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Abstract: The Siberian silkmoth is one of the most dangerous coniferous forests pests. Siberian silk-
moth outbreaks cause massive defoliation and subsequent forest fires over vast areas. Remote forest
disturbance assessments performed after an outbreak make it possible to assess carbon emissions and
the potential for natural regeneration, estimate forest fire danger, and reveal the need to implement
forest management practices. The goal of the present research was to investigate the use of modern
satellite imagery of medium spatial resolution to estimate the percentage of dead trees in a given area.
The subject of this study is the Siberian silkmoth outbreak that occurred in 2018–2020 and covered
42 thousand ha in the Irbey region of the Krasnoyarsk Krai. Imagery from the Sentinel-2/MSI sensor
was used to calculate a number of spectral indices for images received before and after the outbreak.
Field study data were used to create regression models relating the index values to the percentage
of dead trees. A number of spectral indices, such as NDVI, dNDVI, NBR, dNBR, NDMI, EVI, and
TCG, were used. As a result, spectral indices based on the data from NIR/SWIR bands (NBR, NDMI,
dNBR) demonstrated the best correlations with field-measured tree mortality. Therefore, these indices
may be used to accurately estimate the percentage of dead trees by remote sensing data. The best
was the NBR index with an R2 equal to 0.87, and the lowest RMSE and MAE errors. Consequently,
Sentinel-2 imagery can be successfully used for tree mortality assessment over large inaccessible
areas disturbed by Siberian silkmoth outbreaks at a relatively low cost.

Keywords: Siberian silkmoth; damaged stands; remote sensing; spectral indices

1. Introduction

Boreal forests are one of the largest biomes in the world. They are dominated by
coniferous stands and cover 12 million square kilometers, or about 1/3 of the planet’s
forests. Boreal forest zones stretch over the northern hemisphere, between 50◦ and 70◦

northern latitudes [1]. In Russia, boreal forests occupy 8.1 million square kilometers, which
constitute about 2/3 of the world’s boreal forests. Boreal forests play an important role in
the global carbon balance by storing half of the terrestrial biosphere’s carbon [2]. However,
due to droughts, forest fires, pests, and other disturbances, these forests are at risk of
experiencing a decline in productivity, which can cause a significant release of carbon
emissions into the atmosphere.

Different climate change scenarios predict an increase in average global surface temper-
atures by 1.0 to 5.7 ◦C by the end of this century. The most dramatic changes are expected
in the boreal zone, where the temperature could rise by 7 ◦C [3]. Large carbon pools in
boreal forests are vulnerable to climate change, which calls into question the status of these
forests as a carbon sink in the near future [1,4–6].

Fires and insect outbreaks are major natural disturbances of boreal forests, and they
are closely interrelated. The probability of insect outbreak occurrence is significantly higher
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near areas where forests have been destroyed by wildfires. [7,8]. Conversely, in areas
damaged by pests, the frequency of forest fires can increase up to four times compared to
intact stands [9].

Forest insects can cause severe environmental changes. These include the displacement
of native tree species, widespread defoliation, and mortality [10,11]. This reduces the ability
of forests to capture and store carbon dioxide, and causes carbon emission release due
to wood and canopy decomposition in dead stands [12]. Global warming may promote
insect population growth, increase outbreak frequencies, and encourage the geographic
expansion of some insect species [13–15], violating the global carbon balance.

During the last decade, about 1.5 million hectares of boreal forests have been disturbed
by insect outbreaks in Siberia, primarily in Krasnoyarsk Krai (~1 million hectares). Most
of these territories (~90%) were damaged by the Siberian silkmoth (Dendrolimus sibiricus
Tschetv.) [14,16,17]. Among all the insect pests feeding on Siberian boreal forests, the Siberian
silkmoth is one of the most dangerous. The Siberian silkmoth’s preferred host trees are fir,
Siberian pine and larch, and, to a lesser extent, spruce and Scots pine [18–21]. Outbreaks of
the Siberian silkmoth cause forest dieback across vast areas. Moreover, forests disturbed by
the Siberian silkmoth are at the highest risk of fire danger. Therefore, wildfires in such forests
may be huge and destroy surrounding undisturbed forests in large areas [9,20,22]. Climatic
changes observed in recent decades have been creating weather conditions that contribute to
increases in both the area and the frequency of Siberian silkmoth outbreaks [23–26].

