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Abstract: Vegetation net primary productivity (NPP) is critical to maintaining and enhancing the
carbon sink of vegetation. Shaoguan is a characteristic forest city in the subtropical region of South
China and an ecological barrier in the Guangdong–Hong Kong–Macau Greater Bay Area (GBA),
playing an instrumental role in protecting water resources, purifying air, and maintaining ecological
balance. However, studies that quantify subtropical vegetation NPP dynamics in Shaoguan under
the influence of climate and human drivers are still incomplete. In this research, vegetation NPP
at 30 m resolution was estimated from 2001 to 2020 using the enhanced CASA model based on
the GF-SG algorithm in Shaoguan. The RESTREND method was then utilized to quantify climatic
and human effects on NPP. The results indicated that the vegetation NPP in Shaoguan increased
rapidly (4.09 g C/m2/yr, p < 0.001) over the past 20 years. Climate and human drivers contributed
0.948 g C/m2/yr and 3.137 g C/m2/yr to vegetation NPP, respectively. Human activity plays a
major role in vegetation restoration through ecological projects, whereas vegetation deterioration
is primarily attributable to the combined action of climate change and human activity, such as
urban expansion, deforestation, and meteorological disasters. The results emphasize the impor-
tance of ecological projects for the restoration of vegetated ecosystems and ecological construction
in Shaoguan.

Keywords: CASA model; GF-SG; NPP; climate change; human activity

1. Introduction

Vegetation serves an indispensable function in the absorption of greenhouse gases,
the regulation of climate, and the attainment of carbon neutrality [1]. It is estimated that
during 2011–2020, terrestrial ecosystems absorbed 29% of the CO2 emitted by humans into
the atmosphere, in which vegetation ecosystems played a vital role [2,3]. Vegetation net
primary productivity (NPP) is an essential index for assessing ecosystems, revealing the
productive capacity of plant communities under natural conditions [4].

Natural drivers, especially climate change, have significant impacts on the structure,
function, and services of ecosystems [5,6]. Earlier research on vegetation NPP dynamics
has shown that human activity and climate change are forcing or facilitating vegetation
ecosystems [7]. The photosynthetic and respiratory capacity of vegetation is affected by
climate change, which leads to changes in NPP [8]. Hydrothermal conditions, including
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temperature, precipitation, and solar radiation (SOL), are critical factors in natural ecosys-
tem processes [9] and clearly influence vegetation productivity and ecological patterns,
with substantial regional and global variation [10,11]. For example, on the Tibetan Plateau,
temperature is a limiter of NPP increases in humid areas, whereas precipitation is the
main limiter of NPP in arid areas [12]. In the Dongting Lake Wetland, climate change
has increased vegetation NPP by 1.08 g C/m2/yr over the past 20 years [13]. In contrast,
the vegetation NPP in Central Asia decreased significantly during 2001–2008, which is
attributable to drought intensification [14]. For South American rainforests, solar radiation
was the primary driver of an increase in NPP, while decreased precipitation and prolonged
drought led to a decrease in NPP [15].

Simultaneously, there is evidence of the increasing influence of human activity on
vegetation dynamics [16]. With rapid economic and social development, large-scale land
use changes are inevitable, leading to a rapid decline in vegetation NPP [17,18]. For in-
stance, NPP shows a significant downward trend in the Guangdong–Hong Kong–Macau
Greater Bay Area (GBA) because of changes in land use types (especially a decrease in
the area of cropland and forest types) [19]. On the other hand, positive greening mea-
sures such as afforestation, ecological restoration, and ecological transformation cannot
be ignored [20,21]. In China’s five typical ecologically fragile areas, human activities have
significantly restored NPP, indicating the success of ecological restoration programs [22].
Wang et al. [23] suggested that human activity was a key factor in an increase in NPP in the
Yangtze River Basin.

