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Abstract: Timely and reliable estimation of forest stock volume is essential for sustainable forest
management and conservation. Light detection and ranging (LiDAR) data can provide an effective
depiction of the three-dimensional structure information of forests, but its large-scale application is
hampered by spatial continuity. This study aims to construct a LIDAR sampling framework, combined
with multi-sensor imagery, to estimate the regional forest stock volume of natural secondary forests
in Northeast China. Two sampling approaches were compared, including systematic sampling and
classification-based sampling. First, the forest stock volume was mapped using a combination of field
measurement data and full-coverage LiDAR data. Then, the forest stock volume obtained in the first
step of estimation was used as a reference value, and optical images and topographic features were
combined for secondary modeling to compare the effectiveness and accuracy of different sampling
methods, including 12 systematic sampling and classification-based sampling methods. Our results
show that the root mean square error (RMSE) of the 12 systematic sampling approaches ranged from
55.81 to 57.42 m3 /ha, and the BIAS ranged from 21.55 to 24.89 m3/ha. The classification-based LiDAR
sampling approach outperformed systematic sampling, with an RMSE of 55.56 (<55.81 m>/ha) and
a BIAS of 20.68 (<21.55 m3/ha). This study compares different LIDAR sampling approaches and
explores an effective LIDAR sample collection scheme for estimating forest stock, while balancing
cost and accuracy. The classification-based LiDAR sampling approach described in this study is easy
to apply and portable and can provide a reference for future LIDAR sample collection.

Keywords: forest stock volume; light detection and ranging (LiDAR); systematic sampling;
classification-based sampling; vegetation type

1. Introduction

Forest ecosystems are an important component of terrestrial ecosystems and play a
vital role in maintaining the global carbon balance [1]. To quantitatively evaluate forest
quality and its continuous spatial distribution, a timely and reliable forest inventory is
needed, and forest stock volume is one of the important measurement parameters [2].

Traditionally, forest surveys rely on the collection of field data from sample plots,
where the stand-level volume is obtained by aggregating the volumes of individual trees,
requiring measurements for each tree [3-5]. Such surveys are time-consuming, labor-
intensive, and space-limited. Integration of various remote sensing data with field mea-
surements has been an effective method for the spatially continuous estimation of forest
stock volume [6,7]. Optical imagery, which can receive forest canopy reflections through
sensors, was first applied to estimate forest stock volume [8,9]. However, optical imagery
can only provide partial horizontal structural information about the forest and is affected
by cloud cover, leading to saturation issues in forest stock volume estimation [10]. Active
microwave sensors can perform ground observations throughout the day and under all
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weather conditions, and they have a certain ability to penetrate the surface [11]. However,
there is still a saturation problem in estimating forest stock volume above 200 m3/ha in
high-density forests [12]. In recent years, LIDAR has been able to accurately and compre-
hensively reconstruct the three-dimensional structure information of forests using laser
scanners in a short period. This capability reduces saturation problems and improves
the accuracy of forest stock volume estimation [13,14]. However, the collection of LIDAR
data is often limited by accessibility, cost, flight policies, etc., making it difficult to obtain
spatially continuous data [15]. Therefore, it is still considered auxiliary data in large-scale
forest surveys and mapping.

Compared to multispectral imagery, hyperspectral imagery covers more discrete
spectral bands, allowing it to capture more subtle spectral features. With the continuous
advancement of technology and improvement in data processing capabilities, hyperspectral
imagery has a wide range of applications in forest resource management, monitoring forest
health, and tree species identification [16-19]. Wan et al. used Landsat 8, Simulated
Hyperion, and GF-5 datasets to classify four mangrove tree species. It was shown that
the classification accuracy of the GF-5 satellite reached 87.12%, which may be attributed
to the improvement in spectral resolution (spectral resolution of 5 nm) for enhancing the
classification accuracy [20]. Kaja Kandare et al. used airborne LiDAR and hyperspectral
imagery to estimate overall and species-specific volumes in Italian alpine forests and
concluded that both LiDAR and hyperspectral metrics were important for estimating forest
stock volumes, with an RMSE of 30.95% for estimating plot volumes [21]. Almeida et al.
fused airborne hyperspectral and LiDAR data for aboveground biomass estimation in
tropical forests. The results showed that the most important hyperspectral features were
related to the near-infrared and shortwave infrared bands, especially the canopy water and
lignin—cellulose absorption bands [22].

