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Abstract: Deforestation remains one of the key concerning activities around the world due to
commodity-driven extraction, agricultural land expansion, and urbanization. The effective and
efficient monitoring of national forests using remote sensing technology is important for the early
detection and mitigation of deforestation activities. Deep learning techniques have been vastly
researched and applied to various remote sensing tasks, whereby fully convolutional neural networks
have been commonly studied with various input band combinations for satellite imagery applications,
but very little research has focused on deep networks with high-resolution representations, such as
HRNet. In this study, an optimal semantic segmentation architecture based on high-resolution feature
maps and an attention mechanism is proposed to label each pixel of the satellite imagery input for
forest identification. The selected study areas are located in Malaysian rainforests, sampled from 2016,
2018, and 2020, downloaded using Google Earth Pro. Only a two-class problem is considered for this
study, which is to classify each pixel either as forest or non-forest. HRNet is chosen as the baseline
architecture, in which the hyperparameters are optimized before being embedded with an attention
mechanism to help the model to focus on more critical features that are related to the forest. Several
variants of the proposed methods are validated on 6120 sliced images, whereby the best performance
reaches 85.58% for the mean intersection over union and 92.24% for accuracy. The benchmarking
analysis also reveals that the attention-embedded high-resolution architecture outperforms U-Net,
SegNet, and FC-DenseNet for both performance metrics. A qualitative analysis between the baseline
and attention-based models also shows that fewer false classifications and cleaner prediction outputs
can be observed in identifying the forest areas.

Keywords: forest; remote sensing; deep learning; attention mechanism; artificial intelligence

1. Introduction

Forests provide significant ecological importance, including but not limited to biodi-
versity maintenance, habitats for various flora and fauna, the mitigation of climate change
effects, watershed protection [1], erosion protection, carbon sequestration [2], and pre-
cipitation level maintenance. Forests also provide economic benefits, with raw materials
such as timber [3], food, and medicine, which can drive commercial activities, contribute
to people’s livelihoods, and lead the development of the national economy. Malaysia’s
tropical rainforests constitute one of the twelve mega-diverse ecosystems in the world,
housing approximately 152,000 fauna species and 15,000 flora species [4]. However, forests
nowadays are subjected to uncontrolled deforestation due to various reasons, such as
commodity extraction, agricultural expansion, and urbanization, and deforestation remains
one of the most concerning issues around the world. Based on the public data from Global
Forest Watch created by a collaboration between the University of Maryland, Google USGS,
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and NASA, for the years 2000 to 2020, Malaysia experienced a net change of −1.12 Mha in
tree cover. From 2016 to 2021, the total tree cover loss in Malaysia was 2.43 Mha, where
91.4% of the total loss (2.22 Mha) was caused by commodity-driven deforestation [5].

The Ministry of Energy and Natural Resources (KeTSA) [6] has been monitoring
the forest status for many decades through a national forest monitoring program. The
Ministry has deployed remote sensing technology to speed up the survey process while
reducing the human labor needed for forest monitoring efforts. Initially, panchromatic
aerial photographs were used as a remote sensing imaging source, before being replaced
by satellite imagery starting from 1991 due to advancements in satellite technology and
its effectiveness in remote sensing applications. Previously, the main approach for remote-
sensing-based monitoring systems relied on a combination of elementary spectral bands—
for example, the normalized difference vegetation index (NDVI) to distinguish green
vegetation’s spectral features [6].

There has been growing interest in applying automated techniques to remote sensing
to rapidly identify the forest cover area, especially by using conventional machine learning
techniques. Several studies have implemented conventional machine learning algorithms
in the field of forestry-related remote sensing tasks, such as decision trees, random forest
classification, and support vector machines. However, conventional machine learning algo-
rithms are dependent on the type of information or features set by the algorithm’s designer
and have a limited capability to extract complex and deep features by themselves. The per-
formance of conventional machine learning algorithms can also be very case-specific, which
limits the scalability of such machine learning models to other applications. Therefore,
many researchers prefer to employ deep learning methods instead of conventional machine
learning algorithms, even though they are usually only effective for large datasets [7].

Deep learning methods, which have been applied in several forest-related applications,
are a subtype of machine learning that enables feature learning from a set of large data. It is
a type of representation learning method that can learn features directly from raw data for
accurate detection and classification results. Usually, its architecture consists of composite
multilevel representations, using non-linear functions to transform the representations from
one-level to higher-level and more abstract representations, enabling the model to achieve
complex feature learning [8]. There are various types of deep learning models available,
such as convolutional neural networks and recurrent neural networks. Convolutional
neural networks (CNNs) are built specifically to handle images in the form of multiple
arrays. In terms of accuracy, flexibility, and rapid processing, CNNs perform better than
conventional methods [9]. The classic CNN architecture uses multiple convolution and
pooling operations to extract useful features from images before being passed to the fully
connected layers. Furthermore, the fully connected layers can be replaced with upsampling
operations for image segmentation purposes, creating fully convolutional neural networks.
Further research has produced various improvised state-of-the-art architectures based on
CNNs, such as the Siamese neural network, DeepLab, and U-Net. According to Elizar
et al. [10], with the development of fully convolutional neural networks, the segmentation
performance based on deep learning methods has improved dramatically in the past few
years, especially when compared to the conventional machine learning approach.

The majority of the studies conducted in remote-sensing-based forestry applications
use a deep learning approach, specifically convolutional neural networks, to effectively
learn features for the accurate classification of forest images. The most used architec-
ture is U-Net, due to its success in performing various segmentation tasks relating to
semantic alienation. In general, the CNN architecture for segmentation tasks follows the
encoder–decoder topology, whereby the encoder extracts information from low-resolution
representations, while the decoder reconstructs high-resolution representations from the ex-
tracted low-resolution feature maps. However, very few studies have used high-resolution
and multi-resolution fusion networks for remote sensing tasks, which is expected to yield
semantically rich and spatially precise segmentation performance [11]. The minimum
number of input bands required for effective forest classification also varies across stud-
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ies, resulting in varying performance. Certain satellite spectral bands may not always
be publicly available, and the creation of vegetation indices also requires additional data
pre-processing. However, CNNs may be able to achieve sufficient classification quality
without needing a large number of input bands. They can extract the necessary information
for forest mapping not only based on the pixel color but also based on the pixel context [12].

In this paper, an optimal forest monitoring system based on the novel architecture
of attention-based HRNet is proposed using Landsat-8 satellite imagery. The proposed
approach uses HRNet as the base model due to its capability to preserve high-resolution
representations and fuse representations of different resolutions together, producing good
segmentation performance. The study focuses on applying the model to classify forest
and non-forest areas in satellite images across several years, namely 2016, 2018, and 2020.
Then, the performance of the optimal baseline HRNet is further improved by embedding
an attention mechanism into the network.