With the popularization of remote sensing technology and the advancement of the NPP
simulation model, multi-scale NPP estimation is becoming increasingly accurate [24,25].
At the locational, regional, and global scales, indirect estimation using models is a major
approach in NPP studies. Ruimy [26] summarizes these models as light energy utiliza-
tion models, ecosystem process models, and climate production potential models. The
Carnegie–Ames–Stanford Approach (CASA) is built on the principle of photosynthesis,
combined with the view of resource balance and the light energy utilization rate proposed
by Monteith [27]. Compared with other models, the CASA model requires fewer param-
eters and is easy to obtain, avoiding errors caused by missing data and human factors,
and easy to popularize [28]. Meanwhile, the CASA model is more applicable to different
spatiotemporal scales due to the combination of remote sensing data [29]. However, most
studies on vegetation NPP use low-resolution (250 m, 500 m, and 1000 m) remote sensing
data to reflect the temporal variation trend in the NPP of vegetation, but it is not enough to
reveal the spatial detail characteristics of NPP [30–32]. As urban landscape fragmentation
intensifies and vegetation types become more complex, remote sensing imagery with higher
quality is needed to estimate NPP [33].

The mechanisms that affect vegetation change are very complex, particularly in re-
gions with diverse natural structures, unique climates, and frequent anthropogenic distur-
bances [34]. For instance, the subtropical area is very rich in vegetation resources and is
also one of the most densely settled and economically advanced regions [35]. The growth of
subtropical vegetation is more affected by global warming and the continued intensification
of human activity [36]. Shaoguan is a subtropical area; since the reform and opening up,
urbanization and industrialization processes have been accelerating, and the forest has
long been disturbed and destroyed by human activities. However, with the deepening
of ecological civilization construction in recent years, Shaoguan has gradually increased
its attention on and promotion of forest protection and ecological restoration. Through
scientific planning and management, the quality and function of forest ecosystems have
been gradually restored. Therefore, it is imperative to quantitatively analyze the effects of
climatic and anthropogenic drivers on subtropical vegetation changes in Shaoguan.

Here, we aimed to develop a rational technical process for subtropical vegetation NPP
simulations at 30 m resolution and with an interpretable approach to quantify climatic and
human effects on NPP changes. The aims of the research were as follows: (1) to simulate
and explore the spatiotemporal distribution of vegetation NPP with 30 m resolution using
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an improved CASA model; (2) to quantitatively evaluate climatic and human effects on
NPP dynamics. The significance of this research lies in improving the quality of NPP
estimations, enhancing our understanding of the influence of drivers on the carbon cycle of
subtropical vegetation ecosystems, and providing theoretical references for the ecological
security of subtropical vegetation.

2. Materials and Methods

In this research, we introduce an enhanced CASA model designed to simulate vegeta-
tion NPP. Additionally, climatic and human impacts on the NPP of Shaoguan from 2001
to 2020 were quantitatively evaluated with the RESTREND method. There is a detailed
flowchart shown in Figure 1.
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Figure 1. Flowchart of NPP simulation and spatiotemporal dynamics analysis.

2.1. Study Area

Shaoguan is situated in the northern part of Guangdong, at the southern end of the
Nanling Mountains, which serves as a crucial ecological barrier in Guangdong. It lies
at 23◦53′~25◦31′ N, 112◦53′~114◦45′ E (Figure 2), occupying an area of approximately
18,424 km2. The climate of Shaoguan is a monsoon climate in the southern subtropics, with
an average annual temperature that ranges from 18.8 ◦C to 21.6 ◦C and an average annual
rainfall that ranges from 1400 mm to 2400 mm. The natural flora in Shaoguan belongs to
the southern subtropical evergreen broadleaf forest. In 2022, the forest area of Shaoguan
was 1,278,600 hm2, with a forest cover rate of 74.5%. In addition, the forest greening rate is
74.95%, and the storage volume is 100,902,000 m3. In addition, Shaoguan was also selected
as a forestry carbon sink pilot city in 2022.

