to regional economic advancement and ecological restoration pursuits [2–4]. Un-
raveling the inherent dynamics of Pinus yunnanensis plays a pivotal role in reinvigorating
secondary forests, and in turn, contributes to China’s ambitious goal of achieving carbon
neutrality by 2060. This prospect arises from the potential to cultivate effective forest carbon
sinks within the region [5].

Secondary forests often grapple with challenges such as uneven forest stand structure
(FSS), diminished biodiversity, heightened susceptibility to forest fires, and vulnerability
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to natural disasters like pests, diseases, and wildfires [6–8]. Presently, the majority of
secondary forests harboring Pinus yunnanensis in Yunnan Province, China, are situated
within the middle-aged and young forest stages. These forests exhibit a simplistic stand
composition, unhealthy structures, severe quality degradation, and significant susceptibility
to fires, pests, and diseases [9]. The local government has prioritized the advancement
and safeguarding of ecological environments. Consequently, an imperative for research
focused on the wholesome management of Pinus yunnanensis secondary forests has arisen.
However, pertinent investigations remain scarce, particularly concerning the secondary
forests of Pinus yunnanensis along the eastern slopes of Cangshan Mountain in Dali, Yunnan
Province, which have yet to be addressed in the existing literature. As a result, embarking
on comprehensive research dedicated to Pinus yunnanensis secondary forests not only holds
notable theoretical scientific significance but also holds substantial practical implications.

Optimizing and regulating FSS is one of the most direct and effective technical ap-
proaches in forest management and planning, particularly in the management of secondary
forests. The existing studies have predominantly focused on rectangular plots for adjust-
ments, with a variety of optimization methods, yet research addressing the optimization
of circular small plots regarding FSS remains scarce. The majority of studies related to
FSS optimization primarily revolve around selective logging as the main optimization
measure. Identifying the combination of trees that need selective logging rapidly and
accurately is a critical and challenging issue within the optimization process. The key to
resolving these issues lies in determining FSS indicators, the preliminary identification
of trees for selective cutting, constructing optimization models, and designing solution
algorithms. FSS indicators encompass both non-spatial and spatial structural indicators,
including non-spatial indicators such as tree diameter distributions [10], species counts,
and canopy density [11], alongside spatial indicators like the mingling index (M) [12,13],
canopy competition index (CI) [14,15], angle index (W) [16,17], storey index (S) [18], and
open comparison (OP) [19]. These indicators comprehensively evaluate various aspects of
FSS from different perspectives.

Three primary methods are utilized for the initial determination of potential trees
for felling: the random selection method (RSM) [20], Q-value method (QVM) [21], and
V-map method (VMM) [22]. The RSM is straightforward, involving the random sampling
of initial forest trees within a plot to assemble a collection of trees for potential felling. The
QVM employs a multiplication and division strategy, considering larger-is-better metrics
as the numerator and smaller-is-better metrics as the denominator when combining forest
structure indicators. This process generates a comprehensive single-tree evaluation index,
Q. By computing the Q-value for each central tree and sorting them in ascending order,
trees ranked higher exhibit poorer performance within the spatial structure, thus making
them more suitable for removal. The top ‘n’ central trees within the felling quota constitute
the collection of trees identified by the QVM for potential felling. Similar to the QVM’s
approach to tree selection, the VMM divides the forest trees within a plot into a Voronoi
diagram. It calculates the angle index for each central tree and the average angle index for
the plot. Utilizing the average angle index as the criterion for tree selection, trees with an
angle index higher or lower than the average, based on optimization goals, are selected for
the collection of trees identified for potential felling.

An enhanced understanding of the factors impacting forest ecosystems has led us to re-
alize that a well-structured forest stand is not merely a singular objective. The improvement
of multiple structural indicators interacts, presenting a challenge akin to multi-objective
optimization, characterized by multi-objectives and non-linearity. In such scenarios, tra-
ditional simplistic mathematical planning methods struggle to suffice, whereas multi-
objective optimization problems (MOPs) offer a more comprehensive solution. They permit
us to concurrently balance and optimize multiple interrelated objectives, rather than solely
pursuing a singular optimal solution. This approach enables a more holistic comprehension
and management of the diversity and complexity within FSSs, thereby effectively enhancing
the overall health of forest ecosystems. Commonly used intelligent optimization algorithms
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for solving MOPs include heuristic algorithms like Monte Carlo (MC) [23–26], bio-inspired
algorithms such as genetic algorithms (GA) [27], simulated annealing (SA) [28,29], and par-
ticle swarm optimization (PSO) [30–33], among others. MC is an early heuristic algorithm
applied in forest management due to its simplicity and high programmability, yet its results
often lack accuracy due to inherent algorithmic shortcomings. Bio-inspired algorithms like
GA and PSO frequently encounter issues like susceptibility to local optima. Throughout
the solution process, these methods tend to exhibit high fluctuations and discreteness in the
values of the objective function (VOFs) [34]. However, particle swarm optimization offers
the advantage of fast search speed and finds relatively more applications in multi-objective
optimization of forest stand structures (MOFSSs). Yet, due to the inherent complexity of
forest ecosystems, using these algorithms for such problems often presents challenges such
as extensive computational requirements, intricate solution processes, and difficulties in
optimization [26,30,35]. Particularly in cases where forest stand structures are complex or
involve numerous trees, the aforementioned algorithms often struggle with low solution
efficiency and subpar optimization accuracy.

RL represents an intelligent algorithm rooted in the trial-and-error strategy, charac-
terized by its conceptual simplicity, absence of strict modeling requirements, dynamic
decision-making capabilities, and robust adaptability [36]. Leveraging continuous trial and
learning, RL can progressively enhance its efficacy, rendering it well-suited for addressing
dynamically evolving multi-objective optimization challenges. The inherent complexity
of RL resides in formulating an effective reward function, a pivotal aspect that enables
the algorithm to converge toward improved outcomes within a shorter time frame [37,38].
Furthermore, the efficiency of RL hinges on the ongoing interaction between the intelligent
agent and its environment, necessitating a substantial volume of samples for training. As a
result, RL has been widely applied in dynamic multi-objective optimization fields [39,40]
such as optimal smart grid management, intelligent transportation systems, and unmanned
aircraft control [41,42]. These domains not only provide ample training samples but also
establish a conducive environment for effective interactions with intelligent agents.

RL has found extensive application in the field of forestry. Research endeavors have
concentrated on various aspects such as simulated fire fighting [43], forest fire detection [44],
optimal harvest modeling [45], and forest management [46], offering crucial insights into
these domains. Despite their significant contributions to the efficient preservation and man-
agement of forests, these research areas differ significantly in their focus and methodologies.
Each domain adopts distinct approaches and tools tailored to address specific challenges
and requirements. However, there is currently a significant gap in research concerning the
application of RL in multi-objective optimization within the field of forest stand structure.
This study is focused on utilizing RL techniques to address the multi-objective optimization
challenges associated with secondary forest stand structure of Pinus yunnanensis. We aim
to bridge the existing gap in RL-based multi-objective optimization within the domain of
FSS optimization. While other machine learning techniques have found widespread appli-
cation in forestry [47,48], particularly in single-objective studies such as fire prediction [49],
yield forecasting [50], and LiDAR-based forest structure identification [51], our extensive
literature review has revealed a lack of these methods applied to address multi-objective
optimization in FSSs. This highlights a deficiency in these techniques when tackling com-
plex multi-objective optimization scenarios. By employing RL methods, our study focuses
on the multi-objective optimization of secondary forests of Pinus yunnanensis. Differing
from existing research, we concentrate on addressing the challenges posed by multiple
objectives, an area not fully explored in the current literature. Our research carves out a
new path in forest structure optimization, aiming to bridge the research gap in machine
learning approaches to multi-objective optimization in FSSs. Simultaneously, while deep
learning excels in managing large datasets and pattern recognition, its application in forest
management encounters certain limitations. Challenges in environmental interaction and
reward function design restrict its current primary application to forest inventory and
planning [52,53], without fully addressing complex multi-objective optimization problems.
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Hence, this study chose the MC algorithm for its simplicity, ease of programmability,
and historical relevance, despite its potential for yielding less accurate results. As a sup-
plementary method, we utilized the PSO algorithm, known for its rapid search speed and
widespread application, albeit with a susceptibility to local optima, as our control group.
Utilizing the forest stand survey database of Pinus yunnanensis secondary forests in Yunnan
Province, southwestern China, we conducted simulated felling optimization across various
sample plots. Through comparative analysis of the simulation outcomes, we assessed the
impact of three methods for determining potential felling trees on the optimization of FSSs.
Furthermore, this study evaluated the performance of three multi-objective optimization
algorithms and explored the application of Q-learning, an RL method, in optimizing the
structure of secondary forests dominated by Pinus yunnanensis. The research findings
demonstrate the potential advantages of employing RL in addressing optimization chal-
lenges related to FSS. This approach holds promise in overcoming prevalent hurdles in
widespread applications. Specifically focusing on the management and optimization of
secondary Pinus yunnanensis forests in southwest China, this study provides valuable guid-
ance and direction. Moreover, its adaptability and transferability offer valuable insights for
similar forest ecosystem management issues in other regions.