2. Literature Review and Related Works

There are two main types of image classification used in remote sensing applications,
which are pixel-based classification and object-based classification. Pixel-based classifica-
tion assigns a class to every pixel in an image. It can be further divided into unsupervised
and supervised methods. On the other hand, object-based classification groups pixels into
objects that have representative vector shapes in terms of size and geometry.

A CNN is a popular deep learning model used for image processing and object
detection, and it has multiple hidden layers [10,13]. Activation functions make the CNN
more nonlinear and improve its expression ability. Pooling layers in CNNs perform
downsampling and extract important features while reducing the dimensions of hidden
layers. The fully connected layer connects the last few layers of the CNN and acts as a
classifier to determine the probability of a pixel belonging to a certain class. The output
layer consists of one neuron per class category, and all neurons are connected to the fully
connected neurons [14].

Dong et al. [15] developed a fusion model of a CNN and random forest (RF) to classify
subtropical areas in Taihuyuan, China, using satellite imagery. The model replaces the
fully connected layer of the CNN with the RF classifier, resulting in improved performance.
However, the model is computationally expensive due to its size and the number of inputs.
Khan et al. [16] used a CNN to detect forest changes in Melbourne, Australia, using satellite
imagery. They used bounding boxes to label the changes and found that the deep CNN
model had higher accuracy and mean IoU compared to other methods. However, accurately
producing bounding boxes for forest regions can be difficult, and the method cannot predict
forest cover areas.

Fully convolutional networks (FCN) are used to obtain high-level representations from
low-level representations by substituting the fully connected layer of the CNN with locally
connected layers [17]. This replaced section forms the decoder part of the FCN, creating an
encoder–decoder topology. Some improved variants of FCN-based networks are Siamese
neural networks, DeepLab, and U-Net.

Siamese neural networks (SNN) consist of two identical CNNs that share weights
during encoding. An SNN can also identify similarities and differences between inputs
by computing distance metrics. Therefore, SNNs have been applied in visual and change
detection tasks, including video target tracking [18] and landscape change detection [19].
Guo et al. [20] utilized a fully convolutional SNN to identify forest changes in Nanning
and Fuzhou, China, using Landsat-8 satellite imagery. They introduced a modified version
of Caye Daudt et al.’s model [21], called Siamese, which employs concatenation weight-
sharing and subtraction weight-sharing methods. This modification prioritizes change
information in different layers while preserving detailed image information. The results
showed that the method achieved accurate deforestation and afforestation detection and
good IoU scores.
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Chen et al. [22] introduced the DeepLab series of advanced deep learning segmentation
models in 2016. The latest version, DeepLabv3+, has a similar design to previous models
but with some differences. Andrade et al. [23] utilized DeepLabv3+ to detect deforestation
and found that this model outperformed other models. DeepLabv3+ also performs well
with limited dataset sizes, demonstrating its superior generalization capacity. However,
they found that there was a potential bias in the trained models due to the large imbalance
between deforested and non-deforested areas. Ferreira et al. [24] applied deep learning to
map Brazil nut trees in the Amazonian rainforest using WorldView-3 satellite imagery by
adopting the DeepLabv3+ architecture with three different encoder backbones: ResNet-18,
ResNet-50, and MobileNetV2. In their study, DeepLabv3+ with all three different backbones
achieved almost similar accuracy in mapping Brazil nut trees. The authors noted that the
shadows of Brazil nut trees were important features for proper mapping.

U-Net is a popular deep learning architecture designed for semantic segmentation
tasks. It was designed by Ronneberger et al. [25] originally for biomedical image segmen-
tation. Since then, U-Net has shown tremendous success in various image segmentation
tasks for various applications, including forestry-related tasks. One modification in the
U-Net architecture is the use of a large number of feature channels in the upsampling part,
allowing context information propagation to higher-resolution layers. Abdani et al. [26]
enhanced the multi-scale capability of U-Net by incorporating an SPP module. Bragagnolo
et al. [27] used U-Net to map forest cover changes in the Amazon rainforest and compared
its performance with that of other deep learning architectures. The results showed that
U-Net and ResNet50-SegNet had high accuracy and F1 scores for forest cover mapping
segmentation. U-Net also had the lowest training time among the benchmarked archi-
tectures. One advantage of the authors’ approach is the model’s ability to tolerate some
misclassification without significantly affecting the performance.

A study by Wagner et al. [12] examined Amazon forest cover and deforestation from
2015 to 2022 using U-Net with the pixel-based approach. Images were obtained from the
Planet API with the PlanetNICFI R package v1.0.4. Forest cover masks were created with
the K-textures algorithm. U-Net achieved high accuracy and F1-scores in forest cover
segmentation, validated using airborne LiDAR data. However, the model faced difficulties
in detecting deforestation, particularly in identifying burnt areas.

3. Methodology
3.1. Study Area

The regions chosen to prepare the model’s dataset were Malaysian rainforests. Malaysian
rainforests display vast biodiversity in terms of fauna and flora and is one of the twelve
mega-diverse ecosystems in the world. There are approximately 306 species of wild mammals,
742 species of birds, 242 species of amphibians, more than 449 freshwater species, and more
than 150,000 estimated species of invertebrates. Malaysia’s flora biodiversity also constitutes
approximately 15,000 species of vascular plants [4].

3.2. Dataset Preparation

Satellite images are downloaded at an eye altitude of approximately 8000 ft so that
forest features can be differentiated clearly from others. The satellite images are from the
Landsat-8 satellite, captured from February 2013 to September 2021. A set of ten regions
of land parcels from the years 2016, 2018, and 2020 are selected, downloaded, and saved
in Portable Network Graphics (PNG) format at the highest image resolution possible,
constituting a total of 30 land plots. High-resolution satellite imagery helps to provide
sufficient contextual information of pixels for the efficient training of deep learning models.
The temporal resolution is kept constant for all land plots to maintain uniformity and
control the variations in spectral distribution across the years. The forest and non-forest
areas of the chosen regions are approximately balanced with a ratio of 50:50. Some examples
of non-forest areas that are included in the dataset are deforested areas, plantations, human-
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made buildings, and roads and highways. The chosen images are verified to contain little
or no cloud cover, to prevent noise from being introduced in the training of the model.

