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Abstract: Forest fires result in severe disaster, causing significant ecological damage and substan-
tial economic losses. Flames and smoke represent the predominant characteristics of forest fires.
However, these flames and smoke often exhibit irregular shapes, rendering them susceptible to erro-
neous positive or negative identifications, consequently compromising the overall performance
of detection systems. To enhance the average precision and recall rates of detection, this pa-
per introduces an enhanced iteration of the You Only Look Once version 5 (YOLOv5) algorithm.
This advanced algorithm aims to achieve more effective fire detection. First, we use Switchable Atrous
Convolution (SAC) in the backbone network of the traditional YOLOv5 to enhance the capture of a
larger receptive field. Then, we introduce Polarized Self-Attention (PSA) to improve the modeling
of long-range dependencies. Finally, we incorporate Soft Non-Maximum Suppression (Soft-NMS)
to address issues related to missed detections and repeated detections of flames and smoke by the
algorithm. Among the plethora of models explored, our proposed algorithm achieves a 2.0% improve-
ment in mean Average Precision@0.5 (mAP50) and a 3.1% enhancement in Recall when compared
with the YOLOv5 algorithm. The integration of SAC, PSA, and Soft-NMS significantly enhances the
precision and efficiency of the detection algorithm. Moreover, the comprehensive algorithm proposed
here can identify and detect key changes in various monitoring scenarios.

Keywords: forest fires; fire detection; YOLOv5; switchable atrous convolution; polarized self-attention;
soft non-maximum suppression

1. Introduction

To this date, multiple large-scale fire incidents have occurred globally. Notable instances
of wildfire disasters in 2015, for example, resulted in a tragic loss of 494,000 lives and incurred
a substantial financial toll amounting to CNY 22.098 billion [1]. In addition to forest fires,
urban fires are a frequent occurrence, often resulting in severe casualties and property losses.
In 2019, a fire and explosion tragically transpired in Xiangshui, Jiangsu province, China,
claiming a total of 78 lives and causing injuries to 617 individuals across the province [2].
In 2015, a major fire and explosion rocked Tianjin Port in China, directly causing 165 fatalities
and an estimated loss of CNY 6.866 billion [3]. It is evident that fires pose a significant threat.
Compared to urban fires, forest fires have a larger burning area. Moreover, the abundance of
combustible materials in forests leads to rapid fire propagation. Additionally, the complex
terrain of forests makes firefighting efforts extremely challenging. Therefore, the aim of this
paper is to accurately detect forest fires for an effective response to them.

Traditional fire detection techniques rely on sensor-based detection, including smoke
detection, temperature detection, photoelectric detection, gas detection, flame detection, etc.
The perception data are gathered through temperature sensors, smoke detectors, carbon
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monoxide sensors, and various other sensing devices. Subsequently, neural networks are
employed to make predictions based on the acquired data [4]. This sensor-based detection
method leverages various physical parameters from the field environment, providing com-
prehensive and detailed fire monitoring data, thus aiding in forecasting fire development
trends. Furthermore, federated learning based on distributed machine learning can handle
one-dimensional fire data [5]. Solórzano et al. [6] conducted research focused on optimizing
the performance of gas sensor arrays. Their work demonstrated that systems based on gas
sensor arrays can offer faster fire alarm responses when compared to conventional smoke-
based fire detectors. In another study, Sun et al. [7] developed an automated enhanced
multi-trend back-propagation neural network algorithm. This algorithm utilizes multiple
neural networks to enhance predictions and adds a special trend extraction component.
This component helps the algorithm to detect fire initiation, even with small temperature
changes. Pang et al. [8] used a random forest [9] model to predict the probability of forest
fires in China. Based on these probabilities, they generated a forest fire occurrence probabil-
ity map for China and a seasonal forest fire probability map. Kalantar et al. [10] used three
machine learning models and 14 sets of fire predictors derived from vegetation indices,
climatic variables, environmental factors, and topographical features to predict forest fire
susceptibility in the Chaloos Rood watershed in Iran. However, the accuracy of sensor-
based detection is contingent upon equipment maintenance, which can pose a challenge in
scenarios with limited budgets. Moreover, where sensors are usually positioned in open
environments such as airports, stadiums, outdoor venues, and instances away from the
actual fire source, it becomes challenging to collect information like gas concentrations and
temperature. Consequently, the efficiency and accuracy of sensor data collection tend to
be relatively low. To alleviate these issues, a vision-based approach has been employed to
facilitate real-time fire detection.