One of the main parameters that determines insect–pest-induced changes in forest
ecosystems is the proportion of dead trees in a forest stand. Tree mortality affects forest
regeneration dynamics, species composition, and the structures of both forest stands
and field layers [18,20,27]. By assessing tree mortality rate, one can estimate forest fuels,
and thereby predict forest fires in areas disturbed by insect pests [9,28]. What is more,
assessing tree mortality rate is crucial in decision-making for sanitation cutting [29,30].
Information on tree mortality together with pre-outbreak growing stock data may be used
to estimate post-outbreak carbon emissions caused by wood and canopy decomposition.
Thus, quantitative assessments of the state of disturbed forest stands are important both
from the environmental and economic points of view, and are one of the factors determining
decision-making in forest management.

Traditional methods for estimating tree mortality involve conducting field studies.
These methods have a number of disadvantages: they are time- and labor-consuming,
high-cost, and usually only cover a small area. The use of satellite imagery is a resource-
saving alternative that allows the coverage of vast areas that are often inaccessible for
field research.

In recent years, research has been actively conducted, focused on remote forest health
assessment in stands disturbed by insect pests. The potential of satellite imagery for
assessing the state of plants is due to their reflectivity (albedo), which varies depending
on the wavelength and the state of vegetation. In the visible part of the spectrum, the
spectral properties of vegetation are mainly controlled by chlorophyll. Chlorophyll absorbs
light in the blue (450–480 nm) and red (660–690 nm) regions of the spectrum. That is
why green vegetation reflectance in the blue and red parts of the spectrum is low. Under
stress conditions, the plant chlorophyll content decreases rapidly, leading to a decrease in
absorption (and an increase in reflection) in the corresponding spectral ranges. In the near-
infrared (NIR) spectrum, the reflectance of healthy vegetation is much greater than in any
portion of the visible spectrum. Water has strong absorption in certain parts of the short-
wave infrared (SWIR) region (1400, 1900, 2500 nm). Therefore, needle/leaf water content
has a significant effect on the reflectance characteristics of vegetation in these ranges [31–34].
The reflection of radiation from vegetation in various parts of the electromagnetic spectrum
are recorded by multispectral scanners on board remote sensing satellites. Albedo values
determined for different spectral bands are used to calculate indices (vegetation, humidity,
etc.) that indicate the state of plants’ health.
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A significant number of studies have shown the effectiveness of using remote sensing
in assessing forest condition after various disturbances; in particular, to assess tree mortality
caused by insect outbreaks. Different types of imaging sensors and various methodological
approaches have been used to assess the state of damaged forest stands. According to
a systematic review [34], the number of such studies has increased sharply since 2005,
and most of them (about 60%) used medium resolution satellite images (mainly, Landsat
imagery). Research [35–40] shows the applicability of Landsat data for characterizing forest
state and assessing tree mortality caused by various types of insect pests. Low-resolution
(AVHRR, MODIS) [41,42] and high- resolution satellite data are also used for such studies
(HyMap, QuickBird, RadpidEye, WorldView-2) [43–45].

Sentinel-2/MSI data are relatively new to the satellite data services (the mission was
launched in 2015 by European Space Agency), and are currently the best spatial and
temporal resolution data available for free access. Therefore, the aim of the present study
was to explore the potential of using this satellite imagery for quantitative assessments
of the state of forests disturbed by Siberian silkmoth outbreaks. To achieve this goal, we
plan to compare spectral indices based on the albedo of forest vegetation received from
Sentinel-2 imagery with field measurements of tree mortality. Finally, we are going to
identify the most suitable remote sensing index to map the state of disturbed forests.

2. Materials and Methods

2.1. Study Area

The study was carried out in Krasnoyarsk Krai, Russia. Krasnoyarsk Krai has
the largest forest-growing stock in Russia, estimated at 11.7 million cubic meters. The
forested area covers 1.6 million square kilometers, or ~13% of the world’s boreal forests.
The research was focused on studying the Siberian silkmoth outbreak that occurred in
2018–2020 and covered 42,000 ha in Irbeysky District of Krasnoyarsk Krai (Figure 1). The
outbreak followed a classic evolution: it lasted three years, the first disturbances occurred
in August 2018, maximum damage was observed during the summer of 2019, and the
outbreak ended in June 2020.
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The disturbed stands are located between the Kan and Agul rivers, in a remote area
with no settlements and lack of any road network. The study area belongs to the South
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Siberian mountain forest zone, the Altai-Sayan Mountain Conifer Forests Ecoregion, and is
characterized by mid-mountain relief with altitudes of 400–800 m above sea level.