Masks are created manually for every plot of land using the GNU Image Manipu-
lation Program 2 (GIMP-2) software 2.10.22 (GIMP Team, Kernersville, NC, USA, https:
//www.gimp.org/) and under the supervision of a supervisor. The annotation of masks is
performed by overlaying a mask layer on top of a satellite image, labeling all image pixels
belonging to forest areas as high and labeling all image pixels belonging to non-forest areas
as low, and saving the final mask layer as a separate mask image. Final masks consist of
two classes based on their labels: white-colored pixels represent forest areas, and black-
colored pixels represent non-forest areas. The annotated land plots and their masks are then
divided into smaller patches of 224 pixels × 224 pixels, creating a dataset of 17,280 patches
to facilitate processing and allow parallel processing, in addition to computer memory
limitations. The OpenCV library is used to process the land sub-image patches into an
array of three vector values per pixel, constituting the RGB channels. The RGB values are
in the range of 0 to 255, which are then normalized to the range of −1 to 1. Mask patches
are also processed into arrays of 0 s (non-forest) and 1 s (forest). Hence, the model has three
input channels from the normalized RGB sub-image and the respective binary mask.

3.3. HRNet Architecture

The concept behind the HRNet architecture is straightforward, as it involves maintain-
ing a high resolution throughout the process, conducting parallel sampling and fusion, and
ultimately producing feature maps with various resolutions [28]. These feature maps can be
selectively combined and utilized based on the specific requirements of different tasks. The
feature map maintains its high resolution during the entire process, which is the primary
characteristic of the HRNet model [29]. The low-resolution feature map subnetworks
are added to the primary high-resolution feature map network in order to perform the
multi-scale fusion and feature extraction of several networks and to realize the model [29].
HRNet is one of the latest novel architectures published by Wang et al. [11]. This model’s
unique feature, distinguishing it from other state-of-the-art architectures, is the connection
of high-to-low-convolution streams, arranged in parallel, which preserve high-resolution
representations throughout the entire process, and the repetitive fusion of representations
from multi-resolution streams to generate reliable high-resolution representations with
strong position sensitivity.

As shown in Figure 1, the main body of the network consists of four stages, beginning
with a high-resolution convolution stream in the first stage. For every new stage, one new
high-to-low-resolution stream with half the resolution of the previous higher-resolution
stream is added, and the multi-resolution streams are connected in parallel. Consequently,
every later stage in the parallel stream consists of resolutions from the previous stage and a
new lower one.
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Information sharing across multi-resolution representations is achieved by fusing
the modules repeatedly at the end of every stage, as shown in Figure 2. Each output
representation is the sum of the transformed representations of the input representations.
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The transformation of input representations is dependent on the resolution between the
input and the output representations. The authors tested the performance against other
state-of-the-art architectures in various applications, including human pose estimation,
semantic segmentation, and object detection. In their study, HRNet outperformed other
tested state-of-the-art algorithms in terms of average precision for human pose estimation
and object detection applications and the mean of the class-wise intersection over union for
semantic segmentation applications.

Forests 2023, 14, x FOR PEER REVIEW 7 of 25 
 

 

 

 

Figure 2. Multi-resolution representation fusion module in HRNet. 

3.4. Performance Metrics 

To evaluate the quality of the model’s forest segmentation ability after training, three 

performance metrics are chosen: accuracy, mean intersection over union, and categorical 

cross-entropy loss. Accuracy is defined by the number of correctly classified pixels di-

vided by the total number of pixels in a single image patch. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

where TP is the pixels correctly classified as positive, TN is the pixels correctly classified 

as negative, FP is the pixels falsely classified as positive, and FN is the pixels incorrectly 

classified as negative. 

Accuracy alone is not a sufficient performance metric as it can be affected by class 

imbalances in the dataset [30]. Hence, the intersection over union is introduced to com-

plement the accuracy. The intersection over union (IoU), also known as the Jaccard index, 

is defined as the number of pixels correctly classified as true divided by the total number 

of pixels correctly classified as true and the number of falsely classified pixels. IoU shows 

the degree of overlap between the ground truth and the prediction. In the case of binary 

classification between forest and non-forest areas, two different IoUs from forest and non-

forest areas, respectively, are measured and averaged to show the overall mean IoU per-

formance of the segmentation network, known as mIoU. This study uses mIoU as the main 

decision factor to select the best-performing models. 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2) 

Another performance metric used in the study is the categorical cross-entropy loss, 

also known as softmax loss. Loss functions are used in optimization algorithms in deep 

learning to train the neural network weights using stochastic gradient descent. In the con-

text of performance evaluation, categorical cross-entropy loss shows how well the neural 

network predicts a class, usually in the probability range between 0 and 1. The lower the 

loss, the better and more consistent the classification capability of the neural network. Cat-

egorical cross-entropy loss is suitable to be used in binary class classifications, and it is 

identical to binary cross-entropy loss. The formula for categorical cross-entropy loss is 

given by 
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3.4. Performance Metrics

To evaluate the quality of the model’s forest segmentation ability after training, three
performance metrics are chosen: accuracy, mean intersection over union, and categorical
cross-entropy loss. Accuracy is defined by the number of correctly classified pixels divided
by the total number of pixels in a single image patch.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP is the pixels correctly classified as positive, TN is the pixels correctly classified
as negative, FP is the pixels falsely classified as positive, and FN is the pixels incorrectly
classified as negative.

Accuracy alone is not a sufficient performance metric as it can be affected by class im-
balances in the dataset [30]. Hence, the intersection over union is introduced to complement
the accuracy. The intersection over union (IoU), also known as the Jaccard index, is defined
as the number of pixels correctly classified as true divided by the total number of pixels
correctly classified as true and the number of falsely classified pixels. IoU shows the degree
of overlap between the ground truth and the prediction. In the case of binary classification
between forest and non-forest areas, two different IoUs from forest and non-forest areas,
respectively, are measured and averaged to show the overall mean IoU performance of the
segmentation network, known as mIoU. This study uses mIoU as the main decision factor
to select the best-performing models.

IoU =
TP

TP + FP + FN
(2)



Forests 2023, 14, 2437 7 of 22

Another performance metric used in the study is the categorical cross-entropy loss,
also known as softmax loss. Loss functions are used in optimization algorithms in deep
learning to train the neural network weights using stochastic gradient descent. In the
context of performance evaluation, categorical cross-entropy loss shows how well the
neural network predicts a class, usually in the probability range between 0 and 1. The
lower the loss, the better and more consistent the classification capability of the neural
network. Categorical cross-entropy loss is suitable to be used in binary class classifications,
and it is identical to binary cross-entropy loss. The formula for categorical cross-entropy
loss is given by

Loss = −∑i=N
i=1 yi.lnŷl (3)

where N is the number of classes, yi is the true value for the Nth class, and ŷi is the predicted
value for the Nth class. In this study, N = 2 since it is a binary classification task.