Different remote sensing data have distinct advantages and disadvantages in forest
stock volume estimation. Satellite-borne spectral images offer comprehensive spectral
characteristics at a relatively low cost but lack the ability to capture vertical characteris-
tics [23]. On the other hand, LiDAR can provide accurate vertical geometric features of the
forest [24]. Despite their respective limitations [25,26], fusing LIDAR and hyperspectral
data offers a dual advantage: (1) leveraging the strengths of both datasets; and (2) utiliz-
ing an appropriate sampling approach without the need for full-coverage LiDAR. This
fusion method enhances the utilization of diverse data sources, addressing limitations and
thereby improving estimation accuracy and efficiency [27]. The fusion approach involves
using LiDAR data as an intermediate sample to connect measured plots with full-coverage
imagery in two steps. Initially, the measured volume is combined with LiDAR variables,
and subsequently, the satellite prediction factors model the estimated volume of LiDAR
data, generating forest stock volume estimation results and maps [28,29]. Additionally, the
digital elevation model (DEM) of the Advanced Land Observing Satellite (ALOS) provides
accurate topographic information, which is helpful for estimating forest stock volume [30].

The LiDAR sampling approach significantly influences estimation outcomes, with
different methods yielding varied results. It is recommended to use the LiDAR sampling
approach that best aligns with the overall distribution of the study area to achieve the
best accuracy in forest parameter estimation. Common LiDAR sampling approaches
include random sampling, systematic sampling, and stratified sampling by land cover [31].
Systematic sampling refers to extracting samples (points, lines, grids) at predetermined
intervals. Tsui et al. utilized systematic grid sampling at different intervals (500 m, 1000 m,
2000 m) for LiDAR sampling to predict biomass over a larger area [32]. Hudak et al. used
different intervals (250 m, 500 m, 1000 m, 2000 m) with different systematic sampling (points,
lines) for LiDAR to estimate and map regional forest canopy height in combination with
Landsat ETM+ data [33]. Systematic sampling is relatively simple and easy to apply, but it
tends to ignore the heterogeneity within the study area, which may lead to under-coverage
in specific regions. In contrast, classification-based sampling allows a targeted sample
selection based on different classes or characteristics, enhancing sample representation [27].
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Chen and Hay used optical images with LiDAR strips to simulate full-coverage forest
canopy height, revealing that optimal LiDAR strips had similar canopy height variations
as the entire LIDAR dataset [34]. Previous studies have considered systematic sampling
and classification-based sampling, but few have compared these two sampling methods.

This study aims to explore the application of LIDAR sampling combined with multi-
sensor imagery in estimating forest stock volume. Although the value of LiDAR sampling
has been widely recognized and various sampling approaches have been proposed, there is
still a lack of widely accepted and cost-effective LIDAR sampling protocols for estimating
forest stock volume. In addition, although forest type has always been considered an
important factor in volume estimation, there have been few studies on LiDAR sampling
based on forest type classification and combined with multi-sensor imagery for volume
estimation. This study combines field data, various LIDAR sampling samples, and multi-
sensor imagery to estimate the volume of natural secondary forests. Our research focuses on:
(1) exploring whether LiDAR samples can achieve or approach the accuracy of using full-
coverage LiDAR data; (2) comparing the differences between systematic and classification-
based LiDAR sampling approaches for forest stock volume estimation; and (3) providing
recommendations for obtaining LiDAR data samples.

2. Materials and Methods
2.1. Study Area

Maoshan Forest Farm (45°14'—45°29’ N, 127°29'-127°44 E) is a typical natural sec-
ondary forest in Northeast China and covers 26,496 ha (Figure 1). The terrain of the
forest area is gradual and gentle from north to south, with an average elevation of around
300 m [35]. It is located in Harbin City, Heilongjiang Province, China, where the soil is
dominated by dark brown loam, and which has a mid-temperate continental monsoon
climate, with an average annual temperature of 2.8 °C and an average annual precipitation
of about 723 mm. The original dominant community in this area was a Korean pine (Pinus
koraiensis) forest, which has evolved into a typical natural secondary forest after years of
human disturbance. The forest vegetation is dominated by broad-leaved trees, such as
Mongolian oak (Quercus mongolica), walnut (Juglans mandshurica), Manchurian ash (Frax-
inus manchuria), and white birch (Betula platyphylla), accompanied by a small number of
coniferous trees such as Korean pine and larch (Larix olgensis).
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Figure 1. The location of the study area (Maoshan Forest Farm). (A): The location of Harbin in
Heilongjiang Province. (B): The locations of field plots in the study area from Google imagery
(coordinate system: WGS 1984 UTM Zone 52N).
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2.2. Field and Multi-Sensor Data Acquisition