2. Materials and Methods
2.1. Study Areas

The forest data collection was conducted in the vicinity of Cangshan Mountain
(25◦34′–26◦00′ N, 99◦55′–100◦12′ E), Yunnan Province, southwestern China (Figure 1). The
surveyed areas encompass Zhonghe Peak, Foding Peak, Malong Peak, Lan Peak, and others.
These peaks are situated on the eastern slope of Cangshan Mountain. The eastern slope of
Cangshan Mountain falls within the subtropical climate zone, characterized by an annual
average temperature of 15 °C and prevailing southwest monsoon winds. Abundant annual
rainfall exceeding 1000 mm is observed, with distinct dry and wet seasons, primarily
concentrated from May to October, contributing to 84% of the total annual precipitation [9].
The prevalent soil type in this area is red soil.

The main tree species in the study areas include Pinus yunnanensis, Pinus armandii Franch.,
Quercus acutissima Carruth, Vaccinium bracteatum Thunb, Ternstroemia gymnanthera, Betula alnoides,
Gaultheria griffithiana Wight, Eucalyptus robusta Smith, Quercus aliena, Q. varia bilis, Abies fabri,
Keteleeriaevelyniana, Alnus nepalensis, Juglans regia L, and Populus tremula Linn, among others.

2.2. Study Site and Data Collection

The fundamental statistics of the sample plots are presented in Table 1. The pre-
dominant tree species, Pinus yunnanensis, was surveyed across four circular sample plots,
each located at a distinct peak. The radii of these circular sample plots measure 35 m
(Zhonghe Peak), 32 m (Foding Peak), 20 m (Malong Peak), and 19 m (Lan Peak).

Table 1. Key information about sample plot attributes.

Sample
Plots

East Long. North Lat. Elevation
(m)

Slope
(◦)

Slope
Dir.

Sample Plot
Radius

(m)

Tree Species
Composition

Stand Density
(Trees/ha)

P1 100°08.2149′′ 25°41.5280′ ′ 2254 13.45 East 35 8 PY-2 PA-BA-TG 1481
P2 100°10.9639′′ 25°38.1518′ ′ 2271 16.15 South 32 7 PY-3 PA 1822

P3 100°09.3947′ ′ 25°39.9506′ ′ 2195 17.70 NE 20
7 PY-3 PA-QA-VB

-GG-BA 1830

P4 100°07.1906′ ′ 25°43.5923′ ′ 2138 5.10 NE 19 10 PY-QA 1975

Note: NE, northeast; PY, Pinus yunnanensis; PA, Pinus armandii; QA, Quercus acutissima; VB, Vaccinium bracteatum;
GG, Gaultheria griffithiana; BA, Betula alnoide; TG, Ternstroemia gymnanthera; DBH, diameter at breast height. The
column ’Tree Species Composition’ represents the quantity of tree species within each plot. The numerical values
preceding each tree species indicate the proportion of that species for every 10 trees within the plot.



Forests 2023, 14, 2456 5 of 29

E

^
E

^

Legend

Sample Plots

E P1

^ P2

E P3

^ P4

Dali City boundary

±

0 2,7001,350

KM

0 240 480120

KM

0 25 5012.5
KM

DEM
High : 4208

Low :  758

±±

Yunnan Province boundary

China boundary

Figure 1. Description of study sites: Cangshan Mountain, Yunnan Province, southwest China. P1–P4
designate the plot locations.

Between July and December 2022, forestry operations were carried out within the
aforementioned sample plots. Over this timeframe, the geographical coordinates, elevation,
slope, slope direction, and radius of each sample plot were meticulously measured and
recorded. A comprehensive examination of live standing trees with a diameter at breast
height (DBH, the diameter of a tree measured at 1.3 m above the ground) equal to or greater
than 5 cm (DBH ≥ 5 cm) was conducted within the sample plots. For each tree, essential
forestry attributes, such as species, DBH, tree height (TH, the vertical distance from the
tree base to its highest point), and crown width (CW, the average of the longest horizontal
distances of the crown in the four cardinal directions), were documented with specialized
altimeters and distance measurers. The accurate relative coordinates to the center of the
sample plots for the base of each tree were determined using a Topcon GTS-2002 autofocus
total station (Topcon, Tokyo, Japan).

2.3. Determination of Spatial Structure Units and Edge Correction

The Voronoi method was employed to delineate the spatial structure units [54]. This
approach to constructing forest stand spatial structure units using the Voronoi diagram
accounts for the unique characteristics of each individual tree, resulting in a more rational
and comprehensive representation. Based on the measured relative positional coordinates
of the forest trees, the Voronoi diagram was generated using R4.2.0. In this diagram,
each polygon corresponds to a spatial structure unit formed by each forest tree and its
neighboring trees [55,56]. The spatial structure units of edge stands can be impacted by
the boundaries of the sample, potentially introducing calculation errors in the spatial
structure index.
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To mitigate these errors, this study suggests implementing the buffer zone method [57,58].
Specifically, the sample plot boundary was confined within a b-meter circular area to serve
as a buffer zone. When calculating the spatial structure index for the spatial structure unit
composed of the central tree and its adjacent trees, only the forest trees located within the
buffer zone were considered in forming the spatial structure unit as adjacent trees [59], as
depicted in Figure 2.

a

b b

The boundary of the sample plot

The boundary of the core area of the sample plot

Figure 2. Enhancing precision in sample plot edge correction using the buffer zone method. Note:
The cells represent the effective range around each tree within the plot, while the dots represent the
location of trees. a represents the diameter of the plot, and b stands for the buffer zone width, with
both units measured in meters. The determination of the buffer zone width is influenced by multiple
factors. When partitioning buffer zones for plot adjustments, careful consideration should be given
to plot size, analysis methods for stand structure indices, and geographical location. This study
thoroughly takes into account the aforementioned influencing factors and, based on the existing
research and experience [60], sets the buffer zone width at 2 m.

2.4. Stand Structure Indexes

(1) Tree Diameter Classes [10]
The categorization of trees into distinct diameter classes stands as a pivotal facet of

our analysis. Elevation in the number of these classes distinctly correlates with enhanced
stand growth. For this investigation, we embarked upon categorization based on DBH,
commencing from 6 cm DBH and advancing in 2 cm increments. This systematic approach
ensured the preservation of the number of diameter classes amidst stand optimization:

D = D0 (1)

where D0 denotes the count of diameter classes before selection cutting, and D signifies the
count post-selection cutting.

(2) Number of Species
A paramount objective during selection cutting entails the safeguarding of tree species

diversity, preventing any inadvertent eradication. We vigilantly upheld the assurance that
the count of tree species would remain unaltered:

T = T0 (2)
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where T0 signifies the initial count of tree species, and T denotes the count post-selection cutting.
(3) Cutting Intensity
The vigor of the stand post-optimization hinges upon the determination of cutting

intensity. Ideally, the annual volume of cutting should remain below the annual growth
rate of the stand. Previous research [61,62] has indicated that the optimal thinning intensity
for secondary forests of Pinus yunnanensis should not surpass 35%:

N ≥ N0(1− 35%) (3)

where N0 signifies the total count of trees prior to selection cutting, and N represents the
count post-selection cutting.