Vision-based object detection systems have the ability to analyze image or video data
for fire detection without physical contact with the target object. These systems can be effec-
tively used in various fire detection scenarios. Notably, deep learning-based methods have
demonstrated robust learning capabilities and scalability [11], rendering them widely appli-
cable in the field of fire detection. With the continuous advancements in deep learning and
convolutional neural networks [12], vision-based object detection techniques have achieved
remarkable accuracy. These methods can classify and locate targets with high precision,
enabling accurate object detection and recognition [13]. Zhao et al. [14] proposed a forest
fire and smoke recognition method based on the fusion of environmental information, using
Faster R-CNN [15] as the fundamental framework. Nguyen et al. [16] developed a real-time
fire detection system tailored for large-scale monitoring, utilizing unmanned aerial vehicles
(UAVs) equipped with an integrated visual detection and alarm system. Their approach was
grounded in the Single Shot MultiBox Detector (SSD) [17]. Zheng et al. [18] employed the
principal component analysis (PCA) reconstruction technique in conjunction with the dy-
namic convolutional neural network (DCNN) [19]. This approach led to the development of a
15-layer DCNN model capable of accurately identifying critical fire-prone areas. Li et al. [20]
addressed the challenge of poor small object detection within the DEtection TRansformer
(DETR) [21] by combining a lightweight normalized attention module with DETR when
detecting fires. With technology continually advancing and computing power improving,
the YOLO series of algorithms have gained prominence. These algorithms strike a favorable
balance between accuracy and detection speed, and researchers have progressively begun
applying them to fire detection tasks. Qin et al. [22] introduced a fire classification method
that combines depthwise separable convolution with YOLOv3 [23]. They use depthwise sep-
arable convolution to classify fire images, and then apply YOLOv3 to locate fire in the images.
This approach improves the detection accuracy and efficiency. Wang et al. [24] introduced a
model named Light-YOLOv4, which employs MobileNetv3 [25] as the backbone network
instead of YOLOv4 [26]. They seamlessly integrated the bidirectional feature pyramid net-
work (BiFPN) [27] and the depthwise separable attention module into YOLOv4, leading to a
substantial reduction in parameters while maintaining nearly the same level of accuracy as
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the original model. This innovative approach achieves a lightweight effect. Bahhar et al. [28]
combined a YOLO architecture with two weights with a voting ensemble CNN architecture.
If the CNN detects anomalies in a frame, the YOLO architecture is then utilized to locate
the smoke or fire. Yu et al. [29] made improvements to the image preprocessing, modules,
and loss functions of YOLOv5 to achieve better detection performance. Dou et al. [30] in-
troduced the Convolutional Block Attention Module (CBAM) [31], BiFPN, and transposed
convolution into YOLOv5, significantly improving the algorithm’s accuracy in fire detection.
Du et al. [32] introduced ConvNeXt [33] into YOLOv7 [34], resulting in the development of a
fire detection model that effectively balances detection speed and accuracy. Chen et al. [35]
utilized Ghost Shuffle Convolution [36] to construct two lightweight modules, incorporating
these into YOLOv7. This effectively reduced the model’s parameter count and accelerated
the model’s convergence speed. Additionally, they integrated Coordinate Attention [37] into
the YOLOv7 feature extraction network to enhance smoke feature extraction and attenuate
background interference. Talaat et al. [38] proposed an improved method for smart city fire
detection based on the YOLOv8 algorithm. It leverages the advantages of deep learning
to detect specific features of fires in real time. Some classic two-stage detection algorithms
and the DETR model have high accuracy, but they are slow and large. These limitations
prevent real-time fire detection YOLO algorithms from balancing detection accuracy and
speed well. The YOLO series has been updated with multiple versions, with various modules
in YOLO optimized multiple times and continuously incorporating advanced optimization
strategies. After multiple versions of optimization, YOLOv5 addresses some drawbacks of its
predecessors, such as large parameter count, and achieves improved detection performance.
Many scholars in fire detection use YOLOv5 as one of the main algorithms. Therefore, this
paper uses a method based on YOLOv5 for fire detection. However, there is still room for
improvement in YOLOv5. For instance, YOLOv5 tends to miss smoke detection in the context
of forest fires. Moreover, when smoke and flames are densely distributed, occurrences of
missed detections also arise. This paper aims to improve YOLOv5 to meet the requirements
of fire detection.

In this paper, we propose an improved detection algorithm based on YOLOv5, named
SPS-YOLOv5, to enhance the detection accuracy and reduce the false detection rates of forest
fires. Firstly, to address the issue regarding the confusion of flames, smoke, and background
information in widespread distribution scenes, we adopt the SAC module [39]. SAC can
expand the convolution’s receptive field, allowing for the comprehensive extraction of
background information to differentiate it from the detected objects. Then, to tackle the
problem of insufficient feature extraction for flames and smoke, the PSA [40] attention
mechanism is introduced into the neck network. This attention mechanism captures
global long-range dependencies, thereby enhancing the feature extraction capability of
convolution. Finally, to address the problem of missed detections caused by multiple
targets overlapping, Soft-NMS [41] is deployed to replace the original NMS [42] to capture
more useful information and achieve better detection results.

The remaining sections of this paper are organized as follows. Section 2 provides a
detailed introduction to the improved YOLOv5 algorithm proposed in this study. In Section 3,
we present the dataset used, the experimental environment, parameter settings, and evaluation
metrics. Sections 4 and 5 showcase the experimental results, followed by a discussion and
analysis of the results and the proposed algorithm. Additionally, we outline future work
prospects. In Section 6, a summary of the work presented in this paper is provided.