The field investigation was conducted in August 2016 using systematic sampling
(sampling interval of 1 km). In total, 197 plots with an area of 0.06 ha (24.5 m x 24.5 m)
were measured. Trees with a diameter at breast height (DBH) greater than 5 cm in the plots
were measured, including species and status, and the center of each plot was recorded
using the global positioning system receiver (positioning accuracy of +5 m). Field plot
volume was calculated according to the tree volume table of the National Forestry and
Grassland Administration of China (https://www.forestry.gov.cn/ (accessed on 5 August
2020)) combined with the measured DBH, and the plot volume was calculated according
to the average volume per unit area within each field plot in cubic meters per hectare
(m3/ha). The 197 plots were randomly allocated into 137 plots for modeling and 60 plots
for independent validation. The statistical data for the field plot is presented in Table 1.
In addition, the forest type of the whole forest was investigated and counted, and mainly
divided into hard broadleaf forests, soft broadleaf forests, coniferous forests, and mixed
coniferous and broadleaf forests.

Table 1. Description of field plots volume divided into modeling and validation plots.

Volume (m3/ha)

Plot Group Plot Number .
Mean Max Min SD
Modeling 137 172.62 468.99 34.01 66.91
Validation 60 181.49 347.11 54.34 59.64
Total 197 175.32 468.99 34.01 64.76

The LiDAR and hyperspectral data were collected in September 2015 using the
LiCHy airborne observation system of the Chinese Academy of Forestry (CAF), which was
equipped on a fixed-wing aircraft [36]. The flight speed was approximately 65 m/s and
the altitude was 1200 m above the ground. The scanning coverage area was approximately
360 km?. LiDAR data were acquired using a Riegl LMS-Q680i sensor with a wavelength of
1550 nm, beam divergence of 0.5 mrad, pulse length of 3 ns, and scanning angle of £30°
(perpendicular to flight direction). The average density of point clouds in the plots was
8 pts/m?. The hyperspectral data were collected using the AISA Eagle II sensor. The hyper-
spectral image had 64 bands that spanned the spectral range from 380 to 1000 nm, including
39 bands between the visible and red-edge regions and 25 bands in the near-infrared. It
had a spatial resolution of 1.5 m and a spectral resolution of 3.3 nm. In addition, the DEM
data from ALOS (derived from PALSAR data during 2006 to 2011) were downloaded from
the Japan Aerospace Exploration Agency.

2.3. Methods
2.3.1. Remote Sensing Data Processing

Preprocessing of LiDAR data involved first identifying and removing noise points
(isolated points, low points, etc.). Then, the point cloud classification (ground and vege-
tation points) was performed using a modified progressive triangular irregular network
(TIN) densification algorithm, and the digital terrain model (DTM) was generated from the
ground points using the kriging method with a spatial resolution of 1 m [37]. Finally, the
elevation values of the original point cloud were subtracted from the corresponding nearest
DTM values to obtain the height above ground for each point. The LiDAR data prepro-
cessing was performed using LiDAR360 V5.0 software [38]. To eliminate the influence of
low shrubs, the height threshold was set to 2 m. Point cloud features that could reflect the
internal structure and radiation information of the forest were extracted from LiDAR data,
which mainly included 5 categories: (1) height features, (2) density features, (3) intensity
features, (4) canopy features, and (5) topographic features. Detailed information on LiDAR
features is listed in Table 2.
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Table 2. List of LiDAR features derived from point cloud data. Calculation details are described by
Zhen (2022) [38].