(4) CD (canopy density) [11]
In practical forest management, the formation of a continuous canopy is a quintessen-

tial requirement. Generally, a canopy density of not less than 0.7 signifies an adeptly
continuous forest floor cover:

CD ≥ 0.7 (4)

Spatial Structure Indexes

(1) M (mingling index)
The quantification of spatial segregation of tree species, known as M, is ascertained by

the ratio of neighboring tree j stem count, not belonging to the same species as the focal
tree i, to the overall neighboring tree stem count. Its mathematical representation is given
by [12,13]:

Mi =
1
n

n

∑
j=1

vij (5)

where Mi symbolizes the mingling degree of the focal tree i, and vij is a binary variable.
When the neighboring tree j is not of the same species as tree i, vij = 1; otherwise, vij = 0.
This metric, Mi, ranges from 0 to 1, indicative of different degrees of mixing, with Mi = 0
signifying zero-grade mixing and Mi = 1 indicating extreme hybridization.

(2) CI (canopy competition index)
To gauge the competitive pressures among trees, we designed a CI that employs the

overlap area of canopies. The index is calculated as follows [15]:

CIi =
1
Zi
×

n

∑
j=1

AOij ×
Lj

Li
(6)

Equation CIi is the canopy competition index of object tree i, Zi is the projected area of
the canopy of object tree i, Li = Hi × Cwi × CLi (height of object tree i × canopy width of
object tree i × crown length of object tree i), Lj = Hj × Cwj × CLj (height of competing
tree j × canopy width of competing tree j × crown length of competing tree j). AOij is
the canopy overlap area between object tree i and competitor tree j; when object tree i and
competitor tree j do not overlap, AOij = 1.

When object tree i overlaps with competing tree j, the canopy overlap area AOij is
calculated as follows.

The total area of shading produced by n competing trees j on object tree i is first
calculated with the formula [14]:

S0 =
Cw2

i
2

arccos

(
q2

j

2Cw2
i
− 1

)
− 1

4

n

∑
j=1

qj

√
4Cw2

i − q2
j (7)

The total shading area of object tree i over n competing trees j is then calculated by the
formula [14]:

S1 =
1
2

n

∑
j=1

[
Cw2

j arccos

(
1−

4Cw2
i − q2

j

2Cw2
j

)
−

√
4Cw2

i − q2
j

2

√
4Cw2

j −
(

4Cw2
i − q2

j

)]
(8)
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Finally, the total area of the overlapping part of the object tree i and the competing
tree j is calculated with the formula:

AOij = S0 + S1 (9)

Equation qj =
L2

ij−
(

Cw2
j−Cw2

i

)
Lij

, where Lij is the distance between the competing tree j
and the object tree i, Cwi is the canopy radius of the subject tree i, Cwj is the radius of the
canopy of the competing tree j, n is the number of competing trees.

(3) W (uniform angle index)
The delineation of the stand’s horizontal distribution pattern finds expression through

W. This index captures the proportion of angles α between the focal tree i and its nearest
neighbors, smaller than a predefined standard angle α0. Mathematically, this is represented
as [16,17]:

Wi =
1
n

n

∑
j=1

zij (10)

where Wi signifies the angle index of tree i, and zij is binary. If the angle α between trees i
and j is less than α0, zij = 1; otherwise, zij = 0. The index values of Wi offer insights into the
degree of distribution uniformity, ranging from an extremely uniform distribution (Wi = 0)
to a highly inhomogeneous distribution (Wi = 1).

(4) S (storey index)
The vertical diversity and complexity within a stand are encapsulated by S, which

quantifies the proportion of neighboring trees j at the same height level as the focal tree i.
Mathematically, this index is represented as [18]:

Si =
1
n

n

∑
j=1

vij (11)

where Si represents the storey index of tree i, and vij is a binary variable. If tree i shares the
same height level as tree j, vij = 0; otherwise, vij = 1. The Si index provides insights into the
vertical structural diversity of the stand.

(5) OP (open comparison)
The OP encapsulates the light environment and growing space size of tall trees within

the stand. This metric quantifies the extent to which the focal tree i within a spatial structure
unit is shaded by its neighboring tree j. Mathematically, it is expressed as [19]:

OPi =
1
n

n

∑
j=1

tij (12)

Within Equation (9), OPi stands for the open comparison corresponding to object tree
i, while tij is characterized as a discrete variable. If the horizontal distance between the
object tree i and its neighboring tree j surpasses the disparity in height between them, then
tij is assigned a value of 1; contrarily, it receives a value of 0. OPi assumes five distinct
categories: 0 signifies that the luminous environment for object tree i is entirely shaded;
0.25 implies that the light surrounding object tree i is somewhat obscured; 0.5 suggests
a moderately open luminous environment for object tree i; 0.75 indicates a notably open
luminous setting around object tree i; lastly, 1 indicates a luminous atmosphere of utmost
openness, characterized by an abundant influx of direct light.

The quantification of stand structure is the basis of stand structure optimization. In this
study, we selected the number of tree diameter classes, the number of tree species, and the
canopy density as indexes to quantify the non-spatial structure of the stand and the uniform
angle index, mingling index, crown competition index, storey index, and open comparison
as indexes to quantify the spatial structure of the forest stand. The uniform angle index
describes the horizontal distribution pattern of trees, the mingling index describes the
degree of species isolation, the crown competition index describes the competitive pressure
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among trees, the storey index describes the vertical distribution pattern of trees, and the
open comparison describes the intensity of understory illumination.

2.5. Methods for Selecting Trees for Cutting
2.5.1. RSM (Random Selection Method) [20]

A swift random sampling approach was employed from the original pool of retained
trees (comprising all trees within the stand) to acquire the subset of trees designated for se-
lection, ensuring that the cutting intensity remained within the prescribed limits (Figure 3).

Begin

(1) Entire Stand 

Inventory

(4) Selective

 Cutting Limit

End

No

Yes

(2) Initial 

Retained Trees Set

(3) Random Selection

(5) Refine Retained 

Trees Set

Note:
(1) Consider all trees present in the forest stand
(2) Begin with an initial set of trees to be retained
(3) Utilize random selection to identify trees for potential cutting
(4) Ensure the number of selectively cut trees is limited to a maximum of 35% of the total trees
(5) Revise the set of trees designated for retention based on selective cutting

Figure 3. Illustration of the random selection method (RSM) process flow.

2.5.2. QVM (Q-Value Method) [21]

In previous studies, a comprehensive index, Q, was formulated to assess the spa-
tial structure of trees. This index integrated multiple spatial structural indicators using
multiplication and division methods, with larger-is-better metrics as the numerator and
smaller-is-better metrics as the denominator. These indicators, such as the mingling index
(M), canopy competition index (CI), angle index (W), storey index (S), and open compari-
son (OP), collectively capture diverse aspects of tree spatial structure. Higher values of M,
OP, and S, coupled with lower values of CI, typically indicate a superior overall spatial
structure. The W tends to approximate standard random distribution values.

To ensure equal significance and influence of each structural index in the compre-
hensive evaluation, a normalization method with identical weights was employed. This
approach effectively synthesizes various indices, ensuring their equitable contributions
and mitigating the impact of different scales.

The final formula is represented as:

Qi =

1+Si
δS
· 1+OPi

δOP
· 1+Mi

δM
1+CIi

δCI
· 1+Wi

δW

(13)
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In Equation (13), Wi represents the angle index, Mi denotes the mingling index, Si
signifies the storey index, OPi characterizes the open comparison, and CIi quantifies the
canopy competition index. The terms δW , δM, δS, δOP, and δCI correspond to the standard
deviations of the respective indices. This formula provides a comprehensive evaluation
for each tree, ranked in ascending order. Trees with higher rankings exhibit poorer spatial
structure and are consequently more suitable for harvesting. Within a specific harvesting
limit, the top n ranked trees form the set designated for felling.

2.5.3. VMM (V-Map Method) [22]

In random forests, the range of [0.475, 0.517] is identified as the optimal angle scale for
an ideal stand [63], commonly centered around a midpoint value of 0.496. This range repre-
sents an optimal balance for the stand’s spatial structure. The choice of this interval is based
on previous research or empirical evidence indicating that stands within this range tend
to exhibit more favorable spatial characteristics. Additionally, the proximity of a stand’s
horizontal pattern to a random distribution is determined by assessing the angle scale value
and its deviation from the established midpoint of 0.496 (|W − 0.496|). This method offers
insights into deviations from the expected random distribution, aiding in the assessment
of a stand’s spatial arrangement relative to an ideal pattern. During the initial selection
of trees for cutting, priority is given to the nearest neighbor of the reference tree with the
highest |W − 0.496| value. The closest neighbor of the reference tree is initially chosen for
cutting, while stands with trees exhibiting weak, moderate, or suppressed competition
are identified as potential candidates for retention. If necessary, further calculations are
performed using the critical distance formula proposed by Johann (1982) [64]:

Giz =
hz

A
· di

dz
(14)

where Giz represents the critical distance between the reference tree and the competing
tree, hz is the tree height of the reference tree z, di signifies the DBH of competing tree i, dz
stands for the DBH of reference tree z, and A is the parameter defining the cutting weights,
which is commonly assumed to be A = 5 (Figure 4).