Although Shaoguan has the most abundant forest resources in Guangdong Province,
there has been a decline in forest cover and quality due to climate change, rapid urban
expansion, and inappropriate forestry policies. Therefore, it is an important step toward
ecological revitalization and achieving carbon neutrality in Shaoguan to study the long-term
changes in forest NPP and to assess how climate and human drivers affect vegetation NPP.
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2.2. Data Sources and Preprocessing

The surface reflectance products include Landsat 5/7/8 (30 m, 16 days) and MOD09Q1
(250 m, 8 days), which were supplied by the United States Geological Survey (USGS)
and were obtainable from the GEE platform during the study period. Given the humid
subtropical monsoon climate of Shaoguan City, it was challenging to acquire cloud-free
remote sensing images for each month. To account for this challenge, the gap-filling and
GF-SG methods were used to reconstruct time series from Landsat (30 m, 8 days) during
2001–2020. Additionally, approximately 22% of the data in Landsat 7 scenes have been
missing since 31 May 2003 because of a malfunction in the Scan Line Corrector (SLC) of the
Landsat 7 imager [37]. To fill the image gaps, the gap-filling method, based on adjacent
non-empty linear interpolation, was employed in this research. For the contemporaneous
images between the previous and subsequent years, a median image of the missing pixels
was taken. A linear correlation was then established between the missing pixel and the
21 × 21 adjacent pixels containing non-zero values. The missing value of the vacant image
element can be obtained from this linear relationship. For a detailed methodology, see
Wang et al. [38].

The Geospatial Data Cloud Platform (https://www.gscloud.cn (accessed on 23 May
2023).) provided SRTM DEM (30 m) products, which were used as the topographic data for
the study region.

Meteorological data were obtained from the China Meteorological Data Network
(http://data.cma.cn/ (accessed on 16 May 2023)). This dataset includes daily temperature,
rainfall, and sunshine records from 28 meteorological stations within and outside the study
area. The solar radiation data were calculated using meteorological observations such as
temperature and sunshine hours. To enhance the precision of the meteorological data, we

https://www.gscloud.cn
http://data.cma.cn/


Forests 2023, 14, 2447 5 of 18

utilized the cokriging interpolation method with the meteorological data collected from
these stations and the DEM in ArcGIS 10.8.

We applied the RF classifier [39] in the GEE platform using imagery from Landsat
5/7/8 as inputs for the 2001-to-2020 period. The overall classification accuracy of LULC
exceeded 83.27%, and the kappa coefficients were over 0.79, which met the accuracy
requirements of this research.

The FMI (forest management inventory) is a forest resource survey with each municipal
administrative district as a survey unit, which includes survey factors such as the average
age of trees, mean diameter at breast height, mean height of trees, and tree species structure.
We screened 46 typical sample plots based on the spatial resolution of remote sensing
images and the spatial correspondence of the sample plots and calculated the vegetation
NPP of each sample plot by utilizing the correlation between the vegetation NPP and the
annual growth and wilting of the community. For details, see Yu et al. [40].

2.3. Spatiotemporal NDVI Reconstruction

In the research, we reconstructed a high-quality NDVI (30 m, 8 days) from 2001 to
2020 using the GF-SG method, invoking MOD09Q1 and Landsat 5/7/8 surface reflectance
products on the GEE platform. First, the GF-SG algorithm fills gaps in the original Landsat
NDVI chronology by combining the MODIS time-series NDVI and the surrounding cloud-
free Landsat NDVI to produce a MODIS-Landsat time-series NDVI. Second, the synthesized
time series go through the weighted Savitzky–Golay filter to reduce and smooth residual
noise. For detailed steps in the GF-SG algorithm, see Chen et al. [41].