Metric Type Metrics Description
Hmax, Hmean Maximum height, mean height
HVAR, HSD, HCV Variance of hgights, stand.ar‘d deviatign of heights,
Height (38) coefficient of variation of helght.s
HSK, HK Skewness of heights, kurtosis of heights
HIQ Interquartile distance of percentile heights
HO01, HO5, H10, H20, H25, H30, H40, H50, Height percentiles. Point clouds are sorted by elevation. HX
H60, H70, H75, H80, H90, H95, H99 is the height of X% of the point clouds.
ATHO1, ATHO5, AIH10, ATH20, ATH25, Cumulatiye height percentiles.. Poin.t clouds are §0rtgd by
AIH30, AIHA40, AIH50, AIH60, AIH70, elevation and th.e cumulative li1e1ght.of all points is
ATH75, ATHS0, ATH90, ATH95, ATH99 calculated. AIHX is the .cumulatlve height of X% of the
point clouds.
. D01, D02, D03, D04, D05, D06, D07, Canopy return d.ensity. Point clouds are divided. into ten.
Density (10) DO8. D09 slices of the same interval from low to high elevation. DX is
! the ratio of the number of echoes per layer.
Imax, Imean Maximum intensity, mean intensity
IVAR, ISD, ICV Variance of int(?ngities, stan.da'rd de\{iation. O,f intensities,
Intensity (38) Coefﬁagnt of variation of intensities
ISK, IK Skewness of intensities, kurtosis of intensities
HIQ Interquartile distance of percentile intensities
101, 105, 110, 120, 125, 130, 140, 150, 160, 170,  Intensity percentiles. Point clouds are sorted by intensity. IX
175, 180, 190, 195, 199 is the intensity of X% of the point clouds.
ATIOL. ATIOS. ATI10. ATI20. ATI25. ATI30 Cumulative intensity percentiles. Point clouds are sorted by
AII40, ATI50, ATI60, AII70, AII75, ALISO, intensity and the cumulative intensity (?f all poomts is
ALI90, ATI95, AI199 calculated. AIIX is the c1.1mulat1ve intensity of X% of the
point clouds.
Canopy (2) CcC Canopy cover
CRR Canopy relief ratio
Topography (3) DEM, Slope, Aspect Elevation, slope, aspect
Hyperspectral data preprocessing was performed using FLAASH atmospheric correc-
tion (ENVI; version 5.6) to remove atmospheric and illumination effects to obtain surface
reflectance data. For hyperspectral images, we extracted 64 original bands (B,, where
A is the center wavelength in nm) and 14 spectral vegetation indices, and these features
mainly explored the potential correlation between spectral bands and vegetation properties:
the visible band (380-690 nm) is mainly related to vegetation color (i.e., pigments); the
red-edge band (690-760 nm) is sensitive to chlorophyll changes; the near-infrared band
(760-1000 nm) reflects the scattering of radiation by the vegetation canopy. The spectral
features at the pixel level were first extracted, and then the pixel average within the plot
was counted to obtain the spectral features at the plot level. In addition, topographic
features were extracted from the ALOS DEM (including DEM, slope, and aspect). The
complete description of the vegetation index is shown in Table 3. All extracted remote
sensing features were resampled to 24.5 m utilizing the nearest-neighbor algorithm to
match the plot size.
Table 3. List of vegetation indices derived from hyperspectral data.
Abbr. Vegetation Index Equation Reference
ARI1 Anthocyanin Reflectance Index 1 1/Bss50 — 1/Bygo [39]
ARI2 Anthocyanin Reflectance Index 2 Bggo X (1/Bssg — 1/Bygo) [39]
CRI1 Carotenoid Reflectance Index 1 1/Bs19 — 1/Bssp [39]
CRI2 Carotenoid Reflectance Index 2 1/Bs19 — 1/Bygo [39]
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Abbr. Vegetation Index Equation Reference
EVI Enhanced Vegetation Index 2.5 X (Byg7 — Bg73)/(B7g7 + 6 X Bgyz — 7.5 X Byzy + 1) [40]
mSR705 Modified Red-Edge Simple Ratio Index (B750 — Baas)/ (B7s0 + Bags) [41]

Normalized Difference
NDVI Vegetation Index (B797 — Beso)/ (Bro7 + Beso) [42]
Red-Edge Normalized Difference

NDVI705 Vegetation Index (B750 — B70s)/ (B750 + Bros) [43]
PRI Photochemical Reflectance Index (Bsa1 — Bs70)/ (Bsa1 + Bszo) [44]
PSRI Plant Senescence Reflectance Index (Bsso — Bsoo)/Brso [45]
SR Simple Ratio Index B797/Beso [46]
SIPI Structure-Insensitive Pigment Index (Bgoo — Buas)/ (Bsoo + Bgso) [47]
VOGI1 Vogelmann Red-Edge Index 1 B740/B720 [48]
WBI Water Band Index Bggo/Bo7o [49]