The forests are dominated by Siberian fir and Siberian pine (so-called dark coniferous
forests). The disturbed forest sites are of feather moss forest types: mesophilic herb/feather
moss, blueberry/feather moss, sedge/feather moss and feather moss/shrubs. The study
area is dominated by mature and overmature forest stands characterized by average density
and forest productivity class [46].

The study area is characterized by a distinctly continental climate that is influenced by
humid western air masses in summer and the Siberian anticyclone in winter. The average
growing season length is 149–151 days. The coldest month is January (the absolute mini-
mum temperature is minus 50 ◦C), and the hottest month is July (the absolute maximum
temperature is 39 ◦C). The average annual precipitation is about 530 mm. South-eastern
winds prevail (an average speed is 2.8–4.7 m/s) [47].

2.2. Field Studies

2.2.1. Field Research Methods

For estimating tree mortality rate, we placed research plots in stands damaged by
the Siberian silkmoth. The field study was based on a methodology developed jointly by
scientists from the Sukachev Institute of Forest SB RAS (Krasnoyarsk, Russia) and the Max
Planck Institute for Biogeochemistry (Jena, Germany). This methodology is an adaptation
of the state forest inventory methodology of the Federal Forestry Agency of the Russian
Federation [48]. According to this method, each research plot consists of three concentric
circles of constant radius (3.5, 7.5 and 15 m) (Figure 2). The number of trees measured
within each circle varies according to their circumference (indicated as C in Figure 2).
Trees > 10 cm circumference are to be measured within the first circle; trees >30 cm circum-
ference are to be measured within the second circle, trees >60 cm circumference are to be
measured within the third circle. Such a measurement method allows one to reduce effort
without a significant loss of accuracy; missing data are restored via extrapolation.
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Figure 2. Research plot plan.

For conducting forest inventory on each of the research plots, the following forest
stand elements were measured and assessed: trees; young trees, seedling, saplings; large
woody debris (LWD); field- and ground-layer vegetation. The litter was also estimated
along with field- and ground-layer vegetation biomass, and samples were taken for further
estimation of the amount of soil organic matter. Each of the research plots was oriented to
the cardinal directions (N, S, W, E) using a compass. The age structure of the forest stands
was determined by taking wood cores, or by counting the number of whorls of branches
(for young coniferous trees).
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For each tree on a research plot, the following metrics are recorded onto the stand
measurement sheet: species; trunk circumference at breast height (1.3 m); tree height; height
of the base of the live crown; height of the widest crown; condition class; list of damages
(if any); tree status (alive/dead); cause of death (for dead trees only). Young trees above
2 m height and <10 cm circumference are measured in the second circle (7.5 m radius).
Young trees below 2 m height are measured within four 2 × 2 m quadrats. The quadrats are
oriented in cardinal directions and placed at a distance of 9 m from a plot center (Figure 2).

All LWD are measured on each of the research plots (standing dead trees, stumps,
lying dead trees, large branches); >5 cm diameter LWD are measured. The following metrics
are recorded for LWD: linear dimensions, stage of decomposition, species (if recognizable).

A general description of research plots is also made, including the geographic coordi-
nates of the center point, height above sea level, relief characteristics (aspect, shape of the
site, slope angle), soil characteristics (soil type, thickness of organogenic and organomineral
horizons), the presence of disturbances (fire, blowdown, insect outbreak, logging, etc.),
forest type, stand layers. There are also photographs taken from a plot center: four general-
view photographs in the cardinal directions, crown closure, representative photographs of
the ground- and field-layer vegetation.