2. Methods
2.1. YOLOv5m Algorithm

YOLOv5 is a one-stage object detection algorithm that uses a backbone network for
feature extraction. It detects objects of different sizes with multi-level feature fusion and
multi-scale prediction. The YOLOv5m algorithm has three main components: the backbone,
neck, and head, as shown in Figure 1.
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• Backbone: In the YOLOv5m model, CSPDarknet53 serves as the backbone network.
CSPDarknet53 is rooted in the Darknet53 network architecture and incorporates Cross
Stage Partial (CSP) [43] connections. These connections enhance the network’s ability
for extracting image features and computational efficiency;

• Neck: This section employs a combined architecture that consists of the Feature Pyra-
mid Network (FPN) [44] and the Path Aggregation Network (PAN) [45].
FPN propagates semantic information top-down, while PAN conveys localization
information top-down. Then, utilizing both up-sampling and down-sampling opera-
tions, it effectively integrates feature maps from various levels to produce a multi-scale
feature pyramid. This pyramid enhances the algorithm’s capacity to capture informa-
tion at various scales;

• Head: This component consists of four parts: Anchors, Convolutional Layers,
Prediction Layers, and Non-Maximum Suppression. The anchors are a predefined set
of bounding boxes used to generate candidate boxes on the feature map.
The convolutional layers in the detection head are responsible for processing the
feature maps and extracting features. Each prediction layer is responsible for predict-
ing a set of bounding boxes and their corresponding class probabilities. In the output
bounding boxes, the non-maximum suppression algorithm is employed to suppress
overlapping boxes, retaining only the most representative ones. The primary function
of the head is to extract features and make predictions for object detection. It extracts
high-level features from the input image and utilizes them to predict the position and
category of objects in the image.
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2.2. Switchable Atrous Convolution

Atrous convolution [46] introduces a dilation rate in conventional convolution, thereby
enabling each convolution output to cover a larger range of information. However, this
enlarges the receptive field and may cause the loss of local information continuity. The SAC
module alleviates this issue by utilizing the ability to switch between ordinary convolution
and atrous convolution. This feature alleviates the problem of discontinuous information
extraction caused by atrous convolution while simultaneously expanding the receptive field.

Figure 2 shows the overall structure of the SAC. It mainly consists of three parts:
two global modules located before and after the SAC module, and the SAC module.
Let y = Conv(x, w, r) be represented as a convolution operation with weight w and dilation
rate r. This convolution operation takes x as input and produces y as output. The conversion
of a regular convolution to SAC can be expressed as follows:

Conv(x, w, 1) Convert−−−−→
to SAC

S(x) · Conv(x, w, 1) + (1− S(x)) · Conv(x, w + ∆w, r) (1)

where x represents the input, w and ∆w represent the weight parameters, w is a pre-trained
checkpoint, and ∆w is the weight initialized to 0 at the same scale as w. r represents
the dilation rate of the convolution operation. S(•) performs 5 × 5 average pooling and
1 × 1 convolution as its operations. The functionality of the switch depends on both the
input and its position. As a result, regular convolution and atrous convolution can be fused
to achieve more efficient feature extraction.

Forests 2023, 14, x FOR PEER REVIEW 5 of 19 
 

 

2.2. Switchable Atrous Convolution 
Atrous convolution [46] introduces a dilation rate in conventional convolution, 

thereby enabling each convolution output to cover a larger range of information. How-
ever, this enlarges the receptive field and may cause the loss of local information continu-
ity. The SAC module alleviates this issue by utilizing the ability to switch between ordi-
nary convolution and atrous convolution. This feature alleviates the problem of discon-
tinuous information extraction caused by atrous convolution while simultaneously ex-
panding the receptive field. 

Figure 2 shows the overall structure of the SAC. It mainly consists of three parts: two 
global modules located before and after the SAC module, and the SAC module. Let 

( , , )y Conv x w r  be represented as a convolution operation with weight w and dilation 
rate r. This convolution operation takes x as input and produces y as output. The conver-
sion of a regular convolution to SAC can be expressed as follows: 

 
(x,w,1) ( ) ( , ,1) (1 ( )) ( , , )Convert

to SAC
Conv S x Conv x w S x Conv x w w r       (1)

where x represents the input, w and w  represent the weight parameters, w is a pre-
trained checkpoint, and w  is the weight initialized to 0 at the same scale as w. r repre-
sents the dilation rate of the convolution operation. S(•) performs 5 × 5 average pooling 
and 1 × 1 convolution as its operations. The functionality of the switch depends on both 
the input and its position. As a result, regular convolution and atrous convolution can be 
fused to achieve more efficient feature extraction. 

The SAC module introduces a locking mechanism, wherein the weights of the first 
convolution in Equation (1) are set to w, and the weights of the second convolution are set 
to w w . The two lightweight global context modules, before and after the SAC mod-
ule, work as follows: They first employ global average pooling on the input features to 
compress the information and complete convolution. The output is directly integrated 
back into the primary stream without any extra complex operations. 