2.3.2. Overview

This study is mainly divided into two steps (Figure 2). As the first step, the forest
stock volume of the entire region was modeled and estimated based on ground-measured
plots and full-coverage LiDAR data. In the second step, the influence of different sam-
pling approaches was explored. By using systematic sampling (point, line, grid) and
classification-based sampling to select samples, the forest stock volume estimated in the
first step was used as reference data, combined with remote sensing features (spectral and
topographic features) for modeling, to evaluate whether a two-step forest stock volume
model constructed using a small number of LIDAR samples can achieve or approximate the
accuracy of using full-coverage LiDAR data. The study also aims to determine the impact of
sampling approaches on the accuracy of forest stock volume estimation and find an optimal
scheme for collecting LIDAR samples (a trade-off between cost and accuracy). The accuracy
of the forest stock volume estimation was verified by independent plots, utilizing the root
mean square error (RMSE, in m3/ha) and mean error (BIAS, in m3/ha) computed from
observed and predicted data to evaluate the accuracy of different sampling approaches.

Full coverage data:

Modeling  validation Eirper it rins

lots lots
P P ALOS DEM
First step model .

Sampling Approaches
Classification-based sampling
Sampling based on forest stand types

Full coverage forest : .

2 Systematic sampling —» Second step model
stock volume map sampling patterns:

point, line, and grid
sampling intervals:
500 m. 1000 m, 1500 m, and 2000 m

Estimated forest
stock volume

Figure 2. Overall workflow of the LIDAR sampling framework of forest stock volume estimation.
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2.3.3. Modeling and Feature Selection

This study used a multiple linear model (LM) to explore the relationship between
forest stock volume and multi-source remote sensing features.

p
VIM0+ZMinj+€1‘(izl,...,n) (1)
j=1

where u is the intercept, u; is the model coefficient, X;; is the remote sensing feature,
and ¢; represents the error term. The LM model was used in both steps of the model
in this study. In the first-step model, the stand volume of the 137 plots was used as
the explanatory variable, LIDAR features were used as the explanatory variables, and a
logarithmic transformation was used to reduce the heteroscedasticity [50]. In the second-
step model, the estimated volume from LiDAR was the dependent variable, and the model
was constructed by combining spectral and topographic features.

When applying multiple linear models, the commonly used feature selection methods
mainly include forward selection, backward selection, and stepwise selection. Among these,
stepwise multiple linear regression (SMLR) is the most widely used [51]. SMLR combines
the advantages of the forward and backward selection methods, where the features are
ranked in descending order of their contribution to the regression equation and introduced
sequentially into the regression model at a set F-test level. If a factor that has been selected
becomes no longer significant due to a decrease in importance caused by the influence of a
newly added factor, it is deleted from the regression equation to ensure the value of each
feature left in the model, and features are introduced or deleted according to this pattern
until there are no more new features to be introduced or deleted, and the regression model
thus obtained is considered to be the optimal regression model. All models in this study
were filtered for features using the SMLR method. In addition, the second-step models
used forest stock volumes estimated from full-coverage LiDAR data with remote sensing
features (spectral and topographic features) for stepwise filtering to ensure that all of the
second-step models had the same features.

2.3.4. Systematic Sampling

The sampling approaches of this study include systematic sampling and classification-
based sampling. Systematic sampling, also known as equidistant sampling or mechanical
sampling, is a sampling method in which samples are taken at pre-specified intervals after
determining the starting point. We used three sampling patterns (point, line, and grid) and
four sampling intervals (500 m, 1000 m, 1500 m, and 2000 m) for systematic sampling to
obtain 12 systematic LIDAR samples (Figure 3). Considering the aircraft line characteristics,
we adopted 500 x 500 m as the basic sampling unit.

2.3.5. Sampling Based on Forest Stand Types

Classification-based sampling differs from systematic sampling in that, instead of
sampling at predetermined intervals, samples are selected from forest types that best
match the study area. There are many ways to explore the relationship between samples
and population. The chi-square goodness-of-fit test is a statistical hypothesis test used to
determine whether a variable is likely to come from a specified distribution, and it is often
used to assess whether sample data are representative of the population [34]. The principle
is to calculate the difference between the observed frequencies obtained from sampling
and the theoretical frequencies (i.e., expected frequencies) in the original hypothetical
distribution; if the observed and theoretical frequencies are closer, it means that the degree
of conformity is better, i.e., the goodness of fit is better.