(1) Reference Tree Determination

(2) Neighboring Trees Identification

(3) Initial Cutting Selection

(5) Tree Selection 

Based on Criteria

(6) Avoiding 

Open Areas

Begin

(4)

 Critical Distance

 EvaluationYes No

End

Note:
(1) Identify the reference tree through single-tree angle measurements
(2) Establish neighboring trees of the reference using a Voronoi diagram for a single tree
(3) Preliminarily select trees for cutting based on their spatial distribution
(4) Check if initially selected trees are within a critical distance
(5) Determine which trees to cut considering factors such as species, competitive pressure, and diameter
(6) Ensure avoidance of extensive open spaces in the forest by judicious tree harvesting

Figure 4. Illustration of the V-map method (VMM) process flow.
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2.6. Optimization Model for Selection Cutting of Forest Stand Structure
2.6.1. Constraints

(1) Spatial Structure Constraints
Post-optimization and -adjustments, the values of each sub-objective should not de-

grade compared to the pre-optimization values. This ensures the conservation and improve-
ment of the spatial diversity of the forest stand. Precisely, it guarantees the convergence of
the stand’s horizontal distribution pattern towards a random distribution, enhancement in
the level of mixing, reduction in competition within the stand, augmentation of vertical
richness, and intensification of the stand’s openness and light penetration. Mathematically,
it is expressed as: 

∣∣W − 0.496
∣∣ ≤ ∣∣W0 − 0.496

∣∣
M ≥ M0
CI ≤ CI0

S ≥ S0
OP ≥ OP0

(15)

Here, W represents the post-selection cutting uniform angle index of the forest stand,
M denotes the mingling index of the forest stand after cutting, CI signifies the canopy
competition index of the forest stand after cutting, S reflects the storey index post-cutting,
and OP captures the open comparison post-cutting. W0, M0, CI0, S0, and OP0 correspond
to the values of the aforementioned indices before selection cutting.

(2) Non-spatial Structure Constraints
The selection cutting process must also adhere to non-spatial structure constraints.

These constraints ensure the preservation of the number of diameter classes and tree species
within the stand, maintain the cutting intensity under 35%, and uphold a canopy density
greater than 0.7. They are formally represented as:

D = D0
T = T0

N ≥ N0(1− 35%)
CD ≥ 0.7

(16)

where D0 signifies the number of diameter classes of trees within the stand before selection
cutting, D represents the number of diameter classes after cutting; T0 denotes the count of
tree species before cutting, T reflects the count of tree species after cutting; N0 stands for
the total tree count within the stand before cutting, N corresponds to the total tree count
after cutting; and CD quantifies the canopy density post-cutting.

2.6.2. Construction of the Model

Addressing a MOP (multi-objective optimization problem) involves the quest for an
optimal solution that balances multiple objectives within a constrained framework. Often,
these objectives are interconnected and bound by constraints, making the pursuit of an ideal
solution challenging. Hence, it becomes imperative to amalgamate and synthesize these
sub-objectives, shaping an overall OF (objective function), and subsequently discovering
the optimal solution within this OF. In the context of MOFSS (multi-objective optimization
of forest stand structure), a larger VOF (value of the objective function) corresponds to a
more favorable spatial structure of the corresponding forest stand.

In this study, we carefully selected five pivotal spatial structure indices: W (uniform
angle index), M (mingling index), CI (crown competition index), S (storey index), and OP
(open comparison). Employing a ‘multiplication and division’ strategy, we orchestrated
the multi-objective planning and synchronization of these spatial structure indices. This
orchestration culminated in the formulation of the OF for the multi-objective optimization
model of FSS:
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max OF =
1
N

N

∑
i=1

1+Mi
δM
· 1+OPi

δOP
· 1+Si

δS
1+CIi

δCI
· 1+|Wi−0.496|

δ|W−0.496|

(17)

Here, Wi, Mi, Si, OPi, and CIi represent the uniform angle index, mingling index,
storey index, open comparison, and canopy competition of the central tree i, respectively.
Additionally, δW , δM, δS, δOP, and δCI denote the standard deviations of their respective
structural parameters. The midpoint of the range [0.475, 0.517] is 0.496, where a smaller
value of |Wi − 0.496| indicates a closer alignment of the forest stand’s horizontal distribution
pattern with randomness.

2.7. Algorithms for Solving the Model
2.7.1. MC (Monte Carlo)

MC, a classical approach for addressing MOPs, has been extensively applied to tackle
MOFSS problems [20]. Its fundamental principle involves calculating the VOF and related
indices for the retained trees after each simulated logging iteration. By iteratively filtering
out trees that do not meet the constraints, the MC algorithm generates an approximation of
optimal solutions for the MOFSS problem.

The general procedure of the MC algorithm for the MOFSS is outlined as follows:
(1) Set the initial control parameters and initialize I = 0 (count of successive non-feasible
solutions) and U = 0 (count of non-improvement of feasible solutions). (2) Formulate the
initial set of retained trees as g∗ and calculate its corresponding VOF value. (3) Determine
the proposed trees for felling using the method for selecting candidate cutting trees, result-
ing in the retained tree set g. (4) Verify whether the set g satisfies all constraints. If it does,
calculate the VOF for set g; otherwise, increase I and continue if I is within the limit Imax.
(5) If VOF > VOF*, assign the set g and its VOF to g∗ and VOF*, respectively, and reset
U = 0. Then, re-select felling trees and repeat the process; otherwise, increment U. (6) If
U > Umax, the algorithm has converged to optimal solutions g and the corresponding OF.

The MC flow chart for solving MOFSS is presented in Figure 5.

Calculate Initial Value of Objective Function (VOF*)

Compute Constraints

Compute Retained Trees' VOF

Select and Update Trees (g)

Verify Constraint 

Satisfaction

VOF > VOF*

I = I+1

I > Imax

Update Associated 

Variables: g*=g, 

Q*=Q, U=0

U=U+1

U > U0

No Solution Found

Output Optimal Solution: g, Q

End

Begin

Initial Retained Trees Set (g*)

Initialize Control Parameters (I=0, U=0)

Yes

Yes

Yes

Yes

No

No

No

No

Figure 5. Flowchart for the dissolution process of MC in MOFSS.
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2.7.2. PSO (Particle Swarm Optimization)

The integration of PSO, renowned for its spatial search efficiency, with multi-objective
problems has gained traction in addressing the multi-objective optimization model of
FSS [54,65]. The fundamental concept involves representing each tree in the forest as a
particle within the solution space of the PSO algorithm. The two-dimensional spatial layout
of the entire forest corresponds to the objective solution space, and the positions of particles
in this solution space mimic the spatial coordinates of trees. The VOF for stand structure
optimization acts as the fitness value of particles, transforming the MOFSS problem into an
iterative optimization process within the solution space of PSO.

The key steps encompass setting up the parameters of the PSO algorithm, mapping
the Voronoi space of the forest as the objective solution space, and associating the spatial
coordinates of trees with potential particle positions. Particles collectively explore the
Voronoi space of the forest to identify trees that fulfill the optimization objectives. During
each iteration, particles search for a Voronoi polygon that satisfies the objectives. The
position of the best-performing particle (corresponding to a tree) updates the current
position of the particle, leading it to ‘land’ on a tree that aligns with improved FSS. The
flowchart outlining the PSO procedure for MOFSS is illustrated in Figure 6.

Calculate Initial Value of Objective Function  (VOF*)

Evaluate Constraints

Calculate VOF for Retained Trees

Select Trees for Cutting

I = I+1

I > Imax

Record Round Results

Output Cutting Results

End

Begin

Initial Retained Trees (g*)

Initialize PSO Parameters

Yes

Yes

Yes

No

No

Update Particle Positions

Particle Tree Selection (g)

Check Constraint 

Compliance

VOF > VOF*

No

Figure 6. Flowchart for the dissolution process of PSO in MOFSS.