2.2.2. Field Data

When selecting forest stands for placing research plots, we tried to evenly cover the
entire damage spectrum—from a few percent disturbance to a stand dieback. The center
of a research plot was placed so that the forest site had the same degree of damage at a
distance of at least 2 radii of the research plot (30 m) from the center. The minimum distance
between the research plots was 120 m. The research plots were places in the second and
third year after the end of the outbreak (2022, 2023). A total of 37 research plots were placed
in a given area following the method described above (Figure 3b). A relatively low amount
of measurements was related to the extreme difficulty of collecting data in the field: there is
no way of reaching the edge of the outbreak by car in summer; the outbreak area is stuck
with lying dead trees, so travelling there is extremely difficult, traumatic, and takes a long
time; another reason is security issues due to wild animals.
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The processing of data during desk research resulted in determining forest stand
characteristics. For estimating tree mortality, we used the data on the growing stock and
the stock of standing dead and laying dead trees at the first stage of decomposition (we
assumed that these trees died during the outbreak and fall over within five years by the
time of the field research) [49–52]. For each research plot, the loss of stem wood relative to
its total stock was calculated as a percentage.

2.3. Remote Sensing Data

The boundaries and area of the stands damaged by the Siberian silkmoth (Figure 3)
were detected based on the Forest cover loss map from Global Forest Watch dataset
2000–2022 v1.10 (GFW) [53], downloaded from Global Forest Watch Open Data Portal [54].
The GFW dataset is a remote sensing product, based on Landsat time-series imagery
that covers latitudes between 80◦ N and 60◦ S. It distributes in raster files (GeoTiff) of
10 × 10 degree granules, with a spatial resolution of 30 m. Forest cover loss is defined as
a mask of stand-replacement disturbance, or a change from forest to non-forest state for
2000–2022. For the temperate and the boreal biomes, user’s and producer’s accuracies of
forest cover loss are 88% and 94%, respectively [53].

The Forest cover lost map from GFW contains annual data on forest losses from
different causes. In order to determine the losses from the silkmoth outbreak in the study
area, layers of losses were used only for 2019–2021 (the years of the stands’ destruction
caused by the silkmoth outbreak) within the borders of Irbeysky district. The absence of
fire losses in 2019–2021 was confirmed by the absence of hotspot polygons in the MODIS
BurnedArea Product (MCD64A1 v6.1) [55], downloaded from USGS EarthExplorer [56].
Losses from felling are excluded by detecting them using a combination of spectral, textural
and border geometry features. The resulting outbreak area boundary is obtained by
aggregating polygons from the 2019 to 2021 loss map layers that have contacting borders.

The condition of disturbed stands was determined based on the data from Sentinel-2A
and 2B satellites, each carrying a multispectral scanner MSI (spectral bands for MSI are
listed in Table 1). Sentinel-2 data were downloaded from the Copernicus Open Access
Hub [57].

Table 1. Spectral bands for Sentinel-2 MSI sensors.

Band/Spectral Range
Sentinel-2A Sentinel-2B Spatial

Resolution (m)Central Wavelength (nm)

1/ Coastal Aerosol (COASTAL BLUE) 422.7 422.3 60
2/ Visible Blue (BLUE) 492.7 492.3 10

3/ Visible Green (GREEN) 559.8 558.9 10
4/ Visible Red (RED) 664.6 664.9 10

5/ Vegetation Read Edge (RE1) 704.1 703.8 20
6/ Vegetation Read Edge (RE2) 740.5 739.1 20
7/ Vegetation Read Edge (RE3) 782.8 779.7 20

8/ Near Infrared (NIR) 832.8 832.9 10
8a/ Narrow Near-Infrared (RE4) 864.7 864 20

9/ Water Vapor 945.1 943.2 60
10/ Cirrus Short Wave Infrared (SWIR) 1373.5 1376.9 60

11/ Short Wave Infrared (SWIR1) 1613.7 1610.4 20
12/ Short Wave Infrared (SWIR2) 2202.4 2185.7 20

The scenes were selected so that to assess the state of forest stands before and after
disturbances. The scenes used are cloud-free images closest to the outbreak period: the
pre-outbreak scene was acquired in June 2018; post-outbreak scenes were acquired between
August 2020 and August 2023. Table 2 shows the list of images acquired during the growing
season. All images had a 2A processing level, which includes radiometric, geometric, and
atmospheric corrections.
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Table 2. List of satellite images used.