O; —T;)?
=y QTS T L 1= np, )
i=1 !
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where O; denotes the frequency of observations, T; denotes the theoretical frequency, P;
denotes the percentage of group i in the theoretical distribution, 7 denotes the total number
of observations, and k denotes the number of groups. A smaller x? value indicates no
significant difference between the samples and the population, whereas a larger value
indicates a greater difference between the sample and the population. We divided the entire
study area into 40 lines (500 m apart), O; being the distribution of forest types in each line
and T; the overall distribution of forest types in the study area, calculated the x? value of
each line, and selected the line with the smaller x? value to represent the entire study area.

Point
1000m

Point
500m

Point 2 Point 2
1500m e o | 2000m

Line A
2000m

Line
1500m

Line
1000m

Grid 2

DEM (m)
mr 836.01

I 263.30

Figure 3. Spatial distribution of 12 systematic sampling-based LiDAR samples over the DEM.

2.3.6. Accuracy Evaluation

We used 10-fold cross-validation to evaluate the first-step model’s performance by
the coefficient of determination (R?) and root mean square error (RMSE). The second-
step model was evaluated for accuracy using measured data from 60 independent plots,
and the root mean square error (RMSE, in m?3/ha) and mean error (BIAS, in m3/ha)
calculated using observed and predicted data were used to evaluate the accuracy of different
sampling approaches.

n Ny 2
R2 =1— l'n:l (yl :zl)z (3)
(v —Y)
(i —0:)°
RMSE = D 4)
BIAS — Zi=1\Yi " Yi) (ii — ) ®)

where y; denotes measured volume, j; denotes predicted volume, and n denotes the number
of validation plots.
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3. Results
3.1. Full-Coverage LiDAR Forest Stock Volume Estimation

The LM model was constructed based on 137 plots of measured data with LiDAR
features and validated with 10-fold cross-validation. The regression equation is shown in
Equation (6), and four LiDAR features were obtained using the stepwise regression method:
Hmean, slope, aspect, and 101. The R? value was 0.43 and the RMSE was 49.91 m?/ha. The
scatterplot of the forest stock volume model constructed based on the full-coverage LiDAR
is presented in Figure 4.

V= e3.20+1.18><Hmean+0.19><Slope+0.12XASpect71.07><101 (6)

500 /
o 0 R?=0.43
§ 400 } RMSE:4991m’/ha /,’
g RMSE%=28.47% 7
~ 350 -
"E’ L
E 300 f
S 250
el
8 200 }
<
E 150 |
2]
© . . .
5 100 —— Fitting Line
] [ 24 )
3 01 L7 -=---1:1Line

0 K2

0 50 100 150 200 250 300 350 400 450 500

Measured Volume (m3/ha)

Figure 4. Scatterplot of measured versus predicted volume values.

The measured values of forest stock volume ranged from 34.01 to 468.99 m3/ha,
mainly below 250 m?3 /ha, with a mean and standard deviation of 175.32 and 64.76 m3/ha,
respectively. The range of forest stock volume values estimated for the whole region using
the LM model was 2.15-376.53 m3/ha, with a mean and standard deviation of 152.66 and
53.14 m3/ha, respectively. Overall, the forest stock volume distribution obtained from the
full-coverage LiDAR-based estimation was similar to the measured values (Figure 5).

3.2. Systematic Sampling for Forest Stock Volume Estimation

We used the forest stock volume obtained from the first-step estimation as the ref-
erence data, and used a small amount of LiDAR as an intermediate sample to construct
a two-step volume model to explore whether it could reach or approach the accuracy of
using full-coverage LiDAR data. Eight variables were obtained by stepwise regression
filtering (slope, DEM, SR, aspect, CRI1, PRI, ARI2, and Bgsy), which were used to construct
regression models for multiple sampling approaches, and 60 independent validation data
plots were used to evaluate the accuracy of the second-step models, and the number of
pixels used in different sampling approaches was also counted (Table 4).

Among the 12 systematic sampling methods, line sampling with a sampling interval of
1000 m had the highest accuracy, with an RMSE of 55.81 m3/ha and a BIAS of 21.55 m®/ha.
In the sampling intervals of 500 m, 1000 m, and 1500 m, line sampling had the lowest
values for the RMSE and BIAS, and was better than point and grid sampling. The RMSE of
the models with different systematic sampling methods ranged from 55.81 to 57.42 m3/ha.
Compared to the full-coverage LIDAR model (RMSE = 49.91 m?/ha), the RMSE of the line
sampling with the highest accuracy increased by 11.8%. Overall, line sampling performed
well in terms of accuracy and was consistent with the characteristics of aircraft routes and
easier to plan, which makes it easier to apply in reality. Therefore, we chose to use line
sampling for further analysis.
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Figure 5. Spatial distribution of forest stock volume based on full-coverage LiDAR estimation.
Non-forest areas are masked out.