 
Figure 2. Architecture diagram of SAC module. 

2.3. Polarized Self-A ention 
The a ention mechanism helps the model focus on important regions or features, 

which improves the localization and recognition of objects in an image. The combination 
of convolutional fusion with a ention mechanisms amplifies the feature extraction ability 
of convolutions, ultimately enhancing the accuracy of object detection. The proposed 
method employs Polarized Self-A ention (PSA) to capture long-range dependencies and 
improve the convolutional feature extraction capability. 

The main idea of PSA is to compress features along one direction while increasing 
the intensity range of the loss. This a ention mechanism has two distinct components: (1) 
Filtering: This component collapses one dimension of features completely while keeping 
a high resolution in orthogonal dimensions. (2) High Dynamic Range (HDR): First, in the 
a ention module, the Softmax function is applied to the smallest tensor to extend the at-
tention range. Then, the Sigmoid function is employed for dynamic mapping. A detailed 
depiction of the PSA structure is presented in Figure 3. 

Figure 2. Architecture diagram of SAC module.

The SAC module introduces a locking mechanism, wherein the weights of the first
convolution in Equation (1) are set to w, and the weights of the second convolution are
set to w + ∆w. The two lightweight global context modules, before and after the SAC
module, work as follows: They first employ global average pooling on the input features
to compress the information and complete convolution. The output is directly integrated
back into the primary stream without any extra complex operations.

2.3. Polarized Self-Attention

The attention mechanism helps the model focus on important regions or features,
which improves the localization and recognition of objects in an image. The combination of
convolutional fusion with attention mechanisms amplifies the feature extraction ability of
convolutions, ultimately enhancing the accuracy of object detection. The proposed method
employs Polarized Self-Attention (PSA) to capture long-range dependencies and improve
the convolutional feature extraction capability.

The main idea of PSA is to compress features along one direction while increasing
the intensity range of the loss. This attention mechanism has two distinct components:
(1) Filtering: This component collapses one dimension of features completely while keeping
a high resolution in orthogonal dimensions. (2) High Dynamic Range (HDR): First, in
the attention module, the Softmax function is applied to the smallest tensor to extend the
attention range. Then, the Sigmoid function is employed for dynamic mapping. A detailed
depiction of the PSA structure is presented in Figure 3.
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From Figure 3, it can be observed that, in the channel branch, this architecture uses
a 1 × 1 convolution to transform the input feature X into Q and V. In this transformation,
the channel dimension of Q is entirely compressed, while the channel dimension of V is
retained at a relatively high level. Since the channel dimension of Q is compressed, the
Softmax function is used to enhance the information of Q. Then, matrix multiplication
is performed between Q and V, followed by applying a 1 × 1 convolution and Layer
Normalization (LN) to increase the channel dimension from C/2 to C. Finally, the Sigmoid
function is applied to ensure that all parameters are constrained within the range from
0 to 1 in the channel branch. In the spatial branch, a similar process is followed. The input
features are transformed into Q and V using a 1 × 1 convolution. It uses Global Pooling on
Q to reduce the spatial dimension to 1 × 1. However, the spatial dimension of the V is high.
Given the compression of the spatial dimension of Q, the Softmax function is applied to
enhance the information of Q. It multiplies Q and V, then reshapes and uses the Sigmoid
function to keep all parameters between 0 and 1 in the spatial branch.

2.4. Soft-NMS

Non-Maximum Suppression (NMS) is a widely employed computer vision algo-
rithm, commonly utilized in tasks such as object detection and bounding box regression.
The primary objective of NMS is to tackle the problem of overlapping candidate bounding
boxes by eliminating redundant bounding boxes.

The working principle of NMS is as follows: Given a set of candidate bounding boxes,
NMS starts by choosing the bounding box with the highest confidence score. It continues
to calculate the degree of overlap, typically using Intersection over Union (IoU), between
this selected bounding box and all other bounding boxes. Any bounding box with an IoU
value with the chosen bounding box exceeding a predefined threshold is then removed.
This process iterates by selecting the subsequent bounding box with the highest confidence
score and eliminating any bounding boxes with significant IoU overlap. This procedure
continues until all bounding boxes have been processed. The NMS algorithm can be
mathematically expressed as follows:

si =

{
si, iou(M, bi) < Nt
0, iou(M, bi) ≥ Nt

(2)
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where bi represents the ith detection bounding box, Si is the corresponding detection
score, Nt is the NMS threshold, M stands for the detection bounding box with the highest
detection score, and IoU denotes the Intersection over Union, which is calculated as the
ratio of the intersection area of two bounding boxes to their union area.