Scene ID Scene Date Satellite

S2A_MSIL2A_20180625T045701_N9999_R119_T46UFF/T46UFG 25 June 2018 Sentinel 2A
S2A_MSIL2A_20200810T044711_N0214_R076_T46UFF/T46UFG 10 August 2020 Sentinel 2A
S2A_MSIL2A_20200922T045701_N0214_R119_T46UFF/T46UFG 22 September 2020 Sentinel 2A
S2B_MSIL1C_20210601T044659_N0300_R076_T46UFF/T46UFG 1 June 2021 Sentinel 2B
S2B_MSIL2A_20210704T045659_N0301_R119_T46UFF/T46UFG 4 July 2021 Sentinel 2B
S2A_MSIL2A_20210828T045701_N0301_R119_T46UFF/T46UFG 28 August 2021 Sentinel 2A
S2A_MSIL2A_20211017T045811_N0500_R119_T46UFF/T46UFG 17 October 2021 Sentinel 2A
S2A_MSIL1C_20220512T044701_N0400_R076_T46UFF/T46UFG 12 May 2022 Sentinel 2A
S2A_MSIL1C_20220611T044711_N0400_R076_T46UFF/T46UFG 11 June 2022 Sentinel 2A
S2B_MSIL2A_20220808T045659_N0400_R119_ T46UFF/T46UFG 8 August 2022 Sentinel 2B
S2A_MSIL2A_20220919T044711_N0400_R076_ T46UFF/T46UFG 19 September 2022 Sentinel 2A
S2A_MSIL1C_20230616T044701_N0509_R076_T46UFF/T46UFG 16 June 2023 Sentinel 2A
S2A_MSIL1C_20230825T044701_N0509_R076_T46UFF/T46UFG 25 August 2023 Sentinel 2A

Surface reflectance (bottom of atmosphere) values were calculated from the image
digital numbers as follows [58]:

L2A_SRi = L2A_DNi/QUANTIFICATION_VALUEi, (1)

L2A_SRi = (L2A_DNi +
BOA_ADD_OFFSETi)/QUANTIFICATION_VALUEi,

(2)

where L2A_SRi—surface reflectance value, L2A_DNi—image digital number,
QUANTIFICATION_VALUEi—in order to convert digital number into reflectance, ini-
tially set to 10,000, BOA_ADD_OFFSETi—radiometric offset value, initially set to −1000
digital counts for all the bands.

The BOA_ADD_OFFSET and QUANTIFICATION_VALUE could be found in the
product metadata file.

For images acquired before 25 January 2022, surface reflectance values were calculated
using Equation (1), after this date—using Equation (2), due to Sentinel-2 processing baseline
04.00 deployment.

2.4. Methods

Among the wide range of existing remote sensing indices described in the literature,
we selected and estimated the effectiveness for assessing tree mortality of the following:
NDVI, dNDVI, NBR, dNBR, NDMI, EVI, TCG. This choice was due to their effectiveness in
assessing forests disturbed by various types of defoliators, showed by other researchers.
Table 3 shows formulas used to calculate these indices and Sentinel-2 bands used.

Table 3. Calculation algorithms with used Sentinel-2 bands.

Index Formula Reference

NDVI (Normalized Difference Vegetation Index) (NIR − RED)/(NIR + RED) Tucker, 1979 [59]
dNDVI (difference in Normalized Difference

Vegetation Index) NDVIpre − NDVIpost Zhu et al., 2006 [60]

NBR (Normalized Burn Ratio) (NIR − SWIR2)/(NIR + SWIR2) Key et al., 2002 [61]
dNBR (difference in Normalized Burn Ratio) NBRpre − NBRpost Key, 2006 [62]

NDMI (Normalized Difference Moisture Index) (NIR − SWIR1)/(NIR + SWIR1) Gao, 1996 [63]

EVI (Enhanced Vegetation Index) 2.5(NIR − RED)/(NIR + 6RED −
7.5BLUE) + 1 Gao et al., 2000 [64]

TCG (Tasseled Cap Greenness)
−0.28482BLUE − 0.24353GREEN −

0.54364RED + 0.72438NIR +
0.084011SWIR1 − 0.180012SWIR2

Crist et al., 1984 [65]

Sentinel-2 imagery processing, vector data processing, and cartography were per-
formed by means of ESRI ArcGIS Desktop v10.5. Using this software, all indices presented
in Table 3 were calculated for each Sentinel-2 scene (listed earlier in Table 2). Thus, a set of
seven indices was obtained for each Sentinel-2 image. The coordinates of the research plot
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centers were uploaded to ArcGIS from GPS data. The index values were extracted for the
points corresponding to the centers of the research plots.