2.7.3. RL (Reinforcement Learning)

Acknowledging the inherent accuracy limitations of MC and the susceptibility of
PSO to local optimization, RL presents an alternative with distinct advantages. RL is
characterized by its trial-and-error approach, absence of a predefined model, dynamic
decision making, and adaptive capabilities. Introducing RL into the realm of MOFSS is
a novel endeavor that transforms the process of tree selection into actions guided by an
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intelligent agent. This agent makes decisions about which trees to fell based on a system of
rewards and penalties, continually refining its decision-making strategies, approximating
the optimal approach, and ultimately identifying relatively optimal solutions.

In the context of RL applied to MOFSS, tree selection is transformed into intelligent
agent actions. The agent’s actions involve deciding whether to cut or not cut specific trees
from the set designated for cutting. The environment responds by providing rewards or
penalties to the agent based on a predefined reward function. This feedback influences the
agent’s subsequent actions. Through the process of maximizing rewards, the agent aims
to identify the actions that yield the highest cumulative rewards, thereby contributing to
the enhancement of the forest stand structure. The flowchart depicting the RL approach to
solving MOFSS is illustrated in Figure 7. The pseudocode for applying RL to MOFSS is
detailed in Appendix A.

Yes

Compute the VOF 

for the retained trees

Agent

Output the set of trees eligible for selective 

cutting, satisfying constraints, along with 

their corresponding OF values

Agent advances by one step, 

resulting in new_state = state + 1

Agent advances again by one 

step, new_state = state + 1

Agent takes a step back, 

new_state = state －1

Assign rewards to the 

agent: Reward = a

Provide rewards to the 

agent: Reward = b

Impose penalties on 

the agent: Reward = c

Cutting No cutting

states

environment

actions

rewards

Evaluate if the retained

 trees meet all constraints

Calculate constraints 

for trees designated 

to be retained

VOF > VOF*

Determine trees to be cut based on predefined 

criteria. These trees are marked for cutting.

Check if the

 agent has reached the "end of the line," 

i.e., state = 100

Position the

 "agent" at the starting point with 

state = 0

Agent remains stationary, 

new_state = state

Agent advances once more, 

new_state = state + 1

Administer penalties to 

the agent: Reward = d

Allocate rewards to 

the agent: Reward = e

Begin

End

Save the current set of trees selected 

for cutting and their corresponding 

VOF for retained trees

No

Yes

No

Yes
No

Yes No Yes

No Yes

No

Initialize the value of objective 

function  as VOF*

Set control parameters: Initial position 

state = 0, Initial iteration episode = 0

Determine whether

 the maximum number of iterations

 has been reached

VOF = VOF*

Figure 7. Flowchart for the dissolution process of RL in MOFSS.
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2.7.4. Optimization Schemes

As shown in Table 2, to evaluate the effectiveness of these algorithms in practical
MOFSS applications and to investigate the impact of tree count on model performance,
four real forest stands characterized by varying densities and conditions were selected for
simulation experiments. The choice of methods for selecting proposed cutting trees leads
to different sets of selected trees, consequently influencing the overall performance of the
models. In this study, spatial structure units based on the V diagram were utilized, and
the tree selection methods included RSM, QVM, and VMM. The optimization of the model
was carried out using MC, PSO, and RL, resulting in a total of nine distinct stand structure
optimization strategies. A uniform maximum loop iteration of 10,000 was set for all of
these strategies.

Table 2. Nine optimization schemes for FSS.

RSM QVM VMM

MC r-MC(M1) Q-MC(M2) V-MC(M3)
PSO r-PSO(M4) Q-PSO(M5) V-PSO(M6)
RL r-RL(M7) Q-RL(M8) V-RL(M9)

Note: The abbreviations correspond to the following methods and algorithms: “r” denotes random selection
method (RSM), “Q” represents Q-value method (QVM), “V” signifies V-map method (VMM), “MC” stands for
Monte Carlo algorithm, “PSO” refers to particle swarm optimization algorithm, and “RL” indicates reinforcement
learning algorithm. These three methodologies for devising the proposed selection felling approach are paired
with three distinct algorithms for solving the model, resulting in the generation of a total of nine schemes
for MOFSSs.

3. Results
3.1. Algorithm Parameter Settings

The parameter configurations for each solution algorithm in the experimental setup
are outlined in Table 3.

Table 3. Optimizing algorithm parameter configuration.

Algorithms
Parameters and

Parameter Values Value Meaning

MC

I = 0 Initial iteration
Imax = 10,000 Maximum number of iterations

U = 0
Initial number of consecutive iterations

without OF improvement

Umax = 500
Maximum number of consecutive iterations

without OF improvement

PSO

I = 0 Initial iteration
Imax = 10,000 Maximum number of iterations

p = 20 Number of particles
w = 0.5 Inertia weights
c1 = 0.5 Individual particle learning factor
c2 = 0.5 Global learning factor

RL

I = 0 Initial iteration
Imax = 10,000 Maximum number of iterations

state = 0 Initial position of the agent
statemax = 100 Farthest position the agent is allowed to move to

a = 150, b = 10,
c = −1, d = 1

Reward and penalty values

For all algorithms, the initial number of iterations (I) is set to 0, while the maximum
number of iterations (Imax) is set to 10,000, a conventional value commonly used in opti-
mization studies. The variable U represents the initial number of consecutive iterations in



Forests 2023, 14, 2456 16 of 29

which the objective function does not exhibit improvement for the MC algorithm, initialized
as U = 0, and Umax is set to 500. In the context of MC, assuming that the nth feasible
solution has a value of the objective function VOF(n), if none of the 500 consecutive feasible
solutions found after the nth solution demonstrate superior quality compared to VOF(n),
then VOF(n) is regarded as an optimal solution.

Parameters such as p, w, c1, and c2 are common across the PSO algorithm. Specifi-
cally, p denotes the number of particles, w stands for the inertia weight, c1 represents the
individual particle learning factor, and c2 signifies the global learning factor. The values
of these parameters adhere to conventional standards. To implement RL for MOFSS, this
study abstracts the problem into a bidirectional movement scenario for the RL agent. At the
initiation of each iteration, the agent’s position is at the ‘starting point’ (state = 0). Should
the agent choose to execute selective tree cutting to enhance FSS, it advances forward
(state = state + 1). On the other hand, the agent might remain stationary (state = state + 1)
or take a step backward (state = state− 1) if it decides not to cut trees (refer to Figure 7
or the pseudo-code for precise agent movement rules). The ‘end point’ corresponds to a
distance of 100 units from the ‘starting point’ (statemax = 100). The parameters a, b, c, and
d are meticulously adjusted reward and penalty values acquired through numerous trial
runs, where rewards hold positive values and penalties carry negative values.

3.2. Results of Simulated Selective Cutting Optimization

The findings demonstrate that following the implementation of selective cutting adjust-
ments across different scenarios, the counts of tree diameter classes and tree species within
each sample site remained consistent. The spatial structure quality indices for each forest
stand exhibited varying degrees of improvement. The mean angle index (|Wi − 0.496|),
which represents the horizontal distribution pattern, experienced a slight reduction, bring-
ing it closer to a random distribution. The canopy competition index decreased, indicating
a reduction in inter-tree competition. The mingling index showed improvement, with
the most notable enhancement observed in sample site P4. The storey index and open
comparison values increased, thereby enhancing vertical structural diversity and light
penetration. Overall, VOF scores were enhanced, indicating the successful optimization of
forest stand structure across the different sites (see Figure 8).

3.3. Algorithm Performance

The optimization strategies were simulated across the four sample plots.
The selection of VOF as the evaluation metric for MOFSSs is founded on its comprehen-

sive nature, alignment with prior research [66,67], and interpretive capacity. VOF enables a
comprehensive evaluation of forest stand spatial structures and serves as a reliable metric
commonly used in related studies, ensuring comparability. The exclusive use of VOF as the
sole metric streamlines the problem, facilitates interpretable outcomes, and aligns with the
optimization model employed in this study, effectively addressing challenges associated
with model complexity and compatibility.