Table 4. Results of systematic sampling with 3 sampling patterns (point, line, grid) and 4 sam-
pling intervals (500 m, 1000 m, 1500 m, 2000 m). Accuracy evaluation based on 60 independent
validation plots.

Sampling Sampling Pixel RMSE (m*ha)  RMSE% (%)  BIAS (m%ha)  BIAS% (%)
Pattern Interval (m) Count

500 85,006 56.46 31.11 2237 12.32
, 1000 36,785 56.26 31.00 22.10 12.18
Point 1500 20,860 56.41 31.08 23.16 12.76
2000 14,496 56.51 31.13 2298 12.66
500 187,234 56.09 30.90 2220 12.23
_ 1000 124,691 55.81 30.75 21.55 11.87
Line 1500 97,024 56.21 30.97 22.00 12.12
2000 75,242 57.42 31.64 24.89 13.71
500 280,348 56.56 31.16 22.64 12.48
) 1000 207,548 56.37 31.06 22.07 12.16
Grid 1500 165,927 56.28 31.01 2.07 12.16
2000 132,812 56.99 31.40 23.97 13.21

3.3. Classification-Based Sampling for Forest Stock Volume Estimation

For the classification-based sampling approach, we used 500 m as the sampling
interval, and the entire study area was divided into 40 lines, with the forest types consisting
of four main forest types: hard broadleaf forests, soft broadleaf forests, coniferous forests,
and mixed coniferous and broadleaf forests (Figure 6). To select the most representative
lines to represent the entire study area, we calculated the chi-square value for each line by
combining the proportion of forest types within each line and across the region. Lines with
smaller chi-square values imply that their forest-type distribution is closer to the entire
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study area. We selected eight lines (6, 10, 16, 20, 27, 29, 32, and 37) as LiIDAR samples
depending on the results in Figure 7.

127°25'E 127°30'E 127535'E 127°40'E 127°45'E
N
Z A z
@ 1)
L X
< n
<
z z
g\l ’e]
2 B
<
g z
ISE| =3
n s
< n
<
& z
=1 ? )
Iy - [
< [ JLines Q
Forest type
0 1.5 3 km I Hard Broadleaf Forest
[ Soft Broadleaf Forest
[ Coniferous Forest
" | Mixed Coniferous and Broadleaf forest
127°25'E 127°30'E 127°35'E 127°40'E 127°45'E

Figure 6. Forest-type distribution and line delineation in the study area.
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Figure 7. The chi-square value for each line in the study area. The X-axis represents the line ID and
the Y-axis represents the chi-square value.

Forest stock volume in eight lines was used to construct a regression model with eight
remote sensing features (five spectral features and three topographic features). The model
results are presented in Table 5. The RMSE was 55.56 (<55.81 m3/ha) and the BIAS was
20.68 (<21.55 m?/ha). The classification-based sampling estimation results outperformed
the systematic sampling.
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Table 5. Results of the classification-based sampling approach.

Sampling Pixel RMSE (m%/ha)  RMSE% (%)  BIAS (m3/ha) BIAS% (%)
Lines Count
Line 6, 10, 16, 20, 27, 29, 32, 37 82,291 55.56 30.61 20.68 11.40

4. Discussion

The goal of this study was to explore the use of a small number of LIDAR samples as
intermediate data to link field data with full-coverage multi-sensor imagery for reliable
wall-to-wall forest stock volume mapping. Specifically, we aimed to evaluate the robustness
of the sampling technique and find an optimal scheme for collecting LIDAR samples that
allows an accurate estimation of forest stock volume without relying on full-coverage
LiDAR data and without a significant reduction in accuracy.

We compared the modeling accuracies of systematic sampling and classification-based
sampling with that of full-coverage LiDAR. The sampling-based modeling accuracy was
found to decrease by 11.3%-15.0%, with the most accurate being the classification-based
sampling approach, which accounted for 22.64% of the total pixels, and did not account
for more pixels the higher the modeling accuracy (the grid sampling with 500 m intervals
accounted for 74.65% of the total pixels, but the RMSE increased by 15.0%). This is different
from the findings of Tusi et al., whose study showed that model accuracy increased with
the number of pixels, possibly because their study area was simpler and fewer sampling
methods were explored [32]. The conclusion of this study suggests that classification-based
sampling is more representative of the population.