Statistical processing of the obtained datasets was performed using the R caret pack-
age [66]. Linear regression models were built that connected the values of remote sensing
indices with the tree mortality rate measured during the field study. Tree mortality value
was used as a response variable in the regression. This procedure resulted in seven models
per each date.

The validity of the regression models was verified using the repeated k-fold cross-
validation method [67]. According to the k-fold cross-validation method, the dataset is
randomly divided into k-subsets (or k-fold). One subset is reserved for the testing and
estimating the prediction error, and all other subsets are used for the model building. The
process is repeated until each of the k-subsets has served as the test set. After that, the
average of k recorded errors is calculated. The repeated k-fold cross-validation method
reiterates the splitting of data into k-folds several times. The final model error is taken as
the mean error from the number of repeats.

We used k = 5 because of the small size of our dataset (37 measurements), and the
number of repeats is 5. According to the selected model parameters, training subsets
consisted of 29 or 30 measurements, validation subsets were 7 or 8 measurements.

Coefficients of determination R-squared (R2) and significance levels (p) were deter-
mined to assess the quality of regression models.

As a result, we identified the regression model with the highest R2 value combined
with the lowest root mean squared error (RMSE) and mean absolute error (MAE) values. It
was used to recalculate index values into tree mortality values for the entire outbreak area.
As a result, for each pixel of the image, we obtained the value of the tree mortality in the
range from 0 to 100 percent, in increments of 1 percent.

3. Results

Linear regression models were built for a set of seven indices, calculated for every
12 Sentinel-2 scenes used in the research. Thus, 84 regression models were built. Perfor-
mance of the models was assessed using a 5-fold cross-validation method repeated five
times. RMSE, MAE, and R2 were used as performance metrics for the regression.

Most of the indices tested in our research correlated well with the field measurements
of tree mortality. Table 4 shows the coefficients of determination R2, significance levels,
as well as the RMSE, and MAE errors for linear regression models. Significance levels
p < 0.001 are unmarked, and p < 0.01 are marked with *.

Table 4. Coefficients of determination R2, significance of linear regression models and accuracy assessments.

Date Accuracy
NDVI dNDVI NBR dNBR NDMI EVI TCG

10 August 2020
R2 0.623 0.662 0.749 0.712 0.710 0.584 0.564

RMSE 17.962 17.663 15.775 15.908 15.605 20.888 20.268
MAE 15.500 15.081 13.597 13.833 13.287 17.835 17.177

22 September 2020
R2 0.820 0.848 0.872 0.855 0.866 0.826 0.839

RMSE 13.126 12.936 11.427 11.897 11.572 15.018 14.871
MAE 11.258 10.876 9.602 10.524 9.949 12.016 11.920

1 June 2021
R2 0.539 0.624 0.670 0.715 0.635 0.504 0.558

RMSE 20.609 19.451 18.161 16.891 18.455 21.759 21.040
MAE 17.260 16.083 15.807 14.846 16.077 18.939 18.054

4 July 2021
R2 0.635 0.614 0.699 0.715 0.635 0.340 * 0.325 *

RMSE 19.930 19.058 16.995 16.891 18.455 25.820 25.263
MAE 16.896 16.366 14.982 14.846 16.077 22.401 22.088

28 August 2021
R2 0.742 0.769 0.851 0.840 0.841 0.696 0.669

RMSE 15.442 14.506 12.490 12.455 12.530 18.566 17.703
MAE 12.531 11.892 10.452 10.700 10.331 14.875 14.157
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Table 4. Cont.