3.5. Baseline Model Hyperparameter Tuning

The dataset is split at a ratio of 4:1 on a region basis, with 80% (8 regions, 13,824 patches)
for training and 20% (2 regions, 3456 patches) for testing. Various hyperparameters have
been optimized in different HRNet model training sessions to identify the set of hyperpa-
rameters that yield the best performance. The tested hyperparameters are as follows:

i. Optimizers: Adam, Nadam, SGD, RMSprop;
ii. Learning rate: 0.00005, 0.0001, 0.0005, 0.001;

iii. Batch size: 8, 16, 24, 32.

Training is conducted using the Tesla P100 GPU provided by the Kaggle platform.
Due to the limitations in the GPU memory provided and the large dataset size, the training
dataset needs to be split further into two halves, and each training dataset subgroup is
used to train HRNet for an equal number of epochs until convergence occurs.

The greedy approach strategy is adopted to identify a global optimal hyperparameter
setting by evaluating each hyperparameter’s effect on the segmentation performance
locally. The default hyperparameter settings are the Adam optimizer, a learning rate
of 0.0001, and a batch size of 8. The upper limit that is set is 0.0001 and, by using this
option, possible convergence at local extrema is mitigated without exceeding the limit. In
addition, the minimum learning rate of 0.00005 is selected to maintain a balance with the
computing efficiency and avoid training excessively slowly without significant performance
improvements. Batch sizes smaller than 8 are not examined because they are believed to
contain less information, such as batches with 4 images. It is anticipated that smaller batch
sizes will result in less informative updates during the training of the model. Furthermore,
the limitation of the GPU VRAM size to 16 GB restricts our testing to a maximum of
32 images per batch.

Hyperparameter tuning using the greedy approach starts with the optimizer first,
followed by the learning rate, and then finally the batch size. At every stage, only the
hyperparameter of interest is varied, while the rest are kept at default values, and the
hyperparameter of interest that produces the best mIoU metric is selected for each stage.
The procedure is repeated until no more hyperparameters are left to test. Each locally
selected optimal hyperparameter forms the globally optimal hyperparameter combination.
The greedy approach reduces the minimum number of testing sessions required for tuning.

The hyperparameter combination that yields the best mIoU performance in the original
HRNet network is chosen as the optimal baseline HRNet model used for forest segmenta-
tion tasks.

3.6. Baseline Model Modification Using Attention Mechanism

The baseline HRNet model is embedded with an attention mechanism with the aim
to improve the baseline performance. The attention mechanism is inspired by the human
visual system and its capability to observe and identify important and meaningful features
in complex scenes. It diverts attention to the most important regions of an image and
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disregards irrelevant parts. This allows the network to dynamically select these features by
adjusting the weights adaptively based on the importance of the input.

The selected attention mechanism to be used in the baseline HRNet network is the
convolutional block attention module (abbreviated as CBAM), as shown in Figure 3. In-
troduced by Woo et al. [31], CBAM is a simple and lightweight attention module that
combines the strengths of both channel and spatial attention mechanisms together. The
CBAM module has two sequential submodules, with the channel attention module placed
first, followed by the spatial attention module.
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feature map.
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The spatial attention submodule in the CBAM module, as shown in Figure 5, locates
the points in the feature maps that are more important and have distinctive features that
can be used for effective classification. In the spatial attention submodule, the input feature
maps are both average-pooled and max-pooled along the channel axis to highlight the
locations of important features, followed by the concatenation of both pooled maps. The
concatenated feature maps then pass through a convolutional layer and are fed to a sigmoid
activation function to produce the spatial attention map, which is multiplied with the input
feature maps to produce the final output spatially enhanced feature map.
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Figure 5. Spatial attention submodule in CBAM.

The embedding of the base HRNet network with the attention module begins with
experimenting with a few different placement locations to insert the CBAM module. Seven
different candidate locations are chosen, as shown in Figure 6, whereby the last convo-
lutional unit for each stage in a resolution stream is replaced with the CBAM module.
There are four CBAM module placement locations at the same resolution stream, and
different stages of the HRNet network (denoted by red arrows) are experimented with
to investigate the effect of the stage-wise placement of the CBAM module in the HRNet
network, whether they affect the overall segmentation performance or not, and how early
or late the CBAM module should be inserted into the baseline model. Another four sets
of CBAM module placement locations at different resolution streams and different stages
of the HRNet network (denoted by red arrows) are also experimented with to investi-
gate the effect of the CBAM module’s feature map’s resolutions on the overall HRNet
segmentation performance.
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placement of the embedded attention mechanism into the HRNet.

After identifying the optimal placement location for the CBAM module in HRNet,
the reduction ratio of the shared MLP network’s hidden layer in the channel attention
submodule is varied with values of 1, 2, 4, 8, 16, and 32. This is applied to observe the
reduction in the number of channels at the hidden layer that is optimal for the shared
MLP network to learn and capture channel features effectively, to produce better overall
segmentation results. Finally, by taking the identified optimal reduction ratio of the channel
attention submodule, the kernel size of the convolutional layer in the spatial attention
module is varied with sizes of 1 pixel × 1 pixel, 3 pixels × 3 pixels, 5 pixels × 5 pixels,
7 pixels × 7 pixels, and 9 pixels × 9 pixels. These experiments are performed to investigate
the optimal convolutional kernel size to effectively capture the spatial context of the feature
maps without losing too much information or fitting too much information into a kernel.

The hyperparameters of the CBAM module that yield the best mIoU performance are
selected as the optimal attention-embedded HRNet model used for forest segmentation
tasks. This study suggests that some areas and channels of the forest can be emphasized
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through a dual attention mechanism. Some of the feature maps, either in temporal or
spatial channels, are more important for forest detection and vice versa. Therefore, more
weights should be allocated to the feature maps that have a strong correlation with the
object of interest, particularly the forest in this case. On the other hand, the background
information, consisting of lakes, rivers, roads, and residential areas, should be allocated
less weight, so that the model can distinguish forest and non-forest areas better. Moreover,
some of the locations, such as the edges of the forest, should be given less attention so that
the stitching of the image results in more accurate mapping.

3.7. Benchmarking Study

Benchmarking studies, comparing the chosen optimal baseline HRNet and attention-
embedded HRNet model with other chosen candidate state-of-the-art models, are con-
ducted to evaluate the potential of the proposed attention-embedded model as a viable
choice to be used in conducting forest segmentation tasks. The same set of performance
metrics used in this work so far are also applied to the candidate models.