This NMS adopts a binary method, which removes bounding boxes that overlap with
the one with the highest confidence score. However, this may eliminate some bounding
boxes that have lower confidence scores but overlap a lot with the target object and affect the
object detection performance. Soft-NMS solves this issue by introducing a decay function
that gradually diminishes the confidence scores of other bounding boxes based on their
overlap with the one possessing the highest confidence score, rather than immediately
discarding them. This technique keeps some information from overlapping bounding boxes.
There are two decay functions: linear and Gaussian, which can be expressed as follows:

si =

{
si, iou(M, bi) < Nt

si(1− iou(M, bi)), iou(M, bi) ≥ Nt
(3)

si = sie−
iou(M,bi)

2

σ , ∀bi /∈ D (4)

where D represents the set of final detection bounding boxes. Equation (3) represents a
linear function, and Equation (4) represents a Gaussian function. It can be observed from
Equation (3) that this function is discontinuous, which may cause a score gap in the box set.
Therefore, this paper adopts the Gaussian function as the decay function.

2.5. The Proposed Algorithm for Smoke and Fire Detection

During a forest fire, because the distribution of flames and smoke is relatively dense,
YOLOv5 may experience missed detections. It also needs to improve the average precision
of YOLOv5 in detecting smoke and flames. To capture the characteristics of flame and
smoke efficiently and improve the detection accuracy and efficiency of terminal equipment,
this paper introduces an enhanced YOLOv5 algorithm, called SPS-YOLOv5 (incorporating
SAC, PSA, and Soft-NMS modules into the YOLOv5m framework). The framework of the
SPS-YOLOv5 algorithm is depicted in Figure 4.
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In Figure 4, it is evident that we focus on the improvements in the backbone and
neck modules. First, we replaced the last four convolutions in the backbone with SAC.
Then, SAC is added to the last two Cross-Stage Partial (CSP) modules in the backbone.
This makes the backbone network use atrous convolutions better, which provides a larger
receptive field and less loss of local information. In the neck section, PSA is introduced into
the four convolutions, facilitating the model in capturing long-range dependencies more
effectively, making the proposed algorithm more efficient. In the NMS, Soft-NMS replaces
the traditional NMS. This helps the algorithm detect and recognize weaker objects better,
which improves the diversity and stability of the object detection results.

3. Experiment
3.1. Datasets

To validate the effectiveness of the detection algorithm, we reconstructed a composite
large dataset from the Internet. The dataset is composed of a total of 7878 image samples,
encompassing both fire and smoke instances. This dataset consists of mostly forest fire
images, in addition to some urban fire images, spanning from small-scale to large-scale
incidents. This diverse composition helps improve the algorithm’s capacity to generalize
across various fire-related situations. Some of the forest fire images in this dataset are from
drone photography. The dataset was divided into training, validation, and test sets in
a ratio of 7:1:2. Consequently, the training set comprises 5514 images, the validation set
comprises 788 images, and the test set has 1576 images. A selection of sample images from
the dataset is presented in Figure 5 for reference.
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3.2. Experiment Setup

In this study, we use PyTorch to experiment, and the hardware details are shown in
Table 1. The PyTorch version is 1.13.1, and the Python version is 3.9. The graphics card
model is the GTX 1080 Ti.
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Table 1. Description of experimental conditions.

Item Type

CPU Intel(R) Core(TM) i7-12700H 2.70 GHz
GPU NVIDIA GeForce GTX 1080 Ti 11G

Programming language Python 3.9
Operating system Windows 11

Deep learning framework PyTorch 1.13.1

The experiment employed the SGD optimizer with pre-trained weights from YOLOv5m
for training. As illustrated in Figure 6, the mean Average Precision (mAP)@0.5 value
reached its peak and stabilized at approximately the 70th epoch. To mitigate overfitting,
the experiment was limited to 70 epochs by experience. The batch size was 8, and a
momentum value of 0.937 was applied. The images had a fixed aspect ratio of 1:1,
with dimensions of 640 × 640 pixels. For fire detection, the algorithm adopted an anchor-
based approach, utilizing anchor boxes generated through the anchor mechanism.
These anchor boxes served as prior bounding boxes, enabling the network to conduct
object classification and bounding box regression directly. This approach facilitated faster
convergence and improved the training consistency of the algorithm.
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3.3. Model Evaluation Metrics

To assess the detection performance of fire and smoke, this study utilizes the following
evaluation metrics: mean Average Precision (mAP), Recall (R), Frames Per Second (FPS),
parameters, and Floating Point Operations (FLOPs). FPS is employed to quantify the
real-time detection capability of the algorithm, while parameters are used to evaluate the al-
gorithm’s complexity and capacity. FLOPs show the computational load or complexity of the
algorithm. Higher values of mAP, Recall, and FPS indicate superior algorithm performance,
while lower values of parameters and FLOPs imply a more concise algorithm with enhanced
computational efficiency. The formulas for calculating mAP and Recall are as follows:

Precision =
TP

TP + FP
(5)
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Recall =
TP

TP + FN
(6)

AP =
∫ 1

0
P(r)dr (7)

mAP =

C
∑

i=1
APi

C
(8)

where TP, FP, and FN represent the numbers of true positives, false positives, and false
negatives, respectively. C stands for the number of classes in the dataset, and in this study,
the dataset covers two classes of objects, fire and smoke, so C = 2.