2.4. NPP Estimation and Validation

The vegetation NPP of Shaoguan was simulated from 2001 to 2020 using the enhanced
CASA model in this research. Potter et al. [42] and Field et al. [43] proposed the CASA
model, which was easy to use. The equations are as follows:

NPP (x,t) = APAR (x,t) × ε (x,t) (1)

where x and t are the pixel spatial location and the month, respectively; APAR and ε
represent the photosynthetically active radiation absorbed by vegetation and the light-use
efficiency of vegetation, which can be computed by Equations (2) and (3).

APAR (x,t) = a × SOL (x,t) × FPAR (x,t) (2)

ε (x,t) = Tε1 (x,t) × Tε2 (x,t) ×Wε (x,t) × εmax (3)

where FPAR is the fraction of photosynthetically active radiation (PAR) absorbed by the
vegetation layer; SOL represents the total solar radiation; a denotes the fraction of solar
radiation that vegetation is able to utilize as effective radiation out of SOL, which is
generally 0.5; Tε1/Tε2 and Wε are the temperature stress coefficient and water stress
coefficient, respectively; εmax is the maximum light-use efficiency of vegetation under ideal
conditions and is set as a constant.

Previous studies have shown SOL spatial data accuracy decreases with fewer solar
radiation stations in the study area when using spatial interpolation [44]. In this paper,
conventional observations (i.e., temperature and sunshine hours) from meteorological
stations were used to estimate solar radiation indirectly. The formula is shown below:

SOL = S0 × [a × S1 + b × ln(D) + c] (4)

where a, b, and c are the empirical coefficients; D is the daily temperature difference; S1
represents the percentage of sunshine; and S0 is astronomical radiation, which can be
obtained by using Equation (5):

S0 = (ISC × E0 × (ωS × sin∅ × sinδ + cos∅ × cosδ × sinωS))/π (5)
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where ISC is the solar constant, and the value is 118.109 MJ/m2/d; E0 represents the Earth’s
orbital eccentricity correction factor; δ is the solar declination; ∅ is the geographical latitude
of each site; ωS is the hour angle at sunset. More details of the above formula can be
obtained from previous studies [45].

The conventional CASA model suggests 0.389 g C/MJ as the εmax for all vege-
tation types worldwide, which is highly controversial [46]. It is unreasonable for all
vegetation types to share the same εmax, resulting in an underestimation of vegetation
NPP [47]. Peng et al. [48] concluded that the εmax for all vegetation types takes a value
of 0.389 g C/MJ, which is low for Guangdong vegetation. Running and Hunt [49] used
the BIOME-BGC model to estimate the εmax for each vegetation type, which significantly
improved the accuracy of the vegetation NPP estimation. The findings were then employed
in this paper.

In this study, R2, RMSE, and p-value are employed to validate the CASA model. R2

reflects the fraction to which all variables in the regression model explain the target variable.
Typically, R2 ranges from 0 to 1 and is equal to 1 when the fitted values are unbiased.
RMSE is the average deviation between the predicted and true values, with smaller values
indicating more accurate predictions from the model.

R2 = 1−
∑n

i=1

(∼
x i − xi

)2

∑n
i=1

(∼
x i − xi

)2 (6)

RMSE =

√√√√∑n
i=1

(∼
x i − xi

)2

n− 1
(7)

where
∼
x i is the field observations, xi is the estimated values, xi is the mean of the field

observations, and n represents the size of the sample.

2.5. Trend Analysis

In this paper, the Theil–Sen median slope (i.e., Sen’s slope) and the Mann–Kendal
(MK) trend analysis were adopted to assess the interannual variation in vegetation NPP
in Shaoguan. The aim was to reveal the long-term variation trend and significance of
vegetation NPP.

Sen’s slope is a statistical method that is well-known in geosciences and is primarily
used to analyze the trend of each element [50]. This method judges the trend of time
series by the median size of the slope to reduce or avoid the influence of missing data and
anomalies on statistical results. It is calculated as follows:

K = Median
( xj − xk

j− k

)
(8)

where xj and xk are the x for the corresponding time (j = k + 1; j, k < n); K is the variation
trend of x at a pixel level.