Date Accuracy
NDVI dNDVI NBR dNBR NDMI EVI TCG

17 October 2021
R2 0.712 0.703 0.626 0.581 0.603 0.695 0.699

RMSE 16.732 15.855 18.909 20.121 20.300 17.944 17.115
MAE 14.059 12.688 16.706 16.933 17.140 15.155 14.747

12 May 2022
R2 0.703 0.692 0.790 0.797 0.796 0.722 0.733

RMSE 17.335 17.088 14.223 13.533 14.445 16.322 15.799
MAE 14.310 13.748 11.973 11.316 12.117 13.216 12.784

11 June 2022
R2 0.750 0.768 0.766 0.773 0.716 0.509 0.500

RMSE 15.376 14.883 15.181 14.872 15.732 22.107 21.781
MAE 12.439 11.805 12.691 12.814 12.953 18.021 17.904

8 August 2022
R2 0.791 0.779 0.809 0.768 0.809 0.627 0.661

RMSE 14.486 14.044 13.866 14.419 13.456 19.329 19.157
MAE 11.711 11.091 11.796 12.494 11.492 15.723 15.362

19 September 2022
R2 0.721 0.720 0.847 0.849 0.851 0.761 0.774

RMSE 15.823 15.668 12.412 12.507 12.137 14.683 15.056
MAE 12.465 12.354 10.134 10.502 9.629 11.539 11.971

16 June 2023
R2 0.697 0.690 0.693 0.665 0.720 0.417 0.443

RMSE 17.324 17.391 17.275 17.809 16.762 24.659 23.888
MAE 13.906 13.694 14.810 15.484 14.201 21.249 20.526

25 August 2023
R2 0.704 0.710 0.802 0.791 0.800 0.554 0.583

RMSE 16.461 16.802 13.152 13.751 13.649 21.135 20.672
MAE 13.483 13.801 10.302 11.483 10.569 16.454 16.027

Significance levels p < 0.001 are unmarked, and p < 0.01 are marked with *.

NBR, NDMI and dNBR indices estimate tree mortality with high accuracy, except
for the middle of the growing season and the late autumn scene dates. All other indices
NDVI, dNDVI, EVI and TCG show high or moderate accuracy, depending on the scene
date. The best results for all indices were obtained for a scene taken shortly after the end of
the outbreak (22 September 2020).

The NBR index, calculated for the image of 22 September 2020, showed the highest
R2 value between the satellite and field data, and the lowest RMSE and MAE. Therefore,
we used a linear regression model built for this index (Figure 4) to recalculate the index
values into tree mortality values.
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Figure 4. The relationship between field measurements of tree mortality and the NBR remote sensing
index. The regression line is shown in black. The linear regression model equation and the coefficient
of determination are shown at the top of the diagram.

As a result, we determined a tree mortality percentage for each pixel (10 × 10 m) of a
satellite image within the Siberian silkmoth outbreak area. Figure 5 shows the resulting
tree mortality map in 10% interval groups.
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Figure 6 shows the area occupied by stands characterized by different tree mortality
rates. The data on tree mortality are grouped in class intervals of 10%, as shown in Figure 5.
The areas are represented in the following ways: absolute area values (in ha), and the
proportion that stands of different mortality rates take in the total outbreak area (in %).

Forests 2023, 14, x FOR PEER REVIEW 11 of 16 
 

 

Figure 6 shows the area occupied by stands characterized by different tree mortality 
rates. The data on tree mortality are grouped in class intervals of 10%, as shown in Figure 
5. The areas are represented in the following ways: absolute area values (in ha), and the 
proportion that stands of different mortality rates take in the total outbreak area (in %). 

It was discovered that the area disturbed by the Siberian silkmoth is dominated by 
forests characterized by high tree mortality values. Indicatively, about 80% of the out-
break area is covered by stands characterized by more than 60% tree mortality. 

 
Figure 5. Mapping tree mortality using NBR index. 

 
Figure 6. Histogram representing tree mortality by 10% mortality intervals, with area in thousand 
hectares (in black) and proportion of individual classes (in red). 

4. Discussion 
The present research investigate the use of Sentinel-2 imagery to quantify the con-

dition of forest stands disturbed by coniferous defoliator—Siberian silkmoth. Sentinel-2 

Figure 6. Histogram representing tree mortality by 10% mortality intervals, with area in thou-
sand hectares (in black) and proportion of individual classes (in red).