4. Results
4.1. YOLO Series Algorithms Comparison

YOLO is a series of algorithms widely employed for object detection. It makes
the object detection a regression problem that can be executed in a single forward pass.
It predicts bounding boxes and class labels within grid cells in the image. The algorithm
has significantly improved from the first version to the latest one. In order to compare the
detection performance of different YOLO series on this dataset, we present the detection
results in Table 2, and the mAP50 and Recall results in Figure 7.

Table 2. A comparative analysis of various versions of YOLO in terms of different indices.

Number Method mAP50 (%) R (%) FPS Parameters (M) FLOPs (G)

1 YOLOv3 77.4 58.8 56 61.5 65.6
2 YOLOv4 65.3 38.2 45 63.9 60.0
3 YOLOv5 77.8 71.2 65 20.1 47.9
4 YOLOv7 77.3 72.8 68 36.5 103.2
5 YOLOv8 77.6 74.0 45 25.8 78.7
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From Table 2, it can be clearly seen that YOLOv5 achieved a mAP50 of 77.8%, better
than other YOLO versions in terms of detection precision. Even though YOLOv5’s FPS is
slightly lower than YOLOv7 at 65, it still outperforms YOLOv3, YOLOv4, and YOLOv8
in processing speed. This makes YOLOv5 a good choice for real-time or high-speed fire
monitoring applications. Although the Recall value of YOLOv5 is lower than that of
YOLOv8, it is better than YOLOv8 in mAP. And because YOLOv8 has a more complex
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network architecture, including multiple residual units and multiple branches, its FPS,
parameters, and FLOPs are all higher than for YOLOv5. Additionally, YOLOv5 has much
fewer parameters (20.1 M) and lower FLOPs (47.9 G) than its YOLO counterparts in
the comparison, indicating a lower algorithm complexity. In summary, compared to
other YOLO versions, YOLOv5 has superior detection precision, faster processing speed,
and lower algorithm complexity for fire detection. Consequently, this paper adopts an
improved YOLOv5-based fire detection algorithm.

4.2. Analysis of Ablation Experiments

To evaluate the performance of the proposed method, we conducted ablation experi-
ments on SPS-YOLOv5. We introduced the improved modules to the YOLOv5 baseline, and
then constructed the YOLOv5 + SAC and YOLOv5 + SAC + Soft-NMS algorithms. To com-
pare the algorithms’ performance for different target sizes and difficulty levels, we calculated
mAP values at two IoU thresholds: 0.5 and 0.75. The experimental results are summarized in
Table 3, and Figure 8 shows the loss curves of these algorithms in the ablation process.

Table 3. Detection results of ablation experiment.

Model mAP50 (%) mAP75 (%) R (%) FLOPs (G) FPS

YOLOv5 77.8 54.0 71.2 47.9 65
YOLOv5 + SAC 78.5 53.1 73.7 30.9 47

YOLOv5 + SAC + Soft-NMS 78.8 58.9 73.7 30.9 45
SPS-YOLOv5 79.8 58.3 74.3 31.7 43
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From Table 3, it is evident that the inclusion of the SAC module significantly en-
hances mAP50 and reduces the computational complexity of the algorithm. This indicates
that, while improving mAP50, the overall complexity of the algorithm decreases. Further-
more, when using YOLOv5 + SAC + Soft-NMS, it improves mAP50 slightly and mAP75

significantly, without changing the algorithm’s computational complexity. In summary,
the detection results of SPS-YOLOv5 are much better than those of the original YOLOv5.
It has a 2.0% increase in mAP50, a 4.3% increase in mAP75, a 3.1% increase in Recall, and a
significant reduction in FLOPs. This implies that, in comparison to the original algorithm,
the improved algorithm has superior detection performance for fire and smoke, while
also decreasing the algorithm’s computational complexity. This makes it more suitable for
training and inference.

Figure 8 shows the loss curves of different algorithms during training. We can
see that adding the SAC module makes all three algorithms have better loss curves
with less oscillations. Because Soft-NMS is only applied for validation and prediction,
YOLOv5 + SAC + Soft-NMS has the same loss curve as YOLOv5 + SAC. For the SPS-
YOLOv5 algorithm, which incorporates all three modules, it displays a smoother ob-
ject loss compared to the algorithm by just adding the SAC module. SPS-YOLOv5 con-
verges faster and smoother than YOLOv5. This means that the improved algorithm’s
training is more stable and better. Figure 9 shows the visualization results of detection.
The comprehensive visualization results indicate that the proposed SPS-YOLOv5 algorithm
has higher confidence scores for the smoke label. It also solves the issue of missed detection.
In short, the SPS-YOLOv5 algorithm outperforms the YOLOv5 algorithm in detecting fire
and smoke. It is more stable and better, as shown by its loss curves and detection results.
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4.3. Comparison of Different Detection Algorithms

In this subsection, we compared SPS-YOLOv5 with several classical object detection
algorithms. The comparison results are displayed in Table 4.