We selected VOF as the primary evaluation metric for MOFSSs based on its extensive
application in the research domain, comprehensiveness, and interpretative capabilities.
Prior studies [66,67] have demonstrated the effectiveness of VOF in assessing forest struc-
ture by considering the spatial arrangement comprehensively, ensuring comparability
across related studies. In this research, solely using VOF as the exclusive evaluation met-
ric assists in simplifying the problem, generating results that are easier to interpret, and
aligning with our adopted optimization model, effectively addressing challenges related to
model complexity and compatibility. While other metrics also possess certain advantages,
within the current research context, VOF, as a comprehensive and reliable metric, best
assesses the multi-objective optimization effects on forest structure we are investigating.
Moreover, despite the existence of other parameters, such as object value [20], comprehen-
sive homogeneity index [66], and fitness value [67], utilized in assessing the optimization
effects of forest structure, their design principles and computation methods closely re-
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semble those of VOF. Most parameters have adopted the principles of multiplication and
division, integrating multiple forest structure evaluation indices logically.

(a) P1

(c) P3 (d) P4

(b) P2

Figure 8. Alterations in stand structure indices for different optimization scenarios in different sites.
Note: Horizontal coordinates represent stand structure indices of various optimization schemes after
selective cutting: D is the number of diameter classes in the forest stand after selective cutting, T is the
number of tree species in the forest stand after selective cutting, CD is the canopy density of the forest
stand after selective cutting, W is the difference between the uniform angle index and the median
value of the range of random distributions in the forest stand after selective cutting, CI is the crown
competition index after selective cutting, M is the mingling index after selective cutting, S is the storey
index after selective cutting, OP is the open comparison after selective cutting, VOF is the objective
function value after selective cutting. Within our study, we have employed three distinct selective
logging methods, along with three corresponding model-solving algorithms. These combinations
have resulted in the formulation of nine unique scenarios for optimizing stand structure, denoted M1
to M9. The specific correspondence between these nine scenarios is meticulously detailed in Table 2.
The vertical coordinate is the magnitude of change in each index before and after selective cutting.

Figure 9 illustrates the most favorable optimization outcomes achieved with each
scheme. On the horizontal axis, various forest stand structure optimization models are
represented, each applied to the four distinct sample plots. The vertical axis showcases
the optimal objective function values corresponding to the FSS optimization model of
each plot. In the context of MOFSS across the four sample plots, both MC-type and
PSO-type optimization strategies encountered suboptimal solutions on two occasions.
Specifically, MC-type schemes produced suboptimal outcomes for sample plots P2 and
P3 using M1 (r-MC), while PSO-type schemes yielded suboptimal solutions for sample
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plots P1 and P4 via M6 (V-PSO) and M5 (Q-PSO), respectively. The disparity in suboptimal
solutions between these two categories of schemes is relatively minor, indicating the
effective performance of both MC-type and PSO-type approaches in addressing MOFSS
challenges. Remarkably, M7 (r-RL) consistently achieved the relative maximum VOF within
the 35% selection threshold for each individual sample plot.

P1 P2 P3 P4
0.0

0.1

0.2

0.3

0.4

0.5
M

ax
 V

O
F

Sample Site

 M1
 M2
 M3
 M4
 M5
 M6
 M7
 M8
 M9

Figure 9. Optimal outcomes for each optimization strategy. Note: M1–9 represent nine distinct
scenarios for optimizing stand structure, with the specific compositions of these scenarios provided
in Table 2.

To evaluate the optimization performance of each scheme on the secondary forest stand
structure of Pinus yunnanensis, this study compares their effectiveness in terms of algorithm
convergence speed and the extent of stand structure optimization. The advantages and
drawbacks of the stand structure are gauged through the value of the objective function.
To ensure that sample site conditions do not bias the comparison results, the optimization
schemes were simulated for logging selection in the four sample plots, and the outcomes
are presented in Table 4. Similarly, the convergence progress of each optimization scheme
in addressing the stand structure optimization challenge within the same plots is depicted
in Figure 10.

As indicated in Table 4, the objective function value of the stand structure for sample
plot P1 increased from 0.3515 to 0.3894, P2 increased from 0.2814 to 0.3649, P3 increased
from 0.3748 to 0.4598, and P4 increased from 0.4812 to 0.5340. In the simulated logging
selection experiments across these four sample plots, the highest objective function value
achieved by the reinforcement learning scheme was 0.5983, and the optimal objective
function value reached by the Monte Carlo scheme was 0.4887. The values obtained
using the reinforcement learning algorithm (0.4121, 0.4078, 0.5047, 0.5635, respectively)
clearly exceeded those of the MC (0.3892, 0.3983, 0.4887, 0.5537, respectively) and PSO
(0.4010, 0.3877, 0.4729, 0.5593, respectively) schemes. Observing Figure 10, the experiments
logged the iterations conducted during model runs, offering partial insight into the model’s
runtime. The results reveal varying convergence times as the number of iterations increases.
The corresponding runtime table (Table 5) provides a comprehensive overview of the
time required for each strategy to attain the maximum objective function values across
different plots. The table demonstrates the practical runtime implications of each strategy,
complementing the insights obtained from the iteration logs. Upon comprehensive analysis
of iterations and runtime, it becomes evident that the RL algorithm demonstrates slightly
faster convergence compared to the MC and PSO algorithms when achieving similar
objective function values. Furthermore, it is evident that the MC algorithm converges more
slowly in cases like M3 in sample plots P1 and P3 and M1 in sample plot P4. The PSO
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algorithm tends to encounter issues with local optimization, such as M6 in sample plots P1,
P3, and P4.

Table 4. The variation in VOFs before and after simulated cutting.

VOF P1 P2 P3 P4 Average Value
of Scheme

Improvement
Magnitude of Scheme

Average Improvement
Magnitude of Scheme

Before Cutting 0.3515 0.2814 0.3748 0.4812 0.3722

After Cutting

M1 0.3892 0.3983 0.4887 0.5537 0.4575 22.92%

17.42%

M2 0.3858 0.3420 0.4588 0.5180 0.4261 14.48%
M3 0.3676 0.3066 0.4144 0.5109 0.3999 7.44%
M4 0.3975 0.3705 0.4560 0.5292 0.4383 17.76%
M5 0.3933 0.3773 0.4729 0.5593 0.4507 21.09%
M6 0.4009 0.3877 0.4675 0.5373 0.4484 20.47%
M7 0.4121 0.4078 0.5047 0.5635 0.4720 26.81%
M8 0.3916 0.3866 0.4610 0.5186 0.4395 18.08%
M9 0.3663 0.3076 0.4144 0.5149 0.4008 7.684%

Average Value of
Sample Plot

0.3894 0.3649 0.4598 0.5340

Note: The ’Average Value of Sample Plot’ represents the average maximum objective function value achieved by
the 9 optimization schemes within a specific sample plot. The ’Average Value of Scheme’ represents the mean of
the maximum VOFs obtained by a particular optimization scheme across the simulated cutting experiments in
the four sample plots. The ’Improvement Magnitude of Scheme’ signifies the percentage increase in the mean
of the maximum VOFs relative to the mean initial VOFs before cutting in the four sample plots for a specific
optimization scheme. The ’Average Improvement Magnitude of Scheme’ denotes the percentage increase in the
mean of the maximum VOFs achieved by the nine optimization schemes in all sample plots relative to the mean
initial VOFs before cutting in the four sample plots.

(a) P1 (b) P2

(c) P3 (d) P4

Figure 10. Convergence status of individual optimization strategies across varied sites. Note: This
figure illustrates the convergence behavior of each optimization scheme (M1–9) during a simulated
selective cutting experiment conducted on four sample sites (P1–4).
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Table 5. Running time taken to attain Mmax VOF across different sites for each strategy.

Running
Time/(min) M1 M2 M3 M4 M5 M6 M7 M8 M9

P1 7847.881 4997.854 9793.233 4198.420 3404.310 3401.141 3398.441 7394.313 3400.292
P2 4845.591 3450.688 2635.718 5053.131 4240.855 5058.874 7229.825 4242.174 2641.545
P3 7892.756 2645.365 6600.294 7424.275 5039.715 5039.071 7372.265 8207.307 5007.491
P4 12,947.977 3475.821 6615.058 6632.085 3459.199 5033.976 5035.914 4242.309 6626.676

Note: This table illustrates the time required for each optimization strategy to achieve the maximum VOF across
four different sites. Each row represents a specific strategy, and each column denotes a different site. The values in
the table represent the time (in minutes) taken by each strategy to reach the maximum VOF in the respective site.
These findings serve as a reference for the time efficiency of each method in achieving optimization. To mitigate
the complexity arising from an extended manuscript, we have relocated the detailed depiction of line graphs
illustrating the runtime and VOFs of various optimization models across different simulated FSSs to Figure A2.
This graph further emphasizes the advantages of RL in multi-objective optimization of FSSs.