The study area was a natural secondary forest, and its complex stand conditions, such
as vegetation overlap between stands, uneven canopy cover, and dense near-surface scrub,
may have led to difficulties in capturing stand structure and vegetation distribution from
LiDAR data, which affected the accurate estimation of forest stock volume by the first-step
model [22]. In addition, we used the forest stock volume estimated by LiDAR as a reference
value for secondary modeling, which introduced additional uncertainty [52]. Compared
with the volume values estimated in the first step, the volume values estimated by the
regression model in the second step have a narrower range, which indicates the existence of
a saturation effect. This saturation effect may be influenced by limitations in the spatial and
temporal resolution of the optical images, the diversity of forest types, and the complexity
of the forest structure [53]. The saturation effect limits the accuracy and validity of forest
stock volume estimation from optical images, which is a factor that needs to be explored
and considered in future research.

Several studies have explored LiDAR sampling approaches, among which the line
sampling approach has been widely utilized. Line sampling fits the characteristics of aircraft
routes, which makes it a good balance between practical applications, cost-effectiveness,
and accuracy [31]. As pointed out by Chen and Hay, different intervals of the LIDAR
sample lines led to different results, which is consistent with our results (Table 5). However,
the difference in model accuracy between the different sampling methods in this study
was not significant, which may be due to the lower accuracy of the first-step model [54].
Subsequent consideration should be paid to improving the first-step model’s accuracy to
reduce error transmission.

We used airborne hyperspectral imagery for the second step of modeling, which has a
wider spectral range and more detailed features than multispectral imagery and explores
forest vegetation information (e.g., structure, pigmentation, water content, etc.), which
helps to improve model performance [55]. Regarding the results of model feature filtering in
the second step, there were mainly five spectral features and three topographic features, of
which the spectral features were the simple ratio index (SR), the photochemical reflectance
index (PRI), and the vegetation indices related to carotenoids and anthocyanins (CRI1 and
ARI2), which mainly involved the green band (510-570 nm), the red-edge band (700 nm),
and the near-infrared band (900 nm), which is consistent with previous studies showing
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that these biochemical traits covary with forest canopy structure, which is important for
estimating forest stock volume [22]. In addition, topographic relief may lead to differences
in vegetation distribution, and joint analysis of hyperspectral data and DEM can reveal this
relationship. We used airborne hyperspectral imagery rather than hyperspectral satellite
imagery with the intention of exploring the potential of hyperspectral data in estimating
forest parameters, and the hyperspectral features obtained from the filtering in this study
can also be transferred to other multispectral or hyperspectral imagery, and in addition,
as resources such as the Zhuhai-1 hyperspectral satellite imagery can be downloaded and
utilized after application, we believe that hyperspectral satellite imagery will certainly be
more open and gain wider application in the future [56].

Our study used forest-type data provided by the forest farm for sample selection. For
the portability of the method, the study area can be categorized in advance based on optical
imagery to obtain regionally representative LiDAR lines, and Chen et al. showed that
more accurate results can be obtained by modeling different forest types separately [57]. A
classification-based sampling method fully considers the diversity of forest types and can
better capture the characteristics of, and changes in, different types of forests, especially
when there are significant differences in forest types. The sampling method provides a
way in which we can reduce the acquisition of LiDAR data without significantly reducing
accuracy. It is noted that additional analytical work is required to perform the classification.

5. Conclusions

In this study, we explored a sampling framework that uses a small number of LiDAR
data samples as intermediate data to link measured forest stock volume and full-coverage
multi-source remote sensing data for efficient and reliable full-coverage forest stock volume
estimation. We compared two sampling approaches, systematic sampling and classification-
based sampling, and the results showed that the classification-based LiDAR sampling has
a higher modeling accuracy (RMSE = 55.56 m>/ha, BIAS = 20.68 m?/ha). In addition,
different sampling intervals and sampling methods can affect the results of systematic
sampling. It is not as if the higher the number of pixels, the higher the accuracy of the
model; the samples selected based on the classification are more representative of the
overall picture. The study site covers most of the tree species and forest types in Northeast
China and is transferable. In the future, further experiments can be conducted in other
forest types and climatic zones, and the mechanism of error transfer can be considered
to understand how errors accumulate at different modeling stages. Given the results
of the study, we recommend a classification-based sampling approach as the basis for
LiDAR sample collection in applications. This study contributes to the exploration of more
cost-effective airborne LiDAR data acquisition schemes.
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