Table 4. Algorithm comparison results.

Number Method mAP50 (%) R (%) FPS Parameters (M) FLOPs (G)

1 SSD 71.8 62.7 78 23.7 60.9
2 Faster R-CNN 75.8 84.9 11 40.3 269.7
3 EfficientDet 78.0 63.3 22 3.8 4.7
4 YOLOv3-EfficientNet 74.0 53.3 58 7.0 3.8
5 CenterNet 75.3 40.7 59 32.7 70.2
6 SPS-YOLOv5 79.8 74.3 43 31.8 31.7

From Table 4, it is evident that SPS-YOLOv5 achieves the highest mAP50 at 79.8%.
SSD [17] is a one-stage object detection algorithm. It does not require a region proposal
stage and can directly generate the class probability and position coordinates of objects.
It can directly obtain the final detection results after one detection. When compared to SSD,
SPS-YOLOv5 exhibits an impressive 8.0% improvement in mAP50 and an 11.6% increase
in Recall. Additionally, it also has fewer FLOPs. Faster R-CNN [15] is a two-stage detector
that conducts region proposal and region classification separately. In comparison to Faster
R-CNN, SPS-YOLOv5 has a 4.0% improvement in mAP50. Although its Recall is slightly
lower than that of Faster R-CNN, it has fewer parameters and FLOPs and higher FPS than
Faster R-CNN. Compared to CenterNet [47], which predicts objects as points, SPS-YOLOv5
exhibits a 4.5% improvement in mAP50 and significantly higher Recall than CenterNet.
Furthermore, it has fewer parameters and boasts a remarkable 54.8% reduction in FLOPs.

EfficientDet [27] is also a one-stage detector like SSD. It is improved and extended
based on EfficientNet. It has the best performance among other algorithms we compared
it with. However, a detailed comparison between EfficientDet and SPS-YOLOv5 reveals
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some critical distinctions. Even though it has fewer parameters and FLOPs, EfficientDet is
significantly behind SPS-YOLOv5 in terms of FPS and Recall. A lower Recall suggests a
higher probability of missing detections, and as shown in Figure 10, EfficientDet exhibits
noticeable missed detections with smoke. In fire detection, missing detections can be
extremely dangerous, rendering EfficientDet less effective for fire detection tasks compared
to SPS-YOLOv5. The YOLOv3-EfficientNet [23] is based on YOLOv3 and is similar to
EfficientDet. Although it has smaller parameters and FLOPs, its mAP50 and Recall metrics
are both subpar. In conclusion, SPS-YOLOv5 demonstrates the best overall performance
among the compared algorithms and is well-suited for fire detection tasks, given its superior
combination of mAP, FPS, and Recall.
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5. Discussion

Forest fires can significantly impact the biological, chemical, and physical attributes
of forest soil [48], thereby disrupting the ecological environment of the forest. This paper
aims to provide an effective method for detecting wildfires. Nowadays, most wildfire
detection methods can be categorized into those based on traditional machine learning
and those based on computer vision [49]. The advantage of computer vision methods is
their ability to learn multi-level representations of data. Compared to typical machine
learning methods, it can better capture the complex structure of data and improve pattern
recognition performance [50,51]. However, methods based on visual detection may require
significant time for training due to large datasets and complex algorithms. Nevertheless,
with the improvement in computer processing power, this issue has been mitigated to some
extent. In summary, computer vision holds certain advantages in forest fire detection.

Unlike some stationary objects such as vehicles, safety helmets, masks, etc., fire is a
dynamic entity. Furthermore, during a forest fire event, the texture, color, and dimensions
of flames and smoke are highly complex, which makes the task of accurate fire detection
extremely challenging. Therefore, it is necessary to improve the algorithm to make it
suitable for the task of forest fire detection. In the comparative algorithms in this paper,
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Faster R-CNN exhibits excellent performance in terms of Recall. It has a relatively large
number of parameters and FLOPs, and a lower FPS, which is not conducive to real-time
fire detection. CenterNet has fewer parameters than Faster R-CNN, and its mAP50 and
Recall performance are only average. SSD, as a classic one-stage detector, offers higher
FPS and fewer parameters, but its mAP50 and Recall are lower. These classic algorithms
have shortcomings in both detection accuracy and speed. However, YOLOv5 effectively
balances the trade-off between detection accuracy and speed. The experimental results
show that YOLOv5 outperforms SSD in both mAP50 and Recall, and it also boasts better
FPS and fewer parameters than Faster R-CNN and CenterNet.