3.4. Influence of Proposed Selective Felling Tree Determination Methods

As depicted in Figure A1, within the MC-class optimization schemes (M1, M2, M3), the
optimization scheme utilizing random selection as the method for determining proposed
logging (M1) significantly outperformed the optimization schemes employing the QVM or
VMM (M2, M3) in enhancing the stand structure of the sampled areas.

In the PSO-class optimization schemes (M4, M5, M6), the optimal results achieved
by the schemes utilizing the QVM or VMM for selecting trees to be felled (M5, M6) were
generally comparable in optimizing the stand structure across each sample site, and slightly
superior to the optimization scheme combining RSM and PSO (M4). Similar to the MC-class
scheme, the scheme that combined the RL with the RSM for selecting trees to be felled (M7)
demonstrated the best performance across the four sample sites (M7 > M8 > M9).

It is also evident from Table 4 that the average improvement in the objective function
value of M7 across the four sample plots amounts to 26.81%, which is significantly higher
than the average improvement of all the schemes (17.42%).

4. Discussion

In the domain of multi-objective optimization for forest stand structures (MOFSSs), the
quest for effective solutions remains paramount. Although machine learning techniques
like random forests and decision trees find applications in forest management, their research
scope regarding dynamic multi-objective forest structure optimization remains limited.
While deep learning excels in handling extensive data and complex pattern recognition,
its practical application in forest management faces constraints related to environmental
interaction and reward function design.

While certain machine learning methods such as random forests and decision trees
have been applied in forest management scenarios, their exploration specifically concerning
dynamic multi-objective forest structure optimization remains restricted in the literature.
Our extensive review did not reveal substantial investigations employing these machine
learning methods to address the intricate challenges of multi-objective forest stand struc-
ture optimization. This highlights a notable research gap in utilizing machine learning
techniques for effectively handling complex multi-objective optimization issues within
forest structures. Similarly, deep learning’s proficiency in managing extensive datasets and
intricate pattern recognition has not translated effectively into practical applications within
forest management due to inherent challenges in environmental interaction and reward
function design.

As of now, a universally acknowledged, efficient approach to address MOFSSs remains
elusive. To overcome the constraints of the current algorithms and leverage the inherent ad-
vantages of RL in multi-objective optimization, this study introduces a pioneering approach
rooted in RL principles to address the complexities of optimizing multi-objective FSSs.
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Simulated felling experiments were conducted using data obtained from circular sample
plots in the southwestern region of China within secondary forests of Pinus yunnanensis.

The findings underscore the promising potential of RL in optimizing FSSs, indicating
its capability to mitigate prevailing challenges in widespread application. Particularly
pertinent to the management and optimization of Pinus yunnanensis secondary forests in
southwest China, this study offers crucial guidance and direction. The outcomes of this
study are not confined to a specific region or tree species; their universality offers valuable
insights for addressing similar forest ecosystem management issues in other regions or
with different tree species.

4.1. Results of Simulated Selective Cutting Optimization

In terms of FSS, simulated selective cutting led to improved horizontal distribu-
tion patterns, enhanced the spatial segregation of tree species, reduced the competitive
pressure among trees, enriched vertical tree structures, and improved understory light
conditions [66,68,69]. While maintaining the number of tree diameter classes and species
and adhering to cutting intensity and canopy density constraints, the post-cutting forest
stand structure surpassed the pre-cutting condition [70–72]. This underscores the feasibility
of applying RL to solve MOFSS and the potential of using RL to enhance FSS. The results
also demonstrate the efficacy of both MC and PSO in addressing MOFSS, aligning with
findings from previous research [20,54,65,73,74].

Due to the limited availability of current data, this study has relied on existing research
findings and the insights of previous researchers [61,62]. In the simulated selection felling
experiment with Pinus yunnanensis conducted in four sample plots, the selection intensity
was uniformly set not to exceed 35% of the total tree count within each plot. However, it
is important to note that varying site conditions and forest stand structures may lead to
different optimal selection limits across different plots [67,75].

In the subsequent phases of our research, we intend to address this gap by conducting
additional experiments to gather more relevant data. Our goal is to refine and tailor the
selection intensity limits for each individual sample plot, taking into consideration the
specific site characteristics and forest composition.

4.2. Algorithm Performance

Based on the results obtained from the simulated selective cutting experiments con-
ducted in the four sample plots, the RL optimization schemes consistently yielded higher
maximum VOFs (0.4121, 0.4078, 0.5047, 0.5635, respectively) compared to the MC class
(0.3892, 0.3983, 0.4887, 0.5537, respectively) and the PSO class (0.4010, 0.3877, 0.4729, 0.5593).
Notably, under similar VOFs, the RL algorithm exhibited slightly faster convergence com-
pared to the MC and PSO algorithms. The optimization results for sample plots P1, P3,
and M6 in P4 demonstrate that the MC scheme has a slower convergence speed, while
the results for sample plots P1, P3, and P4 indicate that the PSO algorithm is prone to
becoming stuck in ‘local optima’. In summary, the RL algorithm proves to be competitive
with traditional approaches like the MC and PSO algorithms for solving the MOFSS.

In the simulated harvesting experiments, the RL optimization scheme did not exhibit
significant advantages in terms of time complexity and space complexity [76–78] when
compared with the MC and PSO classes. Our future research will focus on enhancing the
efficiency of utilizing RL to solve the MOFSS. We aim to bridge the gap between RL and
existing optimization methods for FSS in terms of time and space complexity.

4.3. Influence of Proposed Selective Felling Tree Determination Methods

To explore the impact of the proposed selection methods on experimental outcomes,
this study simulates the selection of trees from the set of selected trees generated by the three
proposed methods during the model-solving process. The experimental results indicate
that optimization schemes combining the RSM with either the MC or RL algorithms (M1,
M7) achieve superior results compared to schemes combining the QVM or VMM with
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the MC or RL algorithms (M1 > M2 > M3, M7 > M8 > M9). Moreover, the fitness level
of schemes utilizing the QVM or VMM in combination with the PSO algorithm is higher
(M5 > M4, M6 > M4).

Particularly, the M7 optimization scheme, which combines the RSM with the RL
algorithm, exhibits an average enhancement of 26.81% in VOFs across the four sample
plots. This improvement is significantly higher than the average enhancement observed in
all schemes (17.42%). These results suggest that the RSM is highly adaptable and effective
in conjunction with RL.

These findings may be attributed to the number of proposed felling trees generated by
each method and the characteristics of the algorithms for solving the MOP. RSM generates
the most proposed felling trees, while QVM and VMM yield relatively fewer. MC involves
randomness in its estimations [79–81], while RL continuously improves effectiveness
through experimentation and learning [42,82]. Larger sets of proposed felling trees provide
more samples for training and enhancing experimental results in MC and RL [38,81,83,84].
PSO is more suitable for optimizing a relatively small number of trees chosen based on
QVM or VMM, helping avoid local optimization [85,86].

The variation in proposed felling trees generated by each method and the characteris-
tics of the algorithms for solving the MOP likely contribute to these findings. Relative to
the others, the RSM generates a higher number of proposed felling trees, while the QVM
and VMM produce comparatively fewer selections. It is worth noting that MC involves a
stochastic element in its estimations, introducing randomness [80,81,87], whereas RL con-
tinually refines its performance through iterative experimentation and learning [38,42,88].

Larger sets of proposed felling trees inherently offer more training samples, thus
potentially enhancing the experimental outcomes in both MC and RL [38,81,83]. On the
other hand, PSO is better suited for optimizing a relatively modest number of trees chosen
using QVM or VMM, which aids in avoiding issues related to local optimization [89,90].
The relatively favorable experimental outcomes (M5 > M4, M6 > M4) of the schemes
that combine the PSO algorithm with the QVM or VMM provide indirect confirmation
of this perspective. However, reducing the sample size might result in the omission of
potential global optimal solutions and weaken the global search capability of the PSO
algorithm [91]. Consequently, besides the quest for a more suitable method for determining
proposed tree cutting within PSO, it is of paramount importance for us to comprehensively
consider the characteristics inherent to the challenges of multi-objective optimization in
the context of forest stand structural optimization. Further investigation is warranted to
explore strategies for mitigating the issue of PSO becoming trapped in local optima when
addressing such challenges.