3.8. Qualitative Analysis between Baseline and Attention-Embedded Model

After the quantitative analysis to select the optimal baseline and attention-embedded
HRNet models, a qualitative analysis between the baseline and attention-embedded models
is also performed by stitching the output image patches together to form a complete image
of a tested land plot. Any changes or improvements to the segmentation quality between the
baseline and the best attention-embedded version are analyzed and discussed. The models’
effectiveness in the application of forest change monitoring is also analyzed and discussed.

4. Results and Discussion
4.1. Dataset Creation

The chosen satellite to obtain the satellite images is the Landsat-8 satellite, which was
operational between the years 2013 and 2021, with a high spatial resolution of 30 m for the
visible spectral band and more accurate sensors than previous Landsat generations, making
it a good choice for usage in remote sensing applications. A set of ten locations across
Malaysia with equally spaced years of 2016, 2018, and 2020 is chosen, with the coordinates
shown in Table 1.

Table 1. Coordinates of the chosen locations for dataset preparation.

Dataset Type Coordinate

Training

4◦27′50.64′′ N, 101◦13′3.91′′ E
4◦28′20.89′′ N, 101◦11′0.90′′ E
4◦27′3.97′′ N, 101◦13′2.38′′ E

4◦25′55.53′′ N, 101◦11′38.52′′ E
4◦0′2.74′′ N, 101◦23′24.27′′ E

4◦14′16.67′′ N, 101◦19′30.57′′ E
4◦48′44.67′′ N, 103◦21′2.03′′ E

3◦49′30.93′′ N, 103◦18′52.84′′ E

Testing 3◦8′24.90′′ N, 101◦29′42.08′′ E (Test Site A)
4◦0′11.39′′ N, 101◦20′36.26′′ E (Test Site B)

The raw satellite images are obtained at an eye altitude of about 7000 ft (2133.6 m) and
have a resolution of 8064 pixels × 3584 pixels. The forest and non-forest areas are approx-
imately distributed equally in a 50/50 ratio. The forest class consists of mainly tropical
rainforests around Malaysia. Due to substantial spatial variations in their environmental
conditions, tropical rainforests are regarded as the most intricate terrestrial ecosystems [32].
The measurement of canopy height is a crucial factor in assessing the functional aspects of
forest ecosystems [33]. According to the Forest Survey of India [34], there are five categories
of forest: very dense forest, encompassing lands with tree cover, including mangroves,
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exhibiting a canopy density of 70% and above; moderately dense forest, including areas
with tree cover showcasing a canopy density ranging from 40% to 70%; open forest, cov-
ering lands with a canopy density between 10% and 40%; scrub, representing forested
lands with poor tree growth, primarily featuring small or stunted trees, with a canopy
density less than 10%; and non-forest, encapsulating areas not falling within the specified
forest classifications. The tropical rainforests in Malaysia can be divided into two classes:
mixed forest and single dominant forest [35]. Mixed forests, such as the Dipterokarpa forest,
are characterized by a diverse array of plant species from different families. On the other
hand, single dominant forests, exemplified by the lime single dominant forest (Dryobalanops
aromatica), are dominated by a single species.

The non-forest class has larger variation, consisting of oil palm plantations, water bod-
ies, roads and highways, clear-cut forests, and man-made buildings. A set of corresponding
binary masks as the ground truths are manually annotated as accurately and consistently as
possible for every raw satellite image using the Program GIMP-2 software version 2.10.22
(GIMP Team, Kernersville, NC, USA, https://www.gimp.org/) (white: forest, bit 1; black:
non-forest, bit 0), so that the validation and testing process is effective. The images and
masks are all sliced into smaller patches of 224 pixels × 224 pixels resolution to be fed
into the tested networks, as the models cannot process large-sized images at one time,
leading to extraordinarily high GPU memory consumption. For the training dataset, the
raw satellite images have three spectral channels consisting of red, blue, and green, while
the ground truth masks have 2 channels representing forest (white) and non-forest (black)
classes. The training dataset is split at an 80/20 ratio, with 80% for training and 20% for
testing, with the detailed dataset division shown in Table 1. Due to the large size of the
annotated dataset and the limited GPU memory of the Tesla P100 GPU, the training dataset
is split further into two smaller, equally sized groups, where each training group is trained
separately with an equal number of epochs and the model weights of one training group
carried forward to the next training group.

4.2. Baseline Default Hyperparameters

The optimization of the baseline HRNet model’s hyperparameters is conducted using
the greedy approach, with the optimizers varied first, followed by the learning rate, and
finally the batch size. The default hyperparameter settings are the Adam optimizer, a 0.0001
learning rate, and a batch size of 8.

Table 2 shows the performance summary of the different optimizers used while
keeping the learning rate and batch size at the default settings. The chosen number of
epochs for this training is 220 due to the slow convergence behavior of the SGD optimizer.
The results show that the RMSprop optimizer provides the best performance, with a mIoU
score of 83.73% and an accuracy score of 91.16%. The descending order of optimizer
performance in terms of mIoU is RMSprop, Nadam, Adam, and SGD.

Table 2. Baseline HRNet performance using different optimizers.

Optimizer Accuracy (%) mIoU (%) Loss

Adam 87.91 78.43 0.8799

Nadam 90.93 83.35 0.7287

SGD 85.80 75.13 0.3500

RMSprop 91.16 83.73 0.7970

The SGD optimizer performs gradient updates on the network’s weights after each
randomly selected minibatch based on a fixed learning rate [36]. The gradient updates in
the SGD optimizer may not be effective in certain points of the data samples and may have
difficulty in reaching the global optimum due to the fixed learning rate. One advantage of
SGD to note is its lower loss score, indicating that the model could generalize better and

https://www.gimp.org/
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make predictions consistently with fewer errors; however, the SGD optimizer also requires
a greater number of epochs to reach convergence compared to the other studied optimizers.

The Adam and Nadam optimizers are adaptive learning rate algorithms for the
updating of network weights [36]. They require little tuning and have faster convergence.
Nadam is a modification of Adam with Nesterov’s accelerated gradient. Both outperform
SGD, with Nadam performing better. However, Nadam has a longer training time due to
the small batch size. Occasionally, Adam and Nadam show spikes in the learning curve,
making consistent performance difficult. The RMSprop optimizer adapts the learning
rates using a decaying average of squared gradients, resulting in a smoother learning
curve compared to Adam and Nadam [36]. It also converges faster with fewer epochs and
outperforms other optimizers.

The RMSprop optimizer outperforms all the optimizers studied and is chosen as
the optimal optimizer for the first stage of hyperparameter tuning. Table 3 shows the
performance summary with the use of different learning rates while using RMSprop as
the optimal optimizer and the default batch size. Training from this point on reveals that
the model converges at around only 100 epochs. Results show that the learning rate of
0.0005 performs better, with a mIoU score of 83.90% and an accuracy score of 91.26%. The
descending order of learning rates in terms of mIoU performance is 0.0005, 0.001, 0.0001,
and 0.00005.