YOLOv5 tends to produce false positives when detecting images with complex smoke
and flames. Therefore, in the backbone of YOLOv5, this paper introduces SAC to effectively
fuse ordinary convolution and atrous convolution, enhancing the perception of the object’s
background environment, and thus enabling an accurate detection of smoke and fire.
SAC, due to its use of atrous convolutions, significantly reduces the model’s computational
complexity and training time, as observed in the experimental results, which show an
improvement in YOLOv5’s mAP50. In a single image, the distribution of smoke and
flames may be widely separated. To help the model capture a broader range of semantic
information, this paper fuses convolution with PSA in the neck of YOLOv5. Experimental
results indicate that the addition of PSA leads to a noticeable improvement in the model’s
mAP50 and R. Given the widespread distribution of smoke and flames during a forest
fire event, the issue of target overlap causing missed detections is alleviated by replacing
the original NMS with Soft-NMS according to the detection results. When comparing to
the previous most cutting-edge detection algorithms, such as EfficientDet and YOLOv3-
EfficientNet, the latter two have fewer parameters and FLOPs, and their mAP50 and Recall
do not match the proposed SPS-YOLOv5. Furthermore, SPS-YOLOv5 also outperforms
EfficientDet in terms of FPS.

Based on the results of the SPS-YOLOv5, it is suitable for fire detection compared
to these algorithms. This study introduced a substantial amount of data for training,
validation, and inference to achieve efficient and high-precision detection, with the main
contributions being the following:

(1) Based on various drone images, we reconstructed a fire dataset that encompasses
multiple scenarios and includes images of flames and smoke in different patterns.

(2) By combining SAC, PSA, and Soft-NMS with YOLOv5, we designed and verified a
more suitable fire detection algorithm: SPS-YOLOv5.

(3) We compared SPS-YOLOv5 with several classical detection algorithms, and its good
detection performance addresses the problem of complex targets detection and high-
lights the superiority of SPS-YOLOv5.

The experimental results indicate that SPS-YOLOv5 has broad applications in forest
fire detection. In terms of practical deployment, it can be installed on fire monitoring
towers or stations to monitor surrounding wildfires in real time. It can also be mounted
on high-altitude devices such as drones to rapidly survey large areas and detect potential
sources of fire. Additionally, fixed or mobile cameras can be set up in the forest, with
SPS-YOLOv5 deployed within them. These deployment strategies need to be customized
based on the specific forest terrain and requirements to enhance the sensitivity and ac-
curacy of the fire detection. The proper placement of vision-based detection devices can
cover a large area, a feature that contributes to cost control when applying SPS-YOLOv5.
Deploying SPS-YOLOv5 into forest equipment allows for the continuous analysis of im-
age data, promptly identifying potential signs of wildfires and improving monitoring
efficiency. The algorithm can recognize smoke and flame characteristics through image
analysis, achieving a high-precision detection of fire sources, reducing false alarms, and
ensuring accuracy. This algorithm can automatically analyze image data, provide real-time
notifications, and assist relevant organizations and personnel in rapidly responding to take
necessary measures to extinguish the fire.
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However, this paper’s work also has certain limitations. In order to better deploy
the algorithm, it is essential to effectively reduce the algorithm’s parameters. This work
tends to enhance the algorithm’s detection precision and recall, inevitably increasing the
algorithm’s parameters. Moreover, in the forest, there are various interference factors.
For example, in the forest, factors such as fog, red leaves, and sunlight during sunset
can introduce interference. Due to the similarity in their color and texture information
with smoke and flames, these factors can easily lead to false detections in the algorithm
proposed in this paper. Therefore, in future work, we plan to collect images of fog, sunsets,
and red leaves in the forest and create a more diverse dataset with richer backgrounds.
This dataset will enable us to investigate the correlation between the shape characteristics
of fires and their surrounding environments, thereby further enhancing our algorithm’s
capabilities for fire detection and resistance to interference. Furthermore, in the future, we
are committed to achieving algorithm lightweighting while minimizing the sacrifice of
algorithm performance.

6. Conclusions

Since flames and smoke often exhibit irregular shapes, accurate and effective fire detec-
tion is still a challenging task. Detecting and identifying fire types and corresponding fire
suppression measures in a timely manner can prevent fire spread and reduce economic losses.
Therefore, it is important and meaningful to study the efficient detection of forest fires.

This paper proposes an improved YOLOv5 detection algorithm. First, we replace some
convolutions in the YOLOv5 backbone with SAC to enhance the extraction of background
information. Then, PSA is introduced to improve the algorithm’s ability to extract feature
information related to smoke and flames. Finally, Soft-NMS is employed to replace NMS for
accurately detecting multiple overlapping targets. The experimental results show that the
proposed algorithm achieves 79.8% mAP50 and 43 FPS. Compared to the traditional YOLOv5,
SPS-YOLOv5 achieves a better balance between precision, recall, and FLOPs, demonstrating
superior detection performance. These improvements effectively improve the performance
of SPS-YOLOv5. Due to the complex fire environment, multi-scale forest fire recognition is
difficult. SPS-YOLOv5 has a good detection capability on multi-scale and multi-scene fire
targets, especially the early and middle stage forest fire targets. When forest fire detection is
performed, it can effectively protect the forest and people’s lives and property.
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