Moreover, the MK trend analysis is a nonparametric approach that reveals the signifi-
cance of the trend. The MK trend analysis is calculated as follows:

S =
n−1

∑
k

n

∑
j

sgn
(
xj − xk

)
(9)

where n is the value of x; xj and xk represent the value of x at times j and k, respectively.
sgn
(

xj − xk
)

is the sign function:

sgn
(

xj − xk
)
=


1, xj − xk > 0
0, xj − xk = 0
−1, xj − xk < 0

(10)
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When n > 10, the F-variable is calculated as follows:

F =


(S− 1)/

√
V, S > 0
0, S = 0

(S− 1)/
√

V, S < 0
(11)

V =
n(n− 1)(2n + 5)

18
(12)

K > 0 suggests an upward trend in NPP; K < 0 suggests a downward trend in NPP. If
|F| ≥ F(α/2) at an assumed α significance level, the original hypothesis is rejected (i.e.,
there is an obvious upward or downward trend in vegetation NPP at the α significance
level). The trends were tested at different α values (0.05 and 0.01) and categorized into the
following levels (Table 1):

Table 1. Classification of NPP trend.

Level Description K |F|

1 LD
<0

[2.58, ∞)
2 MD (1.96, 2.58)
3 SD (0, 1.96)
4 LI

>0
[2.58, ∞)

5 MI (1.96, 2.58)
6 SI (0, 1.96)

LD: large decrease; MD: moderate decrease; SD: slight decrease; LI: large increase; MI: moderate increase;
SI: slight increase.

2.6. Contribution of Driving Factors

In this research, the RESTREND method was employed to quantify the factors affecting
vegetation NPP change in Shaoguan. The RESTREND method hypothesized that vegetation
NPP dynamics are driven mainly by climate factors (precipitation, temperature, and SOL)
and anthropogenic activity. The climatic and human contribution to NPP was computed
using Equation (13) [51,52]:

KNPP ≈ Cc + Ch = Ctemp + Cpre + CSOL + Ch =
∂NPP
∂temp

× ∂temp
∂t

+
∂NPP
∂pre

× ∂pre
∂t

+
∂NPP
∂SOL

× ∂SOL
∂t

+ Ch (13)

where KNPP represents interannual variation in vegetation NPP; Cc, Ch, Ctemp, Cpre, and
CSOL are the contributions of the drivers (i.e., climate change, human activities, temperature,
precipitation, and SOL) for vegetation NPP; Ch is the anthropogenic contribution to NPP;
Cc is equal to the sum of Ctemp, Cpre, and CSOL; Cpre is a product of ∂NPP

∂pre and ∂pre
∂t ; and

Ctemp and CSOL are also computed in the same way. In addition to climate change, other
drivers (such as forest fires, soil moisture, CO2 fertilization effect, etc.) also contribute to
NPP and are included in Ch. However, among these factors, human activity still dominates.
Therefore, Ch is roughly equal to the anthropogenic contribution to NPP.

In general, vegetation NPP not only reflects changes in vegetation carbon sequestration
but also reflects vegetation restoration and degradation [53]. Six scenarios were identified
to simplify the intricate mechanisms that drive vegetation dynamics, based on the interplay
between vegetation dynamics and both climate and human drivers (Table 2).
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Table 2. Drivers of vegetation restoration and degradation: identification criterion and contributions.

KNPP Cc Ch
Contribution Rate (%)

Description
Climate Change Human Activity

>0 <0 >0 0 100 RH
>0 >0 <0 100 0 RC
>0 >0 >0 KP

KP+KH
× 100 KH

KP+KH
× 100 RCH

<0 >0 <0 0 100 DH
<0 <0 >0 100 0 DC
<0 <0 <0 KP

KP+KH
× 100 KH

KP+KH
× 100 DCH

RH: vegetation restoration due to human activity. RC: vegetation restoration due to climate change. RCH:
vegetation restoration due to climate change and human activity. DH: vegetation degradation due to human
activity. DC: vegetation degradation due to climate change. DCH: vegetation degradation due to climate change
and human activity.