Table 3. Baseline HRNet performance using different learning rates.

Learning Rate Accuracy (%) mIoU (%) Loss

0.00005 90.53 82.66 0.7407

0.0001 90.55 82.72 0.7009

0.0005 91.26 83.90 0.7250

0.001 90.83 83.16 0.6504

The RMSprop optimizer adjusts the learning rates, but a suitable starting rate must
be strategically chosen. Large rates lead to fast convergence but may lead to a suboptimal
solution. Small rates require more epochs but allow for smoother gradient updates. Rates
lower than 0.0005 result in a lower mIoU and higher losses, indicating insufficient updates.
Rates higher than 0.0005 also result in a lower mIoU but lower loss, suggesting convergence
to a suboptimal solution. In this study, a learning rate of 0.001 is found to be less effective
compared to 0.0005. This suggests that, given the attention mechanism, a lower learning
rate per parameter update is necessary for fine tuning. The reduced step size in the update
process can be attributed to the challenges associated with learning diverse environmental
features, encompassing not only forests but also plantations and bushy areas, commonly
found in Southeast Asian countries. An optimal learning rate of 0.0005, identified from the
results, is selected for the second stage.

Table 4 shows the performance summary for the use of different batch sizes while
using the optimal RMSprop optimizer and an optimal learning rate of 0.0005. Training
the baseline model using a batch size of 32 yields the best outcome, with a mIoU score of
84.84% and an accuracy score of 91.81%. The decreasing order of batch size in terms of
mIoU performance is 32, 24, 16, and 8. A batch size of 24 appears to be the least effective
for our specific case, primarily due to the dependence on the dataset used for our South
East Asia forest mapping objective. It is important to note that a larger batch size does not
necessarily lead to improved performance, as evidenced by the findings of Wu and He in
their study on group normalization [37]. Therefore, it is crucial to carefully select the batch
size based on the specific application at hand.
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Table 4. Baseline HRNet performance using different batch sizes.

Batch Size Accuracy (%) mIoU (%) Loss

8 91.26 83.90 0.7250

16 91.78 84.78 0.7890

24 91.62 84.51 0.7054

32 91.81 84.84 0.6142

The batch size determines the number of training samples used for the estimation
and updating of gradients in the model. Larger batch sizes generally result in better
performance by using more data samples at once to estimate error gradients and update
model weights, leading to a better fit. However, larger batch sizes require more memory
and more predictions before reaching the final estimate. Smaller batch sizes require fewer
data samples at once to update the model weights, resulting in low memory consumption of
the CPU/GPU. However, they may yield less accurate error gradient estimates and require
more frequent and noisy updates to model weights. The best performance is observed with
a batch size of 32, indicating that larger data samples help to make more accurate error
gradient estimations. Therefore, a batch size of 32 is selected for this study.

4.3. Optimal Baseline Model’s Hyperparameters

From the results obtained using the greedy approach, the optimal combination of
hyperparameters for the baseline HRNet model is the RMSprop optimizer, a 0.0005 learning
rate, and a batch size of 32.

4.4. Location Placement of CBAM Module

Table 5 shows the segmentation performance with four different stage placements of
the CBAM module in the HRNet model. These four locations are located at the highest
resolution stream of 56 pixels × 56 pixels. The last convolutional unit of every HRNet stage
is configured to be replaced with the CBAM module, since the feature maps at this point
will undergo multi-resolution fusion with other resolution streams before entering a new
stage, boosting the feature maps from different resolutions with the attention-enhanced
feature maps. The CBAM module used has a reduction ratio of 8 for the channel attention’s
shared MLP network and a kernel size of 7 pixels × 7 pixels for the spatial attention’s
convolutional layer. Placing the CBAM module at stage 2 of the HRNet model yields the
best performance, with an accuracy score of 92.24% and mIoU score of 85.58%, followed by
stage 1, stage 3, and stage 4. Placing the CBAM module too early in the baseline model
might cause the attention-enhanced feature map to be lost as it propagates through the later
stages of HRNet, creating a vanishing gradient problem. Alternatively, placing the CBAM
module too late might cause the model not to be able to extract sufficient information
needed to improve the segmentation performance, as the attention-enhanced feature map
is fused too late and unable to distribute the attentive features across the hidden layers of
the HRNet model at a sufficient depth.

Table 5. HRNet + CBAM performance when placing CBAM module at different stages of HRNet.

Stage Location Accuracy (%) mIoU (%) Loss

1 91.77 84.77 0.7258

2 92.24 85.58 0.6770

3 91.37 84.09 0.6908

4 91.25 83.89 0.7528

Table 6 shows the segmentation performance with four different resolution stream
placements of the CBAM module in the HRNet model. The results show that placing the
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CBAM module at a 28 pixels × 28 pixels resolution stream at stage 2 HRNet produces
better segmentation performance, with an accuracy score of 91.87% and a mIoU score of
84.94%. The performance when the CBAM module is placed at the 14 pixels × 14 pixels
(stage 3 HRNet) and 7 pixels × 7 pixels (stage 4 HRNet) resolution streams shows lower
scores when compared to the 28 pixels × 28 pixels resolution stream. However, when it is
compared with the previous results of placing the CBAM module at stage 3’s and stage 4’s
resolution streams, respectively, they perform better than their counterparts. This means
that boosting the lower-resolution feature maps with an attention mechanism at the later
stages of HRNet is more effective than boosting the higher-resolution ones. The reason that
placing the CBAM module at the 28 pixels × 28 pixels resolution stream leads to higher
performance compared to the 56 pixels × 56 pixels resolution stream could be due to the
optimal stage placement, based on the previous results, since the 28 pixels × 28 pixels
resolution stream only begins at stage 2 of HRNet.

Table 6. HRNet + CBAM performance when placing CBAM module in different resolution streams
of HRNet.

Resolution Stream Accuracy (%) mIoU (%) Loss

56 pixels × 56 pixels 91.77 84.77 0.7258

28 pixels × 28 pixels 91.87 84.94 0.7421

14 pixels × 14 pixels 91.81 84.84 0.7047

7 pixels × 7 pixels 91.84 84.89 0.6838

Placing the CBAM module at stage 2’s 56 pixels × 56 pixels resolution stream, the one
with the highest resolution in the HRNet model, produces the best performance and it is chosen
as the optimal architecture for the attention-embedded HRNet model (HRNet + CBAM).