It was discovered that the area disturbed by the Siberian silkmoth is dominated by
forests characterized by high tree mortality values. Indicatively, about 80% of the outbreak
area is covered by stands characterized by more than 60% tree mortality.
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4. Discussion

The present research investigate the use of Sentinel-2 imagery to quantify the condition
of forest stands disturbed by coniferous defoliator—Siberian silkmoth. Sentinel-2 imagery
refers to medium spatial resolution remote sensing data, that have previously been suc-
cessfully used to assess the insect damage severity by both bark beetles [31,32,34–37] and
defoliators [31,33,36,68,69]. The originality of our research derived from using Sentinel-2
imagery for quantitative assessments of tree mortality in dark coniferous taiga forests
disturbed by Siberian silkmoth outbreak. As a result, we found that Sentinel imagery can
be used to solve this issue effectively.

A number of spectral indices, such as NDVI, dNDVI, NBR, dNBR, NDMI, EVI and
TCG, are widely used to solve similar tasks [31–42,69,70]. Finally, we revealed that all
these indices correlated well with the field measurements of tree mortality for images
taken shortly after the end of the outbreak. Results also indicated that NBR was the best
single-image index to detect tree mortality in the study area. In general, indices based
on NIR/SWIR bands (NBR, NDMI, dNBR) demonstrate the best correlations with tree
mortality compared with indices using VISIBLE/NIR or VISIBLE/NIR/SWIR bands (NDVI,
dNDVI, EVI, TCG) (Table 4). Rahimzadeh-Bajgiran [63] discovered that NDMI was the
best index to detect defoliation caused by spruce budworm across the Canadian boreal
forests, that corresponds to our results. Actually, there are not many studies regarding
the use of spectral indices to assess the severity of coniferous defoliators. However, those
for broadleaf defoliators confirm our results, showing that NIR/SWIR-based indices are
preferred to VIS/NIR indices for mapping insect disturbances [70–72].

The highest correlations between satellite and field data on tree mortality were ob-
tained for indices calculated from images obtained shortly after the end of the Siberian
silkmoth outbreak (Table 4). This is explained by the fact that soon after canopy dieback,
ground- and field-layer plants receive much more sunlight and water, which results in
their rapid growth. Thus, there is an increase in the values of photosynthetic activity in
disturbed areas the very next year after tree dieback. This effect has been described in some
research papers [18,19,28]. The same reasons can most likely explain why the correlations
for images of the beginning and the end of the growing season are higher than for the
middle: the absence of the contribution of herbs and shrubs to the albedo values allows the
state of the forest stand to be assessed more accurately.

It was also found that using a pair of images before/after the outbreak does not lead
to an increase in correlation compared to single images taken shortly after the end of
the outbreak.

In addition, there is a trend towards a decrease in correlation between satellite and
field data on tree mortality as the time between a disturbance and an imaging date in-
creases. In this regard, the main limitation of our methodology is the availability of satellite
images taken shortly after the disturbance at the end of the growing season. Difficulties in
obtaining such images may be associated with the presence of clouds due to frequent rain in
this season.

However, a few years after the end of the outbreak, NBR, NDMI and dNBR indices
still demonstrate good applicability for estimating tree mortality, especially for the images
obtained at the end of the growing season (Table 4).

The need to collect data in the field, associated with the increase in time required
and financial costs, is another limitation of the proposed methodology. Unfortunately, we
cannot yet unify the proposed models for estimating tree mortality for different territories
damaged by outbreaks of the Siberian silkmoth. Within Krasnoyarsk Krai, large disturbed
areas require similar assessments. Thus, our future research will be aimed at finding a
solution to this problem.

It should also be mentioned that the MSI sensor has four red edge bands specially
developed for monitoring vegetation’s health. In the present research, we have not used
any indices based on the red edge bands, because we focused on investigating the use of
universal indices. However, we are planning separate research for indices based on MSI
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red edge bands, such as FAPAR (fraction of absorbed photosynthetically active radiation),
LAI (leaf area index), CCC (canopy chlorophyll content) and CWC (canopy water content).

5. Conclusions

We revealed a number of spectral indices calculated from Sentinel satellite data that
enable one to conduct high-reliability quantification of the state of forest stands disturbed
by Siberian silkmoth outbreaks. This will make it possible to assess carbon emission release
from the decomposition of dead trees, which is crucial for studying the carbon cycle and
global climate change. What is more, the results of the present research can be used in
forestry as a fundamental basis in decision-making for fire prevention measures, sanitation
cutting, artificial reforestation, etc., in forests damaged by the Siberian silkmoth.
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