3. Results
3.1. Validation of Simulated NPP

Figure 3 shows the correlation between the field observations and the corresponding
estimated vegetation NPP. There is a significant positive correlation between the field
observations and estimated vegetation (R2 = 0.819, p < 0.001), as well as a relatively small
RSME between them (RSME = 17.93 g C/m2), indicating that the CASA model estimate is
reliable and can be further analyzed for interannual variation in vegetation NPP.
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3.2. Spatial Distribution and Interannual Variation in Vegetation NPP

The annual mean vegetation NPP of Shaoguan was 683.77 g C/m2/yr from 2001 to
2020. Overall, the NPP is roughly between 200 and 1000 g C/m2/yr (Figure 4). High-
NPP (>1000 g C/m2/yr) areas were predominantly situated in the southwestern and
east-central regions of the research areas, characterized by substantial forest and shrub
coverage. Conversely, low-NPP (<200 g C/m2/yr) areas were primarily identified in the
water body, urban, and cropland areas. The statistics show that forests had the highest mean
annual NPP (790.36 g C/m2/yr), followed by shrubland (562.74 g C/m2/yr), cropland
(463.97 g C/m2/yr), wetland (290.50 g C/m2/yr), and grassland (137.37 g C/m2/yr).
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As shown in Figure 5, there was a significant upward trend in mean annual vegetation
NPP (4.09 g C/m2/yr, p < 0.001) in Shaoguan from 2001 to 2020. Generally, vegetation
NPP in the research region obviously increased. The results obtained from Sen’s slope
(Figure 6a) revealed that the area of vegetation NPP increase (70.21%) was more than twice
that of the area of vegetation NPP decrease (29.79%) over the last two decades.
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Furthermore, the MK trend analysis results revealed that there was a distinct spatial
heterogeneity in the interannual variation trend of vegetation NPP changes (Figure 6b).
The significant increase in areas is widely distributed throughout the study area, partic-
ularly LI and MI (i.e., large and moderate increases in vegetation NPP), accounting for
16.27% and 12.97%, respectively. Conversely, there are fewer regions that show an obvi-
ous decreasing trend, with a more concentrated distribution. LD and MD (i.e., large and
moderate decreases in vegetation NPP) were scattered in built-up land and accounted for
only 3.55% and 2.84% of the study region, respectively. Shaoguan’s ecological environment
was properly protected over the past 20 years, and its vegetation NPP maintained a stable
state. SD (i.e., slight decreases in vegetation NPP) were concentrated in built-up land and
forest, which account for 23.23% of the study region. SI (i.e., slight increases in vegetation
NPP) was mainly concentrated in forests bordering farmland, which account for 41.14% of
the area.

3.3. Climatic and Human Contributions to NPP Dynamics

Overall, human activity resulted in greater increases in vegetation NPP than climate
change. Human and climate drivers contributed 3.137 g C/m2/yr and 0.948 g C/m2/yr to
vegetation NPP, respectively (Table 3). A total of 64.81% of vegetation NPP was positively
impacted by human activity, and 40.66% was facilitated by climate change. Most of the
areas with significant anthropogenic impact were situated in built-up land and the forest
in the southwest (Figure 7b). In contrast, climate change significantly reduced NPP in
several forest types, especially timber and water conservation forests in the southwest and
ecological economic forests in the north (Figure 7a).
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Table 3. Climatic and human contributions to NPP dynamics.