4.5. Reduction Ratio Tuning of Channel Attention Submodule’s Shared MLP Network

Table 7 shows the performance results when varying the reduction ratio r of the
channel attention submodule’s shared MLP network in the CBAM module of the optimal
HRNet + CBAM architecture. A reduction ratio of eight gives the best results, with an
accuracy score of 92.24% and a mIoU score of 85.58%, followed by 16, 4, and 2. One
of the main purposes of reducing the number of channels at the shared MLP network’s
hidden layer is to reduce the computing overhead of the CBAM module. By reducing
the number of channels with a reduction ratio, r, of the appropriate value, the channel
attention submodule can effectively extract channels of high importance and learn the
essential features from the selected channels. Selecting too few channels (high reduction
ratio) could hinder the shared MLP network’s ability to extract sufficient information from
the vital channels. Alternatively, selecting too many channels (low reduction ratio) also
causes the shared MLP network to learn information from too many channels and be unable
to focus on and identify the vital ones. The reduction ratio r = 2 is chosen as the optimal
hyperparameter for the CBAM’s channel attention submodule.

Table 7. HRNet + CBAM performance using different reduction ratios, r, in channel attention submodule.

Reduction Ratio, r Accuracy (%) mIoU (%) Loss

2 91.75 84.73 0.6706

4 91.98 85.12 0.6713

8 92.24 85.58 0.6770

16 92.08 85.31 0.6171
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4.6. Kernel Size Tuning of Convolutional Layer in Spatial Attention Submodule

Table 8 shows the performance results when varying the kernel sizes of the spatial atten-
tion submodule’s convolutional layer in the CBAM module of the optimal HRNet + CBAM
architecture and with the optimal reduction ratio r = 2. A kernel size of 7 pixels × 7 pixels
yields the best segmentation performance, with an accuracy score of 92.24% and a mIoU
score of 85.58%, followed by 9 pixels × 9 pixels, 5 pixels × 5 pixels, and 3 pixels × 3 pixels.
The kernel sizes of a convolutional layer in a deep learning model determine the sizes of
pixel values processed at a time during a single step of a convolution operation. Kernel
sizes that are too small could hinder the spatial attention submodule’s ability to view
the larger spatial context of neighboring pixels. Alternatively, kernel sizes that are too
large could render the spatial attention submodule unable to effectively pinpoint spatially
where the important information is across the spatial dimensions of the feature map. A
kernel of 7 pixels × 7 pixels is chosen as the optimal kernel size for the CBAM’s spatial
attention submodule.

Table 8. HRNet + CBAM performance using different kernel sizes in spatial attention submodule.

Kernel Size Accuracy (%) mIoU (%) Loss

3 pixels × 3 pixels 91.10 83.63 0.7602

5 pixels × 5 pixels 91.28 83.94 0.7090

7 pixels × 7 pixels 92.24 85.58 0.6770

9 pixels × 9 pixels 92.14 85.40 0.6074

4.7. Optimal Attention-Embedded HRNet Model and Qunatitative Comparison with Baseline
HRNet Model

The network diagram of the proposed optimal attention-embedded HRNet model
using the CBAM module is shown in Figure 7, with the CBAM module replacing the last
convolutional unit at the highest-resolution stream of HRNet’s second stage before the
fusion portion.
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The summarized settings for the optimal attention-embedded HRNet model using the
CBAM module are as follows:

i. CBAM module placement: stage 2, 56 pixels × 56 pixels resolution stream;
ii. Reduction ratio r (channel attention): 8;

iii. Kernel size (spatial attention): 7 pixels × 7 pixels

Table 9 summarizes the performance results between the optimal baseline HRNet
model and the optimal attention-embedded HRNet model.
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Table 9. Performance comparison between optimal HRNet model and optimal HRNet + CBAM model.

Model Accuracy (%) mIoU (%) Loss

HRNet 91.81 84.84 0.6142

HRNet + CBAM 92.24 85.58 0.6770

From Table 9, there is an improvement of 0.43% for the accuracy score and an im-
provement of 0.74% for the mIoU score between the HRNet and HRNet + CBAM models.
Although the accuracy score improvement is lower, the larger mIoU improvement shows
that the CBAM module embedded into the HRNet model increases the overlapping be-
tween the ground truth and the model’s prediction, which should give better and more
consistent segmentation quality. The minimal increase in loss of 0.0628 between the HRNet
and HRNet + CBAM may imply that the replacement of the original HRNet convolutional
unit’s parameters with the CBAM module’s parameter introduces slight difficulties in fit-
ting the problem to the newly altered model. Nevertheless, the larger mIoU improvement
of the mIoU score offsets the increment in loss.

4.8. Benchmarking Study

To evaluate the effectiveness of the proposed attention-embedded HRNet model, sev-
eral candidate state-of-the-art semantic segmentation architectures are tested and compared
quantitatively with the proposed model, namely U-Net, SegNet, and FC-FC-DenseNet.
Table 10 summarizes the benchmarking tests that are performed using the optimal hyper-
parameter configurations.

Table 10. Benchmarking study of HRNet and HRNet + CBAM models with other state-of-the-art
semantic segmentation networks.

Model Accuracy (%) mIoU (%) Loss

HRNet 91.81 84.84 0.6142

FC-DenseNet 82.56 70.01 1.2159

SegNet 91.61 84.49 0.6071

U-Net 91.24 83.87 0.8283

HRNet + CBAM 92.24 85.58 0.6770

The tests show that SegNet and U-Net perform comparatively well with the baseline
HRNet model, with accuracy and mIoU performance scores slightly lower than those of
HRNet. The loss score for U-Net is higher than that for HRNet, while the loss score for
SegNet is slightly lower than that of HRNet. FC-DenseNet performs the worst among the
rest of the tested models, with an accuracy score of 82.56%, a mIoU score of 70.01%, and
a loss score of 1.2159. FC-DenseNet also has the longest training time compared to the
rest of the models, and the batch size has to be reduced to accommodate the limited GPU
resources due to the huge number of feature maps produced in the hidden layers of the
FC-DenseNet network. Nonetheless, based on the mIoU scores, the baseline HRNet model
still outperforms other tested state-of-the-art models, and the addition of a CBAM module
into the baseline model leads to a further improvement in the segmentation performance
in terms of the accuracy and mIoU scores.

4.9. Qualitative Analysis between Baseline and Attention-Embedded Models

In addition to the quantitative analysis between models using performance metrics,
the models are also analyzed qualitatively by observing the prediction outputs from both
models of the test dataset. Figure 8 shows the selected samples of raw satellite images, its
ground truth masks, its predictions from HRNet, and its predictions from HRNet + CBAM
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from the test dataset, formed by piecing nine neighboring patches of three selected sample
locations from each test location together.
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predictions for selected location samples in testing dataset (nine 224 pixels × 224 pixels neighboring
patches stitched together).