Based on the optimal reinforcement learning scheme, we have also developed a
harvested tree information table (Table 6) that provides strong support for real-world forest
stand management decisions [54,65,92]. This table integrates scientific algorithms while
addressing the practical needs of multi-objective optimization for forest stand structure.
By implementing these optimization results in practical scenarios, we effectively achieve
sustainable forest stand management, highlighting the practical application value of this
study in the field of forest resource management.

Compared to some existing methods, this approach demonstrates higher solution
efficiency; however, there remain several areas for continuous improvement:

(1) This study exclusively employs the fundamental Q-learning algorithm in RL.
Exploring and validating more advanced algorithms for solving the MOP of FSS that offer
improved solution efficiency is a promising avenue for further research.

(2) Due to the constraints posed by sample site conditions, the current study’s sample
size for each site primarily ranges between 200 and 500. In-depth investigation and research
are needed to address the efficiency of solving the MOP of FSS using the RL algorithm with
larger and even super-large sample sizes.

(3) Achieving an optimized FSS is not a one-step process; it requires multiple adjust-
ments to converge to an ideal state. The optimization objective is dynamic and adaptable.
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During each adjustment, the direction and goal of optimization should be precisely defined
based on the forest stand’s specific circumstances and operational objectives.

(4) Replanting is a relative strategy to selective cutting in the FSS optimization pro-
cess. Sustainable forest management necessitates the integration of selective logging and
replanting principles. Investigating an optimization model that incorporates replanting in
FSS optimization using the RL algorithm is an important topic for future research.

Table 6. Partial selective cutting information.

Sample
Site

Optimal
Scheme

Tree
Number

DBH (cm) TH (m) CW (m) Tree
Specie

P1

M7 76 11.90 10.40 1.43 PY
M7 234 7.80 7.20 1.78 PA
M7 335 11.70 15.00 1.35 PY
M7 519 14.80 12.40 1.85 PY
M7 638 9.70 10.52 1.15 PY

P2

M7 66 15.50 7.80 1.95 PY
M7 224 10.50 7.50 1.43 PY
M7 319 8.50 5.70 2.08 PA
M7 505 5.00 4.10 1.10 PY
M7 670 19.40 12.75 2.25 PY

P3

M7 61 22.10 15.85 1.75 PY
M7 143 16.00 13.27 1.45 PY
M7 160 7.30 6.40 1.26 PY
M7 275 9.40 8.67 1.24 PY
M7 299 13.20 7.36 2.10 PY

P4

M7 19 8.32 7.67 0.93 PY
M7 68 7.70 6.27 1.19 PY
M7 145 22.80 11.20 1.93 PY
M7 194 5.62 6.50 1.58 PY
M7 247 16.15 11.56 2.00 PY

Note: PY, Pinus yunnanensis; PA, Pinus armandii. This table presents partial selective cutting information output
from different selective cutting optimization schemes.

5. Conclusions

The introduction of reinforcement learning (RL) to address multi-objective optimiza-
tion for forest stand structure (MOFSS) is a pioneering step, marking the first applica-
tion of RL in forest stand structure (FSS) optimization research. By translating the tree
selection process in FSS into RL-based intelligent agent actions, this research has success-
fully revolutionized the approach to solving FSS multi-objective problems. This pioneer-
ing use of RL showcases its potential to transform conventional methodologies in FSS
optimization practices.

Extensive experimental comparisons unequivocally confirm RL’s exceptional effective-
ness in MOFSS. The RL scheme achieves significantly higher values of the objective function
(VOFs) across various plots compared to the Monte Carlo (MC) and particle swarm opti-
mization (PSO) methods, quantifying RL’s excellence and establishing its practical relevance
in forest management.

Three RL schemes (M7, M8, and M9) based on different tree selection methods have
been introduced and rigorously analyzed. Among these, the M7 scheme, combining the
random selection method (RSM) with RL, emerges as a superior performer across the four
sample plots. This comprehensive analysis provides valuable insights into practical MOFSS
solutions, emphasizing RL’s compatibility with RSM.
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The empirical validation of the optimal RL-based scheme for generating felling tables
strongly reinforces its support for real-world stand structure optimization decisions. This
emphasizes the practical significance of integrating RL into FSS strategies. The results of
this study transcend specific regional or tree species boundaries; their universality provides
invaluable insights for tackling analogous forest ecosystem management challenges in
diverse regions or with varying tree species.
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Appendix A

The pseudocode detailing the application of reinforcement learning (RL) to multi-
objective forest stand structure optimization is provided as follows. Here, S represents
states, A represents actions, ϵ signifies the exploration rate for the ϵ-greedy policy, α
is the learning rate, γ denotes the discount factor, and MAXEPISODES stands for the
maximum number of episodes. The algorithm iteratively updates the Q-values using the
Q-learning formula while considering different states and actions and their corresponding
rewards (R) based on the observed outcomes. We trained the agent by designing a suitable
reward function to facilitate quicker and more accurate identification of trees that should
be harvested. Subsequently clearing these identified trees from the stand resulted in a
substantial improvement in the overall quality of the forest structure within the sample plot
(Algorithm A1).
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Algorithm A1: RL for MOFSS

1 Initialize states S, actions A, ϵ-greedy policy EPSILON, learning rate α, discount
factor γ, maximum episodes MAXEPISODES, and Q(s, a), where s ∈ S and
a ∈ A. Set initial s and a to 0.;

2 for episode = 1 to MAXEPISODES do
3 Initialize s;
4 if ACTION is cutting then
5 Choose a from s using policy derived from Q (ϵ-greedy);
6 Take action a, observe reward r, and next state s′;
7 end if
8 if S = NSTATES− 2 then
9 Set S1 to ’terminal’;

10 Set reward R to d;
11 end if
12 else Selective Cutting;
13 Use R program to partition Voronoi diagram, calculate structural parameters,

and objective values of FSS after selective cutting;
14 if VOF > VOF* then
15 Set S1 to S + 1;
16 Set reward R to a;
17 Document selective cutting tree number and values of OF after selective

cutting;
18 end if
19 else if VOF = VOF* then
20 Set S1 to S;
21 Set reward R to b;
22 end if
23 else
24 Set reward R to c;
25 if S = 0 then
26 Set S1 to S;
27 end if
28 else Set S1 to S− 1;
29 ;
30 end if
31 ;
32 end for
33 else if S = NSTATES− 2 then
34 Set S1 to ’terminal’;
35 Set reward R to d;
36 end if
37 else Set S1 to S + 1;
38 Set reward R to c;
39 ;
40 ;
41 Q(s, a)← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)];
42 s← s′;

Appendix B

Appendix B.1

This figure illustrates the stacked plot of the best results attained by each optimization
scheme in optimizing FSS across different sample sites. We believe that this figure helps
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to deepen the reader’s understanding of the advantages of reinforcement learning in
multi-objective optimization of forest stand structures.
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Figure A1. The stacked representation of optimization effects for each scenario. Note: This fig-
ure demonstrates the influence of methods for determining proposed selective cutting trees on
optimization results.

Appendix B.2

The following figure supplements Table 5, providing a detailed overview of the
objective function values achieved by various optimization approaches over different
runtime intervals in the simulated multi-objective forest stand structure experiments.
Analyzing the relationship between runtime and values of the objective function (VOFs)
across different scenarios (as depicted in Figure A2a,c), it becomes evident that Scheme
M7, based on reinforcement learning (RL), consistently achieves the highest VOFs in the
shortest time. Moreover, in Figure A2b,d, where the attained VOFs are comparable, Scheme
M7, driven by RL, also exhibits relatively shorter running times. Therefore, collectively,
Scheme M7 based on reinforcement learning outperforms other schemes concerning both
achieved VOFs and time complexity.

(a) P1

(c) P3 (d) P4

15,000

15,000 20,000

10,000 15,00015,000 20,00020,000

5000

5000

5000 5000

20,000

10,000 5000 10,000 15,000 20,000

10,000

(b) P2

Figure A2. Convergence status of individual optimization strategies across varied sites on time scales
Note: This figure illustrates the convergence behavior of each optimization scheme (M1–9) during a
simulated selective cutting experiment conducted on four sample sites (P1–4).
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