Type Contribution (g C/m2/yr) Total (g C/m2/yr)

Climate change
Temperature 0.004

0.948Precipitation 0.276
SOL 0.668

Human activity / 3.137 3.137
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Statistically, the contribution of SOL to NPP was the largest (0.668 g C/m2/yr), fol-
lowed by precipitation (0.276 g C/m2/yr) and temperature (0.004 g C/m2/yr) (Table 3). In
most of the study regions, the positive contribution of SOL to vegetation NPP exceeded
that of temperature and precipitation. Statistically, SOL positively affected vegetation NPP
in significantly more areas (61.41%) than temperature (22.02%) and precipitation (46.82%)
but still showed an apparent negative effect in the southwestern and north-central forested
areas (Figure 8c). Temperature and precipitation both affected vegetation NPP in Shaoguan,
resulting in an opposite contribution distribution at the pixel level. Temperature contributes
positively to vegetation NPP in ecological forests in the northwest and in water-holding
forests in the northeast (Figure 8a). In contrast, the positive contribution of precipitation to
NPP was primarily focused within the central part of the study area (Figure 8b).
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3.4. Vegetation Restoration and Degradation Affected by Climate and Human Drivers

The results suggest that the restoration of vegetation in Shaoguan was mainly influ-
enced by human activities (Figure 9). From 2001 to 2020, human activities caused 34.94% of
the total area of vegetation restoration (Table 4). In contrast, climate change restored only
1.37% of the vegetation. Moreover, 33.90% of the study area’s vegetation restoration can
be attributed to the combined action of climate and human drivers (RCH), and the areas
with more than half of the human contribution account for 91.45%. RCH was distributed in
forest areas around farmland.
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Table 4. Percentage contributions of different drivers of vegetation dynamics.

Vegetation Dynamic Drivers Contribution (%)

Vegetation restoration
Climate change (RC) 1.37
Human activity (RH) 34.94

Combined action (RCH) 33.90

Vegetation degradation
Climate change (DC) 5.27
Human activity (DH) 5.26

Combined action (DCH) 19.26

Furthermore, the combined action of climate and human drivers was an important
driver of vegetation degradation (DCH), accounting for 19.26% of the research area. DCH
was predominantly distributed in artificial forests and around construction land in the
southwest and east-central regions. The effect of climate change on vegetation degradation
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was scattered, accounting for only 5.27% of the research region. Only 5.26% of vegetation
degradation in the study area was associated with human activity.

4. Discussion

The accurate simulation of vegetation NPP is necessary for evaluating the carbon
sequestration potential of ecosystems, especially in subtropical regions with rich vegetation
resources, favorable climate conditions, and diverse ecological types. In this research, an
enhanced CASA model based on the GF-SG algorithm was employed to accurately simulate
the subtropical vegetation NPP in Shaoguan over the past 20 years. Climatic and human
influences on NPP were then quantified using the RESTREND method.

Although there was a high correlation between the field observations and vegetation
NPP estimated with the modified CASA model, there are still uncertainties, including
the precision of the vegetation classification, the interpolation error of the weather station
data, and the εmax differing from the actual situation and the model structure. In addition,
although 46 field observations were available to validate the model, spatial resolution
differences between ground biomass measurements and remotely sensed data may affect
the accuracy of the model. For example, a 30 × 30 m pixel may contain both multiple
vegetation types and non-vegetation types, whereas a field observation plot contains only
a single vegetation type. Furthermore, the validation data type only covers forest-type
data, resulting in some inaccuracies in the validation results of the model. Nonetheless,
since forests make up 74.5% of the entire study area, our study concentrated on examining
the effects of climate change and human activities on forest alterations. We delved into
the specifics of forest ecosystem changes and potential management practices, aiming to
generate effective strategies for conserving and managing forest resources. Combining the
above results, we concluded that the enhanced CASA model has the potential to estimate
vegetation NPP at high resolutions and can be used to analyze long-term dynamic changes
in vegetation NPP.