As observed from the samples, the HRNet + CBAM model produces a more accurate
and cleaner segmentation output compared to the HRNet model, showing that the attention
mechanism helps in the training of the network to perform forest segmentation tasks. From
test site A, which is located around suburban areas, the HRNet model has some difficulty
in properly segmenting the water bodies, generating many false positives and patch-like
boundaries between forest and non-forest areas, while the HRNet + CBAM model produces
a cleaner segmentation boundary for the water bodies and produces fewer false positives,
although minimal line-shaped false positives are still present along the boundaries where
the images are sliced. Some false negatives at certain forest areas in the HRNet model are
also prevented with the addition of the CBAM module.

From test site B, which is located around rural areas, the HRNet model tends to
generate more patches of false positives in non-forest areas; in this case, the forest areas
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were cleared for plantation purposes. With the addition of the CBAM module into the
HRNet model, the HRNet + CBAM model produces fewer false positive classifications at
non-forested areas such as newly created plantations and green-colored flatlands. However,
both models still have a slight difficulty in classifying certain non-forest areas in test site B
with some vegetation present. Nonetheless, the cleaner segmentation output represents a
performance improvement with the CBAM module. Overall, the addition of the attention
mechanism into the baseline model yields a cleaner and more useful forest segmentation
output with fewer salt-and-pepper-like false classifications.

The base model is HRNet, which is a model developed with the aim of producing good
detection for high-resolution images. It has inherently multiscale capabilities, whereby the
high-resolution scale is carried over throughout the network while adding a smaller scale
for each stage of the network. Therefore, the model itself should be able to cater to various
resolutions of forest imaging as long as it is trained with the selected resolution. At present,
our dataset comes from countries in Southeast Asia that have lush green forests, which
makes it suitable for this particular case. However, the model is capable of learning a variety
of forest types, given that it is trained for such a situation. Nonetheless, the proposed model
is not designed to segment non-tropical forest such as savanna and boreal forests.

4.10. Forest Area Change Detection

Figure 9 shows the raw satellite image outputs of two different test sites from the years
2016, 2018, and 2020, and their predicted segmentation outputs are taken from the HRNet +
CBAM model. For test site A, the HRNet + CBAM model is able to detect a slight increase in
non-forest areas between the years 2018 and 2020, most likely deforested to be repurposed
for the construction of buildings and facilities. For test site B, the HRNet + CBAM model
can detect a significant increase in non-forest areas between the years 2016 and 2018,
deforested to be repurposed as plantation regions. The model also can differentiate and
classify leftover greenery in the plantation areas as non-forest areas from forest areas, with
small instances of false classifications as forest areas. By comparing the segmentation
output between years and performing pixel-wise operations, a forest change map can be
created between years, with bits 1 to 0 representing deforestation occurrences and bits 0 to
1 representing reforestation occurrences. Overall, the HRNet + CBAM model is proven to
be effective in detecting forest changes using satellite images.
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4.11. Study Limitations

There are several limitations identified in this work. The first limitation is that the
annotated dataset may not represent the entire population of various forest and non-forest
types, with the possibility that a few types of non-forest areas are absent from the dataset,
such as tea plantations and burnt areas due to forest fires. The performance of the model,
which works optimally with the curated dataset, might face degradation under new area
types that are unseen during training, such as those mentioned earlier. Another limitation is
that the HRNet + CBAM model still has some difficulties in classifying flat green landscapes
as non-forest areas. Some types of vegetation in these areas might have a slight resemblance
to forest trees, causing the model to mistakenly and incorrectly identify them as forest areas.
A huge limitation is the limited GPU memory resources used in model training. The Tesla
P100 GPU has a memory capacity of 16 GB VRAM, which is insufficient to fit the entire
created dataset into the GPU. This was also noted in a previous study by Ru et al. [38],
who used Google Colab for forest segmentation. They stated that the limited RAM and
GPU runtime caused difficulties in the forest segmentation training process. The main
objective of this study was to develop a forest monitoring system based on the novel
architecture of the attention-based HRNet using Landsat-8 satellite imagery. However, due
to GPU constraints, it is not possible to make significant extensions, such as to new forests,
burned forests, and forest density monitoring systems. For this reason, this study only
focuses on detecting forests, to avoid an excessive burden on the GPU. The training dataset
must be split into two smaller groups and trained in two separate sessions with an equal
number of epochs, with the final model weights from the first training group carried over
to the second training group. This is equivalent to training the network in smaller batch
sizes, although it differs slightly in the sense that the model trained using this method
with one training group cannot see and learn another training group simultaneously. The
performance would very likely be improved if the entire dataset could be fit into the GPU
in a single training session.
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5. Conclusions and Future Works

An optimal attention-embedded high-resolution segmentation network, HRNet + CBAM,
has been developed and tested in performing classification tasks between forest and non-
forest areas in Malaysia using Landsat-8 images with temporally spaced years, available
online. A dataset comprising raw satellite images of ten locations within Malaysia for the
years 2016, 2018, and 2020 has been manually annotated and has been shown to be effective
in training the model to sufficiently learn and classify forest and non-forest areas. The
dataset is further split at an 80/20 ratio, with 80% for training and 20% for testing. An
optimal baseline HRNet model used for forest segmentation tasks has been determined
using the greedy approach of tuning the following hyperparameters: optimizer, learning
rate, and batch size. The performance of the baseline HRNet model is 91.81% for accuracy,
84.84% for mIoU, and 0.6142 for loss. An optimal attention-embedded HRNet model using
the CBAM module has been developed and has improved the baseline performance to
92.24% accuracy, 85.58% mIoU, and 0.6770 loss. Benchmarking studies with other state-of-
the-art models such as U-Net, SegNet, and FC-DenseNet have shown that both HRNet and
HRNet + CBAM outperform other models in terms of accuracy and mIoU. A qualitative
image comparison of the predicted outputs between HRNet and HRNet + CBAM has also
shown improved segmentation quality for the HRNet + CBAM variant, with fewer false
classifications between forest and non-forest areas. For future works in this field, a larger
dataset with more variations in the non-forest class can be considered to improve the sample
population of the dataset when compared to the entire population variation of geographical
landscapes in Malaysia. Other forms and variations of attention mechanisms can also
be embedded into several other state-of-the-art architectures to test their effectiveness in
different types of image segmentation networks. A higher-end GPU can be considered to
accommodate the large dataset size, or other alternative pipelining techniques of loading
large datasets into the limited GPU memory can be investigated. Alternatively, a dataset
with a slightly lower resolution can be considered to reduce the memory usage.
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