The RESTREND method avoids the errors that result from simulating potential NPP
with empirical formulas and obtains the contribution of a single driver related to climate
change, so it is preferable to residual analysis methods [13]. However, the RESTREND
method simply approximates human activity contribution to NPP (Ch) as the residual
of the NPP annual change rate and the climate change contribution and includes other
factors affecting NPP (such as CO2 fertilization, nitrogen enrichment and deposition, ozone
concentration, soil moisture, forest fires, pests, and diseases.) in Ch, which will lead to the
overestimation or underestimation of human activity’s contribution to NPP [51]. It is, hence,
imperative to more comprehensively consider the impact of other drivers on vegetation
NPP in order to accurately assess the contributions of different drivers to vegetation NPP
in future studies.

Generally, compared with climate change, human activity contributes more to vegeta-
tion restoration in Shaoguan, which is also consistent with previous studies [54]. Because
Shaoguan belongs to the unique subtropical monsoon climate zone south of the Tropic of
Cancer, with abundant precipitation throughout the year and high average annual temper-
atures, the weak climate change did not significantly affect vegetation growth. Therefore,
the effect of climate change on vegetation NPP is not obvious. Meanwhile, the introduction
of numerous ecological policies and artificial restoration measures, including GTGP (the
Grain-to-Green Program) and soil and water conservation projects, will also promote the
growth of vegetation NPP [55]. However, vegetation degradation is a combined result of
climate change and human activities. Along with large-scale orchard reclamation, rapid
urban expansion, and the deforestation of timber forests, a large amount of vegetation has
been destroyed, and NPP has declined rapidly. In addition, excessive temperature will also
inhibit vegetation photosynthesis and reduce vegetation NPP [56].

Although a multitude of ecological projects, especially GTGP and NFCP, were intro-
duced in the early stages in Shaoguan, there are still some problems and deficiencies. First,
as the ages of the trees increase, the NPP of these forests will also decline [57]. Secondly,
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early ecological projects often used unsuitable plant species or single tree species, resulting
in poor-quality planted forests that are prone to ecosystem degradation [58]. Therefore, the
sustainable growth of vegetation NPP and the optimization of ecosystem service function
cannot be realized only by relying on early ecological projects, and new ecological restora-
tion measures are still necessary for vegetation NPP growth. Depending on the results of
monitoring and evaluating NPP changes in vegetation and drivers, different ecological
measures are required. Suitable species, mixed afforestation, and intercropping should
be used to improve forest quality and stability in areas with declining forest quality. For
the areas where NPP is on the rise or at a high level, vegetation resources should be used
rationally, the structure and function of forestry should be optimized, and the economic
and social benefits of forestry should be improved. In addition, the long-term monitoring
of and research on changes in NPP and its influencing factors should be strengthened
in order to adjust and improve ecological measures in time and realize the coordinated
development of NPP and ecosystem service functions in Shaoguan.

5. Conclusions

In this research, high-quality NPP data for Shaoguan from 2001 to 2020 were con-
structed with an enhanced CASA model based on the GF-SG algorithm. Climatic and
anthropogenic impacts on vegetation changes were then evaluated using NPP as an index.
The vegetation NPP of Shaoguan increased significantly (4.0 g C/m2/yr, p < 0.001) from
2001 to 2020. In addition, the interannual variation in vegetation NPP was positively im-
pacted by climate factors, with SOL contributing most to vegetation NPP (0.668 g C/m2/yr).
Furthermore, the contribution of human activity to vegetation NPP (3.137 g C/m2/yr)
was more than three times that of climate change (0.948 g C/m2/yr) because Shaoguan is
located in the southern subtropics, where the effects of weak climate change on vegetation
NPP are not noticeable. Human activity was the main cause of vegetation restoration owing
to ecological policies, while vegetation degradation was dominated by the combinations
of human activity and climate change owing to urban sprawl, deforestation, and extreme
weather disasters.
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